RU2244272C1 - Способ определения амплитуд колебаний лопаток турбомашин - Google Patents

Способ определения амплитуд колебаний лопаток турбомашин Download PDF

Info

Publication number
RU2244272C1
RU2244272C1 RU2003127797/28A RU2003127797A RU2244272C1 RU 2244272 C1 RU2244272 C1 RU 2244272C1 RU 2003127797/28 A RU2003127797/28 A RU 2003127797/28A RU 2003127797 A RU2003127797 A RU 2003127797A RU 2244272 C1 RU2244272 C1 RU 2244272C1
Authority
RU
Russia
Prior art keywords
blade
blades
sensors
time intervals
absolute value
Prior art date
Application number
RU2003127797/28A
Other languages
English (en)
Inventor
В.В. Щеголев (RU)
В.В. Щеголев
Original Assignee
Самарский государственный аэрокосмический университет им. акад. С.П. Королева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самарский государственный аэрокосмический университет им. акад. С.П. Королева filed Critical Самарский государственный аэрокосмический университет им. акад. С.П. Королева
Priority to RU2003127797/28A priority Critical patent/RU2244272C1/ru
Application granted granted Critical
Publication of RU2244272C1 publication Critical patent/RU2244272C1/ru

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к контрольно-измерительной технике и может использоваться для бесконтактного измерения и непрерывного контроля амплитуды колебаний турбинных и компрессорных лопаток в эксплуатационных условиях. Сущность изобретения: устанавливают два периферийных датчика на корпусе турбомашины на базовом расстоянии по траектории вращения кромок лопаток, регистрируют моменты прохождения периферийного сечения лопатки мимо датчиков, расположенных на базовом расстоянии в окружном направлении, измеряют временные интервалы прохождения каждой i-й лопатки от 1-го до 2-го датчика (между датчиками), измеряют средние, в течение соответствующих измеренных интервалов времени, линейные скорости движения периферийного сечения каждой i-й лопатки, вычисляют разношаговости каждой i-й лопатки путем умножения измеренных временных интервалов на средние, в течение соответствующих измеренных интервалов времени, линейные скорости движения периферийного сечения каждой i-й лопатки и вычитания из каждого полученного произведения базового расстояния между датчиками, накапливают статистическую совокупность разношаговостей каждой i-й лопатки, из которой определяют максимальное абсолютное значение разношаговости каждой i-й лопатки. Увеличивают полученное для каждой i-й лопатки максимальное абсолютное значение разношаговости на значение заданной погрешности определения амплитуд колебаний лопаток турбомашин, и по увеличенному максимальному абсолютному значению разношаговости судят об амплитуде колебаний каждой i-й лопатки. Технический результат - повышение точности и достоверности определения амплитуд колебаний лопаток турбомашин. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к контрольно-измерительной технике и может использоваться для бесконтактного измерения и непрерывного контроля амплитуды колебаний турбинных и компрессорных лопаток в эксплуатационных условиях.
В настоящее время наиболее современным и перспективным методом определения параметров колебаний лопаток ГТД является дискретно-фазовый метод (ДФМ) /Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М.: Машиностроение, 1977. - 160 с./, при котором регистрируют моменты прохождения периферийного сечения вращающейся лопатки мимо определенных точек корпуса (или его неподвижных деталей) и одновременно измеряют угловую или окружную скорости движения ротора турбомашины. В упомянутых точках корпуса устанавливаются на определенных расстояниях друг от друга по направлению траектории движения периферийного сечения лопатки датчики (электроразрядные, емкостные, электродинамические, оптические, акустические или иного типа), способные подавать сигнал, соответствующий моменту прохождения периферийного сечения лопатки точки, в которой расположен датчик.
Известные устройства, построенные на дискретно-фазовом методе определения амплитуд колебаний, используют статистические методы определения амплитуд колебаний каждой отдельной лопатки на основе использования информации, получаемой с датчиков за большое число оборотов ротора при стационарном режиме работы двигателя / Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М.: Машиностроение, 1977. - 160 с./. Количество измеренных интервалов времени для каждой лопатки с датчиков, необходимых для определения ее параметров колебаний зависит от требуемой точности (погрешности) и достоверности определения параметров колебаний лопаток /Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М.: Машиностроение, 1977. - 160 с.; с.51/.
Недостатком известного способа является большое время (большое число оборотов ротора турбомашины), необходимое для накопления требуемого количества статистической информации о мгновенной разношаговости лопаток, т.к. с помощью 2-х датчиков за один оборот ротора турбомашины получают только один отсчет (интервал времени) при прохождении каждой i-й лопатки, а требуемое количество отсчетов измеренных интервалов времени для каждой лопатки с датчиков, необходимых для определения ее параметров колебаний зависит от заданной точности (погрешности) и достоверности определения параметров колебаний лопаток /Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М.: Машиностроение, 1977. - 160 с.; с 51/.
