RU2584723C1 - Способ определения параметров колебаний лопаток вращающегося колеса турбомашины и устройство для его осуществления - Google Patents
Способ определения параметров колебаний лопаток вращающегося колеса турбомашины и устройство для его осуществления Download PDFInfo
- Publication number
- RU2584723C1 RU2584723C1 RU2015103552/28A RU2015103552A RU2584723C1 RU 2584723 C1 RU2584723 C1 RU 2584723C1 RU 2015103552/28 A RU2015103552/28 A RU 2015103552/28A RU 2015103552 A RU2015103552 A RU 2015103552A RU 2584723 C1 RU2584723 C1 RU 2584723C1
- Authority
- RU
- Russia
- Prior art keywords
- blades
- turbomachine
- sensor
- output
- input
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/02—Arrangement of sensing elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/003—Arrangements for testing or measuring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/60—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
- H10K30/65—Light-sensitive field-effect devices, e.g. phototransistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K39/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
- H10K39/30—Devices controlled by radiation
- H10K39/32—Organic image sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/83—Testing, e.g. methods, components or tools therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/334—Vibration measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/40—Type of control system
- F05D2270/44—Type of control system active, predictive, or anticipative
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05D2270/803—Sampling thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Изобретение предназначено для бесконтактного определения амплитуды, частоты и фазы колебаний лопаток турбоагрегатов и может быть использовано для определения дефектов лопаток турбомашин в процессе их эксплуатации. Способ заключается в установлении на неподвижном узле турбомашины оборотного импульсного датчика и возбудителя - оборотной отметки, а также в корпусе турбомашины, в плоскости вращения контролируемого лопаточного колеса над траекторией движения торцов лопаток устанавливают неподвижный бесконтактный периферийный датчик. Датчик регистрирует информационные сигналы взаимодействия периферийного первичного преобразователя с торцом лопаток. На основании данных справочной литературы определяют аналитическое выражение, решают систему нелинейных уравнений. Технический результат заключается в увеличении точности и достоверности определения амплитуды, частоты и фазы колебаний всех лопаток вращающегося колеса турбомашины. 2 н.п. ф-лы, 2 ил.
Description
Предлагаемое изобретение предназначено для бесконтактного определения амплитуды, частоты и фазы колебаний лопаток турбоагрегатов и может быть использовано при экспериментально-исследовательских, отладочных работах, а также для определения дефектов лопаток турбомашин в процессе их эксплуатации, для индикации усталостной прочности материала лопаток, предупреждения повреждения или обрыва лопаток.
Известен способ и устройство для определения амплитуды, частоты и фазы колебаний лопаток турбоагрегатов, основанный на тензометрировании лопаток (Леонтьев М.К. Тензометрирование в авиационных газотурбинных двигателях. Учебное пособие - Москва: МАИ. 2001, стр. 24-34), заключающийся в том, что на лопатки наклеивают тензодатчики сопротивления, провода от тензодатчиков прокладывают по лопатке, замку, диску колеса и валу и подводят к специальному токосъемному устройству, сигналы с которого усиливаются и подаются на регистрирующую аппаратуру.
Известный способ осуществляется, например, устройством тензометрическая станция А17-Т8, являющейся частью комплекса измерительной аппаратуры, предназначенной для регистрации и обработки сигналов тензодатчиков.
Недостатками известного способа и устройства, его реализующего, являются: ограниченное число одновременно контролируемых лопаток и, как следствие, недостаточная надежность определения параметров колебаний лопаток; трудоемкость препарирования; низкая надежность датчиков, проводки и токосъемников; невозможность тензометрирования каждого экземпляра ГТД.
Наиболее близким по технической сущности к предлагаемому изобретению является способ определения параметров колебаний лопаток турбомашины (Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М.: Машиностроение. 1977, стр. 33-39), заключающийся в том, что устанавливают в корпусе турбомашины в плоскости вращения рабочего колеса два импульсных бесконтактных датчика, измеряют временные интервалы между импульсами датчиков и по ним вычисляют аналитически амплитуды скоростей и перемещений торцов лопаток, затем также аналитически определяют частоту и фазу (с точностью до знака) колебаний лопаток, статистически находят максимальные перемещения (отклонения от исходного положения) торцов лопаток и по ним определяют амплитуду колебаний торцов лопаток.
Известный способ осуществляется устройством типа ЭЛУРА, ЭМИР (Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М.: Машиностроение. 1977, стр. 89-91; 125-137), содержащим блок периферийных датчиков, оборотный и корневой датчики, возбудители оборотных и корневых датчиков, формирователи импульсов оборотного, периферийного и корневого датчиков, блок преобразования временных интервалов в код, блок управления, выходной регистр и электронную вычислительную машину.
Недостатками известного способа и устройства, его реализующего, являются методически обусловленная низкая точность и достоверность измерений:
- частоты колебаний лопаток, поскольку измеряемый параметр обратно пропорционален квадрату величины окружной скорости торцов лопаток;
- амплитуды колебаний, поскольку точность ее определения напрямую зависит от количества данных (времени наблюдения) при статистической оценке параметра;
- разности фаз колебаний соседних лопаток в колесе, поскольку для ее определения (с точностью до знака) необходимы одновременные измерения амплитуд колебаний и амплитуд взаимных колебаний лопаток; начальная фаза колебаний каждой из лопаток по известному способу не определяется.
В основу изобретения поставлена задача увеличения точности и достоверности определения амплитуды, частоты и фазы колебаний всех лопаток вращающегося колеса турбомашины.
Для достижения поставленной цели в способе определения параметров колебаний лопаток вращающегося колеса турбомашины устанавливают на неподвижном узле турбомашины оборотный импульсный датчик и напротив него на ее роторе возбудитель - оборотную метку, например, в виде штыря, регистрируют импульсы взаимодействия оборотного импульсного датчика с оборотной меткой, на основании импульсов оборотного датчика определяют период вращения ротора турбомашины, устанавливают в корпусе турбомашины в плоскости вращения контролируемого лопаточного колеса над траекторией движения торцов лопаток неподвижный бесконтактный периферийный датчик, например, вихретоковый, согласно изобретению в переходном или эксплуатационном режиме турбомашины регистрируют информационные (лопаточные) сигналы взаимодействия периферийного датчика с торцами лопаток, на основании данных справочной и технической литературы или экспериментально полученных зависимостей определяют аналитическое выражение, описывающее форму информационного выходного сигнала при взаимодействии конкретного типа периферийного датчика с торцом движущейся в окружном направлении и одновременно колеблющейся лопатки, выбирают для каждого лопаточного информационного сигнала несколько амплитудно-временных отсчетов (по количеству неизвестных параметров полигармонических колебаний лопатки: амплитуда, частота и начальная фаза каждого гармонического колебания), подставляют полученные отсчеты в аналитическое выражение, описывающее форму информационного выходного сигнала, составляют систему нелинейных уравнений (как минимум 3-х при условии моногармонического колебания лопатки), решают систему нелинейных уравнений, используя, например, методы нелинейной аппроксимации и определяют параметры колебаний лопаток.
Для реализации способа в известное устройство, содержащее неподвижный бесконтактный периферийный датчик (ПД), установленный в корпусе турбомашины, неподвижный бесконтактный оборотный датчик (ОД), установленный на неподвижной конструктивной части турбомашины, возбудитель оборотного датчика - оборотная метка (ОМ), установленная на роторе турбомашины, формирователь импульсов оборотного датчика (ФО), формирователь импульсов ПД (ФП), блок преобразования временных интервалов (БПВИ) в код и электронную вычислительную машину (ЭВМ), дополнительно введены аналого-цифровой преобразователь (АЦП), фильтр низких частот (ФНЧ), вход которого подключен к выходу ПД, а выход соединен с информационным входом АЦП и входом ФП, выход ФП подключен к синхронизирующему входу АЦП, цифровые выходы АЦП подключены к первой части входных разрядов цифрового интерфейса ЭВМ, например, PC типа IBM, вторая часть входных разрядов цифрового интерфейса ЭВМ соединена с выходными цифровыми разрядами БПВИ, синхронизирующий вход которого подключен к выходу ФО, а третья и четвертая часть входных разрядов цифрового интерфейса ЭВМ соединена, соответственно, с выходом ФП и ФО, а вход ФО подключен к выходу ОД, ЭВМ является выходным блоком устройства и позволяет получать, запоминать и обрабатывать входную информацию, хранить и выдавать конечную информацию в необходимом для пользователя виде.