Также недостатком известного способа является низкая точность определения амплитуды колебаний лопаток, т.к. амплитуду колебаний каждой лопатки определяют путем нахождения минимального и максимального промежутка времени между сигналами датчиков, которые в общем случае получены при неодинаковых частотах вращения ротора, и соответственно при неодинаковых линейных скоростях движения периферийных сечений лопаток. В реальных условиях частота вращения ротора не может быть строго постоянной во времени, поэтому умножение разницы между максимальным и минимальным промежутками времени между сигналами датчиков на среднюю, в течение всего времени накопления статистических данных, скорость движения периферийного сечения лопатки приводит к дополнительной погрешности от нестабильности частоты вращения ротора. Частота вращения ротора в течение всего времени накопления статистических данных не остается величиной строго постоянной, что, в свою очередь, может вызывать изменение интенсивности колебаний лопаток турбомашин в процессе измерений. Кроме того, изменение интенсивности колебаний лопаток может происходить и в случае поддержания частоты вращения ротора строго постоянной, если частота колебаний лопатки близка к кратным частотам вращения ротора. Это приводит к тому, что получаемая статистическая совокупность состоит из разнородных отсчетов, т.е. полученных при различных условиях: частоты вращения ротора и интенсивности колебаний лопаток турбомашины, причем степень разнородности зависит и от размеров накопленной статистической совокупности (количества отсчетов измеренных интервалов времени).
Наиболее близким к предлагаемому способу является способ, приведенный в /Патент РФ №2207524, G 01 Н 11/ 06, Бюл. №18, 2003 г./, в котором устанавливают два периферийных датчика на корпусе турбомашины на базовом расстоянии по траектории вращения кромок лопаток. Регистрируют моменты прохождения периферийного сечения лопатки мимо датчиков, расположенных на базовом расстоянии в окружном направлении, измеряют временные интервалы прохождения каждой i-й лопатки от 1-го до 2-го датчика (между датчиками), измеряют средние, в течение соответствующих измеренных интервалов времени, линейные скорости движения периферийного сечения каждой i-й лопатки, вычисляют разношаговости каждой i-й лопатки путем умножения измеренных временных интервалов на средние, в течение соответствующих измеренных интервалов времени, линейные скорости движения периферийного сечения каждой i-й лопатки и вычитания из каждого полученного произведения базового расстояния между датчиками, накапливают статистическую совокупность разношаговостей каждой i-й лопатки, из которой определяют разницу между максимальным и минимальным значениями разношаговостей каждой i-й лопатки. По полученному для каждой i-й лопатки значению разницы между максимальным и минимальным значениями разношаговостей судят об амплитуде колебаний.
Недостатком известного способа является большое время (большое число оборотов ротора турбомашины), необходимое для накопления требуемого количества статистической информации о мгновенной разношаговости лопаток, т.к. с помощью 2-х датчиков за один оборот ротора турбомашины получают только один отсчет (интервал времени) при прохождении каждой i-й лопатки, а требуемое количество отсчетов измеренных интервалов времени для каждой лопатки с датчиков, необходимых для определения ее параметров колебаний зависит от заданной точности (погрешности) и достоверности определения параметров колебаний лопаток /Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М.: Машиностроение, 1977. - 160 с.; с.51/.
Поставлена задача повышения быстродействия (уменьшения времени и количества оборотов ротора турбомашины) определения параметров колебаний каждой i-й лопатки при заданных значениях точности (погрешности) и достоверности определения амплитуд колебаний лопаток турбомашин и/или повышения точности (уменьшения погрешности) и достоверности определения амплитуд колебаний лопаток турбомашин за прежнее время (прежнее количество оборотов ротора турбомашины).
Поставленная задача достигается за счет того, что в способе определения амплитуд колебаний лопаток турбомашин, основанном на бесконтактном съеме информации о колебаниях вращающихся лопаток, устанавливают два периферийных датчика на корпусе турбомашины на базовом расстоянии по траектории вращения кромок лопаток. Регистрируют моменты прохождения периферийного сечения лопатки мимо датчиков, расположенных на базовом расстоянии в окружном направлении, измеряют временные интервалы прохождения каждой i-й лопатки от 1-го до 2-го датчика (между датчиками), измеряют средние, в течение соответствующих измеренных интервалов времени, линейные скорости движения периферийного сечения каждой i-й лопатки, вычисляют разношаговости каждой i-й лопатки путем умножения измеренных временных интервалов на средние, в течение соответствующих измеренных интервалов времени, линейные скорости движения периферийного сечения каждой i-й лопатки и вычитания из каждого полученного произведения базового расстояния между датчиками, накапливают статистическую совокупность разношаговостей каждой i-й лопатки, из которой определяют максимальное абсолютное значение разношаговости каждой i-й лопатки. По полученному для каждой i-й лопатки максимальному абсолютному значению разношаговости судят об амплитуде колебаний каждой i-й лопатки.
Для дополнительного повышения быстродействия (уменьшения времени и количества оборотов ротора турбомашины) определения параметров колебаний каждой i-й лопатки при заданных значениях точности (погрешности) и достоверности определения амплитуд колебаний лопаток турбомашин и/или повышения точности (уменьшения погрешности) и достоверности определения амплитуд колебаний лопаток турбомашин за прежнее время (прежнее количество оборотов ротора турбомашины) предлагается увеличивать полученное для каждой i-й лопатки максимальное абсолютное значение разношаговости на значение заданной погрешности определения амплитуд колебаний лопаток турбомашин и по увеличенному максимальному абсолютному значению разношаговости судят об амплитуде колебаний каждой i-й лопатки.
Сущность способа определения амплитуд колебаний лопаток турбомашин поясняется схемами, представленными на фиг.1 и 2;
на фиг.1 показаны зависимости достоверности Р определения амплитуд колебаний лопаток турбомашин от требуемого количества отсчетов N для погрешности 2% определения амплитуд колебаний лопаток турбомашин,