Предлагаемое техническое решение обладает новизной, т.к. авторам не известны способы и устройства, содержащие признаки, фигурирующие в предлагаемом изобретении в качестве отличительных.
Увеличение точности и достоверности определения фазы, частоты и амплитуды колебаний лопаток вращающегося колеса турбомашины в предлагаемом способе и устройстве, его реализующем, достигается за счет решения системы нелинейных уравнений, с использованием методов нелинейной аппроксимации, составленных с учетом аналитического выражения информационного сигнала и его амплитудно-временных значений, полученных экспериментально и зарегистрированных при взаимодействии периферийного датчика с торцами лопаток.
Сущность изобретения поясняется чертежами, где на фиг. 1 представлена структурная схема устройства, реализующего предложенный способ; на фиг. 2 - форма выходных сигналов первичного преобразователя.
Определение фазы, частоты и амплитуды колебаний лопаток вращающегося колеса турбомашины по предложенному способу осуществляется следующим образом.
На диске лопаточного колеса или на роторе турбомашины устанавливают возбудитель оборотного датчика в виде, например, металлического штыря, а на неподвижной детали двигателя напротив траектории движения возбудителя устанавливают неподвижный бесконтактный оборотный датчик, например вихретоковый, регистрируют электрические импульсы, получаемые в результате взаимодействия возбудителя с оборотным датчиком, на основании импульсов оборотного датчика определяют период вращения ротора турбомашины.
Устанавливают в корпусе турбомашины в плоскости вращения контролируемого лопаточного колеса над траекторией движения торцов лопаток неподвижный бесконтактный периферийный датчик, например вихретоковый. В эксплуатационном или переходном режимах работы турбомашины регистрируют информационные сигналы взаимодействия периферийного датчика с торцами лопаток.
На основании данных справочной и технической литературы или экспериментально полученных зависимостей определяют аналитическое выражение, описывающее форму информационного выходного сигнала при взаимодействии конкретного типа первичного преобразователя с торцом движущейся в окружном направлении и одновременно колеблющейся лопатки, например, выходной импульс вихретокового датчика может быть представлен (описан) аналитическим выражением для гауссова (колокольного) импульса (Неразрушающий контроль и диагностика: Справочник / В.В. Клюев, Ф.Р. Соснин, А.В.Ковалев и др.; под ред. В.В. Клюева. 2-е изд., испр. и доп. - М.: Машиностроение, 2003, стр. 401), в аргумент которого введена функциональная зависимость, определяющая закон движения торца лопатки и формирующая форму информационного сигнала, а именно: крутизну фронтов, длительность и амплитуду.
Выбирают для каждого лопаточного информационного сигнала несколько амплитудно-временных отсчетов (по количеству неизвестных параметров полигармонических колебаний лопатки: амплитуда, частота и начальная фаза каждого гармонического колебания), подставляют полученные отсчеты в аналитическое выражение, описывающее форму информационного выходного сигнала, составляют систему нелинейных уравнений (как минимум 3-х при условии моногармонического колебания лопатки), решают систему нелинейных уравнений, используя, например, методы нелинейной аппроксимации и определяют параметры колебаний лопаток.
Пусть, например, периферийный вихретоковый датчик при прохождении возле него торца лопатки генерирует импульс колоколообразной формы, который может быть описан выражением для гауссова импульса (Неразрушающий контроль и диагностика: Справочник / В.В. Клюев, Ф.Р. Соснин, А.В. Ковалев и др.; под ред. В.В. Клюева. 2-е изд., испр. и доп. - М.: Машиностроение, 2003. - 656 с.)
где y - перемещение торца лопатки, a y - параметр гауссова импульса.
Предположим, что лопатка вращающегося лопаточного колеса колеблется по синусоидальному закону с амплитудой А. Тогда перемещение торца лопатки будет иметь две составляющие - вращательную и колебательную и определится выражением:
где R - радиус колеса, - угловая частота вращения колеса, и φ - угловая частота и начальная фаза колебаний лопатки, соответственно.
В этом случае выходной сигнал периферийного вихретокового датчика при наличии колебаний определится как:
При отсутствии колебаний, соответственно:
Форма выходных сигналов периферийного вихретокового датчика в обоих случаях показана на фиг. 2.
Для определения неизвестных параметров колебания лопатки: амплитуды А, частоты и начальной фазы φ - путем анализа выходного сигнала периферийного вихретокового датчика необходимо решить систему минимум 3-х нелинейных уравнений вида:
где в качестве исходных данных для аппроксимации задаются отсчеты сигнала периферийного вихретокового датчика от колеблющейся лопатки в моменты времени t1, t2 и t3. Для определения неизвестных параметров колебаний лопатки используются, например, методы нелинейной аппроксимации.
Устройство для определения параметров колебаний лопаток вращающегося колеса турбомашины (фиг. 1) содержит неподвижный бесконтактный периферийный датчик 1, например вихретоковый, установленный в корпусе 2 турбомашины в плоскости вращения колеса напротив траектории движения торцов лопаток 3, фильтр 4 низких частот, вход которого подключен к выходу периферийного датчика 1, аналого-цифровой преобразователь 5, информационный вход которого соединен с выходом фильтра 4 низких частот, формирователь 6 прямоугольных импульсов периферийного датчика 1, вход которого также подключен к выходу фильтра 4 низких частот, выход формирователя 6 подключен к синхронизирующему входу АЦП 5, возбудитель 7 оборотного датчика (оборотная метка), установленный на роторе турбомашины, неподвижный бесконтактный оборотный датчик 8, например вихретоковый, установленный на неподвижной конструктивной части турбомашины напротив траектории движения оборотной метки 7, формирователь 9 импульсов оборотного датчика, вход которого подключен к выходу оборотного датчика 8, блок 10 преобразования временных интервалов в код, синхронизирующий вход которого подключен к выходу формирователя 9, ЭВМ 11, например, PC типа IBM, первая часть входных разрядов цифрового интерфейса которой соединена с цифровыми выходами АЦП 5, а вторая часть входных разрядов цифрового интерфейса ЭВМ 11 соединена с выходными цифровыми разрядами блока 10 преобразования временных интервалов, третья и четвертая часть входных разрядов цифрового интерфейса ЭВМ 11 соединена, соответственно, с выходами формирователей 6 и 9, ЭВМ является выходным блоком устройства, который позволяет получать, запоминать и обрабатывать входную информацию, реализуя алгоритм нелинейной аппроксимации при решении системы нелинейных уравнений для определения неизвестных параметров колебаний, хранить и выдавать конечную информацию в необходимом для пользователя виде.
Устройство (фиг. 1), реализующее предлагаемый способ определения параметров колебаний лопаток вращающегося колеса турбомашины, работает следующим образом.