на фиг.2 показаны зависимости достоверности Р определения амплитуд колебаний лопаток турбомашин от требуемого количества отсчетов N для погрешности 5% определения амплитуд колебаний лопаток турбомашин. На фигурах 1 и 2 обозначены: сплошной линией - зависимости достоверности Р определения амплитуд колебаний лопаток турбомашин от требуемого количества отсчетов по прототипу, пунктирной линией - зависимости достоверности Р определения амплитуд колебаний лопаток турбомашин от требуемого количества отсчетов предлагаемым способом, штриховой линией - зависимости достоверности Р определения амплитуд колебаний лопаток турбомашин от требуемого количества отсчетов предлагаемым способом с увеличением максимального абсолютного значения разношаговости на значение заданной погрешности определения амплитуд колебаний лопаток турбомашин.
Определение амплитуд колебаний лопаток турбомашин предлагаемым способом осуществляется следующим образом. Устанавливают два периферийных датчика на корпусе турбомашины на базовом расстоянии по траектории вращения кромок лопаток. Регистрируют моменты прохождения периферийного сечения лопатки мимо датчиков, расположенных на базовом расстоянии в окружном направлении, измеряют временные интервалы прохождения каждой i-й лопатки от 1-го до 2-го датчика (по траектории движения периферийного сечения лопаток). Измеряют средние, в течение соответствующих измеренных интервалов времени, линейные скорости движения периферийного сечения каждой i-й лопатки. Измерение средней линейной скорости движения периферийного сечения лопатки может быть выполнено различными способами, например, с помощью тахогенератора измеряют частоту вращения ротора ω и по известной величине радиального расстояния R периферийного сечения от оси вращения ротора определяют линейную скорость движения периферийного сечения лопатки V как произведение частоты вращения ротора ω на радиальное расстояние R. Вычисляют разношаговости каждой i-й лопатки путем умножения измеренных временных интервалов на средние, в течение соответствующих измеренных интервалов времени, линейные скорости движения периферийного сечения каждой i-й лопатки и вычитания из каждого полученного произведения базового расстояния между датчиками. Накапливают статистическую совокупность разношаговостей каждой i-й лопатки, из которой определяют максимальное абсолютное значение разношаговости каждой i-й лопатки. По полученному для каждой i-й лопатки максимальному абсолютному значению разношаговости судят об амплитуде колебаний каждой i-й лопатки.
Для дополнительного повышения быстродействия (уменьшения времени и количества оборотов ротора турбомашины) определения параметров колебаний каждой i-й лопатки при заданных значениях точности (погрешности) и достоверности определения амплитуд колебаний лопаток турбомашин и/или повышения точности (уменьшения погрешности) и достоверности определения амплитуд колебаний лопаток турбомашин за прежнее время (прежнее количество оборотов ротора турбомашины) предлагается увеличивать полученное для каждой i-й лопатки максимальное абсолютное значение разношаговости на значение заданной погрешности определения амплитуд колебаний лопаток турбомашин, и по увеличенному максимальному абсолютному значению разношаговости судят об амплитуде колебаний каждой i-й лопатки.
При определении зависимостей, показанных на фиг.1 и 2, исходили из того, что колебания лопаток происходят по гармоническому закону
Figure 00000002
со случайной начальной фазой ⌀ и случайным отношением частоты колебаний к частоте вращения ротора турбомашины (частоте отсчетов) - величины кратности колебаний n.
Для каждого сочетания числа отсчетов N (N=1,2...100) и точности (погрешности) Δ (Δ=2%, 5%) было проведено М=105 испытаний, в каждом из которых N раз вычислялось значение уi по формуле:
Figure 00000003
где
Figure 00000004
- дробная часть суммы кратности колебаний n и величины относительной фазы φ для каждого испытания выбиралась с помощью датчика случайных чисел с равномерным распределением в диапазоне [0, 1] (поскольку целая часть суммы кратности колебаний n и величины относительной фазы
Figure 00000005
не изменяет значение гармонической функции).
Для каждого сочетания числа отсчетов N и точности (погрешности) Δ определялось:
количество испытаний m1 из М, в которых разность между наибольшим и наименьшим значениями уi из N отсчетов с заданной точностью (погрешностью) Δ соответствует двойной амплитуде колебаний:
Figure 00000006
количество испытаний m2 из М, в которых наибольшее абсолютное значение уi из N отсчетов с заданной точностью (погрешностью) Δ соответствует амплитуде колебаний:
Figure 00000007
количество испытаний m3 из М, в которых наибольшее абсолютное значение уi из N отсчетов, увеличенное на значение заданной погрешности определения амплитуды колебаний с заданной точностью (погрешностью) Δ, соответствует амплитуде колебаний:
Figure 00000008
Отношение m1 к М испытаний представляет собой вероятность определения амплитуды колебаний лопаток турбомашин для соответствующего сочетания числа отсчетов N и точности (погрешности) Δ по прототипу.
Отношение m2 к М испытаний представляет собой вероятность определения амплитуды колебаний лопаток турбомашин для соответствующего сочетания числа отсчетов N и точности (погрешности) Δ предлагаемым способом.
Отношение m3 к М испытаний представляет собой вероятность определения амплитуды колебаний лопаток турбомашин для соответствующего сочетания числа отсчетов N и точности (погрешности) Δ предлагаемым способом с увеличением полученного максимального абсолютного значения разношаговости на значение заданной погрешности определения амплитуд колебаний.
Так при погрешности определения амплитуды колебаний Δ=2% и достоверности Р=0,95 требуемое количество отсчетов N составит: по прототипу - 41, предлагаемым способом - 23, предлагаемым способом с увеличением максимального абсолютного значения разношаговости на значение заданной погрешности определения амплитуд колебаний лопаток турбомашин - 15.
Практическая полезность такого способа очень велика, вследствие того, что его использование увеличит возможности диагностирования и предотвращения аварий на энергетических и транспортных машинах, оснащенных турбинами и компрессорами, в которых лопатки по причине их чрезмерных вибраций, нагрузок являются главным источником аварий с тяжелыми последствиями.