Неподвижный бесконтактный периферийный датчик 1, например вихретоковый, установленный в корпусе 2 турбомашины в плоскости вращения колеса напротив траектории движения торцов 3 лопаток, генерирует электрические колоколообразные импульсы взаимодействия с торцами лопаток с амплитудой , которые затем подаются на вход фильтра 4 низких частот, с частотой среза, например, 100 кГц, в котором происходит подавление высокочастотных помех. Далее отфильтрованный сигнал поступает на информационный вход АЦП 5 и одновременно подается на вход формирователя 6 прямоугольных импульсов периферийного датчика, например, компаратор с уровнем сравнения для формирования импульсов, соответствующих конкретным лопаткам. Сформированные по амплитуде и длительности формирователем 6 прямоугольные импульсы подаются на синхронизирующий вход АЦП 5, по переднему фронту которых начинается, а по заднему фронту заканчивается оцифровка континуальных (аналоговых) колоколообразных импульсов периферийного датчика 1. Возбудитель 7 оборотного датчика (оборотная метка), установленный, например, на роторе турбомашины, проходя возле бесконтактного оборотного датчика 8, например вихретокового, взаимодействует с ним и формирует на его выходе импульсный сигнал с амплитудой , который подается на формирователь 9 прямоугольных импульсов оборотного датчика, например, компаратор с уровнем сравнения . Сформированный по амплитуде и длительности прямоугольный импульс, далее, поступает на вход блока 10 преобразования временного интервала (периода вращения ротора турбомашины) в код, который затем с выхода блока 10 подается на вторую часть входных разрядов цифрового интерфейса ЭВМ 11, например, PC типа IBM. Кроме этого прямоугольные импульсы, предназначенные для синхронизации и управления процессом записи и вычисления информационных параметров, с выходов формирователей 6 и 9 поступают, соответственно, на третьи и четвертые части входных разрядов цифрового интерфейса ЭВМ 11. ЭВМ 11 является выходным блоком устройства, который реализует возможность получения, запоминания кодовых отсчетов АЦП5 по каждой лопатке и кодовых отсчетов блока 10 преобразования временного интервала (периода вращения ротора турбомашины), хранения и выполнения необходимых вычислений с целью осуществления алгоритма нелинейной аппроксимации при решении системы нелинейных уравнений для определения неизвестных параметров колебаний лопаток и выдачи конечной информации в необходимом для пользователя виде.
Claims (2)
1. Способ определения параметров колебаний лопаток вращающегося колеса турбомашины, заключающийся в том, что устанавливают на неподвижном узле турбомашины оборотный импульсный датчик и напротив него на ее роторе возбудитель - оборотную метку, например, в виде штыря, регистрируют импульсы взаимодействия оборотного импульсного датчика с оборотной меткой, на основании импульсов оборотного датчика определяют период вращения ротора турбомашины, устанавливают в корпусе турбомашины в плоскости вращения контролируемого лопаточного колеса над траекторией движения торцов лопаток неподвижный бесконтактный периферийный датчик, например, вихретоковый, отличающийся тем, что в переходном или эксплуатационном режиме турбомашины регистрируют информационные (лопаточные) сигналы взаимодействия периферийного первичного преобразователя с торцами лопаток, на основании данных справочной и технической литературы или экспериментально полученных зависимостей определяют аналитическое выражение, описывающее форму информационного выходного сигнала при взаимодействии конкретного типа периферийного датчика с торцом движущейся в окружном направлении и одновременно колеблющейся лопатки, выбирают для каждого лопаточного информационного сигнала несколько амплитудно-временных отсчетов (по количеству неизвестных параметров полигармонических колебаний лопатки: амплитуда, частота и начальная фаза каждого гармонического колебания), подставляют полученные отсчеты в аналитическое выражение, описывающее форму информационного выходного сигнала, составляют систему нелинейных уравнений (как минимум 3-х при условии моногармонического колебания лопатки), решают систему нелинейных уравнений и определяют параметры колебаний лопаток.
2. Устройство для определения параметров колебаний лопаток вращающегося колеса турбомашины, содержащее неподвижный бесконтактный периферийный датчик (ПД), установленный в корпусе турбомашины, неподвижный бесконтактный оборотный датчик (ОД), установленный на неподвижной конструктивной части турбомашины, возбудитель оборотного датчика - оборотная метка (ОМ), установленная на роторе турбомашины, формирователь импульсов оборотного датчика (ФО), формирователь импульсов ПД (ФП), блок преобразования временных интервалов (БПВИ) в код и электронную вычислительную машину (ЭВМ), отличающееся тем, что введены аналого-цифровой преобразователь (АЦП), фильтр низких частот (ФНЧ), вход которого подключен к выходу ПД, а выход соединен с информационным входом АЦП и входом ФП, выход ФП подключен к синхронизирующему входу АЦП, цифровые выходы АЦП подключены к первой части входных разрядов цифрового интерфейса ЭВМ, вторая часть входных разрядов цифрового интерфейса ЭВМ соединена с выходными цифровыми разрядами БПВИ, синхронизирующий вход которого подключен к выходу ФО, а третья и четвертая часть входных разрядов цифрового интерфейса ЭВМ соединена, соответственно, с выходом ФП и ФО, а вход ФО подключен к выходу ОД, ЭВМ является выходным блоком устройства и позволяет получать, запоминать и обрабатывать входную информацию, хранить и выдавать конечную информацию в необходимом для пользователя виде.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015103552/28A RU2584723C1 (ru) | 2015-02-03 | 2015-02-03 | Способ определения параметров колебаний лопаток вращающегося колеса турбомашины и устройство для его осуществления |
DE102015110090.8A DE102015110090A1 (de) | 2015-02-03 | 2015-06-23 | Verfahren zur Bestimmung der Schwingungskennwerte von Turbomaschinen-Schaufeln und Vorrichtung zu dessen Umsetzung |
US14/754,563 US9810090B2 (en) | 2015-02-03 | 2015-06-29 | Method for determining the oscillation parameters of turbo-machine blades and a device for putting the same into practice |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015103552/28A RU2584723C1 (ru) | 2015-02-03 | 2015-02-03 | Способ определения параметров колебаний лопаток вращающегося колеса турбомашины и устройство для его осуществления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2584723C1 true RU2584723C1 (ru) | 2016-05-20 |
Family
ID=56012263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015103552/28A RU2584723C1 (ru) | 2015-02-03 | 2015-02-03 | Способ определения параметров колебаний лопаток вращающегося колеса турбомашины и устройство для его осуществления |
Country Status (3)
Country | Link |
---|---|
US (1) | US9810090B2 (ru) |
DE (1) | DE102015110090A1 (ru) |
RU (1) | RU2584723C1 (ru) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11174750B2 (en) * | 2016-09-02 | 2021-11-16 | Raytheon Technologies Corporation | Real time aerodamping measurement of turbomachine |
US11230926B2 (en) * | 2019-12-09 | 2022-01-25 | Rolls-Royce Corporation | High cycle fatigue design for gas turbine engines |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5511426A (en) * | 1992-09-03 | 1996-04-30 | Societe Europeenne De Propulsion | Process and device for measuring operating turbine blade vibrations |
RU2207524C1 (ru) * | 2002-03-11 | 2003-06-27 | Самарский государственный аэрокосмический университет им. С.П.Королева | Способ определения амплитуд колебаний лопаток турбомашин |
RU2229104C1 (ru) * | 2002-11-10 | 2004-05-20 | Самарский государственный аэрокосмический университет им. акад. С.П. Королева | Способ определения параметров колебаний лопаток турбомашин |
RU2244272C1 (ru) * | 2003-09-15 | 2005-01-10 | Самарский государственный аэрокосмический университет им. акад. С.П. Королева | Способ определения амплитуд колебаний лопаток турбомашин |