Claims (2)

1. Способ определения амплитуд колебаний лопаток турбомашин, основанный на бесконтактном съеме информации о колебаниях вращающихся лопаток, заключающийся в том, что устанавливают два периферийных датчика на корпусе турбомашины на базовом расстоянии по траектории вращения кромок лопаток, регистрируют моменты прохождения периферийного сечения лопатки мимо датчиков, расположенных на базовом расстоянии в окружном направлении, измеряют временные интервалы прохождения каждой i-й лопатки от 1-го до 2-го датчика (между датчиками), измеряют средние в течение соответствующих измеренных интервалов времени линейные скорости движения периферийного сечения каждой i-й лопатки, вычисляют разношаговости каждой i-й лопатки путем умножения измеренных временных интервалов на средние в течение соответствующих измеренных интервалов времени линейные скорости движения периферийного сечения каждой i-й лопатки и вычитания из каждого полученного произведения базового расстояния между датчиками, накапливают статистическую совокупность разношаговостей каждой i-й лопатки отличающийся тем, что из статистической совокупности разношаговостей каждой i-й лопатки определяют максимальное абсолютное значение разношаговости каждой i-й лопатки и по полученному для каждой i-й лопатки максимальному абсолютному значению разношаговости судят об амплитуде колебаний каждой i-й лопатки.
2. Способ по п.1, отличающийся тем, что дополнительно увеличивают полученное для каждой i-й лопатки максимальное абсолютное значение разношаговости на значение заданной погрешности определения амплитуд колебаний лопаток турбомашин и по увеличенному максимальному абсолютному значению разношаговости судят об амплитуде колебаний каждой i-й лопатки.
RU2003127797/28A 2003-09-15 2003-09-15 Способ определения амплитуд колебаний лопаток турбомашин RU2244272C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003127797/28A RU2244272C1 (ru) 2003-09-15 2003-09-15 Способ определения амплитуд колебаний лопаток турбомашин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003127797/28A RU2244272C1 (ru) 2003-09-15 2003-09-15 Способ определения амплитуд колебаний лопаток турбомашин

Publications (1)

Publication Number Publication Date
RU2244272C1 true RU2244272C1 (ru) 2005-01-10

Family

ID=34881919

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003127797/28A RU2244272C1 (ru) 2003-09-15 2003-09-15 Способ определения амплитуд колебаний лопаток турбомашин

Country Status (1)

Country Link
RU (1) RU2244272C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584723C1 (ru) * 2015-02-03 2016-05-20 Федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева" (национальный исследовательский университет)" (СГАУ) Способ определения параметров колебаний лопаток вращающегося колеса турбомашины и устройство для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584723C1 (ru) * 2015-02-03 2016-05-20 Федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева" (национальный исследовательский университет)" (СГАУ) Способ определения параметров колебаний лопаток вращающегося колеса турбомашины и устройство для его осуществления

Similar Documents

Publication Publication Date Title
US4955269A (en) Turbine blade fatigue monitor
US6584849B2 (en) Analyzing vibration of rotating blades
US7861592B2 (en) Blade shroud vibration monitor
US7424823B2 (en) Method of determining the operating status of a turbine engine utilizing an analytic representation of sensor data
RU2465562C2 (ru) Устройство и способ бесконтактного измерения вибрации лопаток
CN111579060B (zh) 一种基于叶尖定时技术高精度的旋转叶片振动测量方法
CA2993232C (en) Rotating blade analysis
US20110213569A1 (en) Method and device for detecting cracks in compressor blades
KR960014013B1 (ko) 터빈 블레이드 약화 감시장치
CN103364069A (zh) 一种基于无转速定位的非接触式旋转叶片振动测试方法
CN1039111A (zh) 透平机叶片非同期振动监测系统
CN102498372A (zh) 用于测定在涡轮叶片中的裂纹的方法
US7856337B2 (en) Method and apparatus for monitoring the rotational speed of the shaft of a gas turbine
CN109540482B (zh) 一种涡轮机叶片无键相同步振动参数分析方法及分析装置
Ren et al. An error correction blade tip-timing method to improve the measured accuracy of blade vibration displacement during unstable rotation speed
US20140238128A1 (en) Method for determining current eccentricity of rotating rotor and method of diagnostics of eccentricity of rotating rotor
RU2244272C1 (ru) Способ определения амплитуд колебаний лопаток турбомашин
CN111174903A (zh) 一种透平机械故障的诊断方法
RU2207524C1 (ru) Способ определения амплитуд колебаний лопаток турбомашин
RU2229104C1 (ru) Способ определения параметров колебаний лопаток турбомашин
GB2416848A (en) Capacitive measurement of rotor blade speed and vibration
RU2324907C1 (ru) Способ определения амплитуд колебаний лопаток турбомашин и устройство для его осуществления
CN112880811A (zh) 一种移动直线拟合的无键相叶尖定时测振方法
US11448194B2 (en) Method for measuring imbalances in wind turbine rotors
Łutowicz Unsteady angular speed of diesel engine crankshaft preliminary examination

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050916