US7341428B2 (en) * | 2005-02-02 | 2008-03-11 | Siemens Power Generation, Inc. | Turbine blade for monitoring torsional blade vibration |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1147737A (en) | 1968-01-08 | 1969-04-02 | Igor Evgenievich Zablotsky | Device for measuring vibrations of wheel blades of turbine machines and a method ofmeasurement of the parameters of resonance oscillations of the blades |
US5206816A (en) * | 1991-01-30 | 1993-04-27 | Westinghouse Electric Corp. | System and method for monitoring synchronous blade vibration |
DE102009039340A1 (de) * | 2009-08-29 | 2011-03-03 | Robert Bosch Gmbh | Betriebsführungssystem einer Windenergieanlage und Verfahren unter Verwendung des Betriebsführungssystems |
-
2015
- 2015-02-03 RU RU2015103552/28A patent/RU2584723C1/ru not_active IP Right Cessation
- 2015-06-23 DE DE102015110090.8A patent/DE102015110090A1/de not_active Withdrawn
- 2015-06-29 US US14/754,563 patent/US9810090B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5511426A (en) * | 1992-09-03 | 1996-04-30 | Societe Europeenne De Propulsion | Process and device for measuring operating turbine blade vibrations |
RU2207524C1 (ru) * | 2002-03-11 | 2003-06-27 | Самарский государственный аэрокосмический университет им. С.П.Королева | Способ определения амплитуд колебаний лопаток турбомашин |
RU2229104C1 (ru) * | 2002-11-10 | 2004-05-20 | Самарский государственный аэрокосмический университет им. акад. С.П. Королева | Способ определения параметров колебаний лопаток турбомашин |
RU2244272C1 (ru) * | 2003-09-15 | 2005-01-10 | Самарский государственный аэрокосмический университет им. акад. С.П. Королева | Способ определения амплитуд колебаний лопаток турбомашин |
US7341428B2 (en) * | 2005-02-02 | 2008-03-11 | Siemens Power Generation, Inc. | Turbine blade for monitoring torsional blade vibration |
Also Published As
Publication number | Publication date |
---|---|
US9810090B2 (en) | 2017-11-07 |
DE102015110090A1 (de) | 2016-08-04 |
US20160222818A1 (en) | 2016-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | An improved multiple signal classification for nonuniform sampling in blade tip timing | |
Lawson et al. | Tubomachinery blade vibration amplitude measurement through tip timing with capacitance tip clearance probes | |
Heath et al. | A survey of blade tip-timing measurement techniques for turbomachinery vibration | |
US11609114B2 (en) | Method and system for monitoring rotor blades of a turbomachine using blade tip timing (BTT) | |
CN109790757B (zh) | 使用叶片尖端定时(btt)测量转子叶片尖端偏转的方法和系统 | |
CA2732571A1 (en) | Rotating blade analysis | |
Rzadkowski et al. | Analysis of middle bearing failure in rotor jet engine using tip-timing and tip-clearance techniques | |
Dreier et al. | Interferometric sensor system for blade vibration measurements in turbomachine applications | |
CN107076640B (zh) | 通过平衡位置测量来监视飞机发动机叶轮的方法及设备 | |
JP2824523B2 (ja) | 振動部材の疲れ測定方法および装置 | |
Joung et al. | Analysis of vibration of the turbine blades using non-intrusive stress measurement system | |
CN104697436A (zh) | 一种基于傅里叶级数的圆感应同步器误差模型分析方法 | |
JP2015125146A (ja) | 動翼の健全性を監視するための方法およびシステム | |
Przysowa et al. | Inductive sensors for blade tip-timing in gas turbines | |
US10670452B2 (en) | Method and device for determining the vibration of rotor blades | |
Szczepanik et al. | Tip-timing and tip-clearance for measuring rotor turbine blade vibrations | |
RU2584723C1 (ru) | Способ определения параметров колебаний лопаток вращающегося колеса турбомашины и устройство для его осуществления | |
CN110346592B (zh) | 来自振动频谱图的rpm的确定 | |
JP5701723B2 (ja) | 翼振動計測装置 | |
Yue et al. | The parameter identification method of blade asynchronous vibration under sweep speed excitation | |
JP7269770B2 (ja) | 回転機械の振動計測装置、及び、振動計測方法 | |
Procházka et al. | Non-contact systems for monitoring blade vibrations of steam turbines | |
Meroño et al. | Measurement techniques of torsional vibration in rotating shafts | |
Gil-García et al. | Blade tip clearance and time of arrival immediate measurement method using an optic probe | |
JP6594240B2 (ja) | 回転機械の振動計測装置、回転機械の振動計測方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190204 |