RU2584545C1 - Способ определения местоположения объекта навигации - Google Patents

Способ определения местоположения объекта навигации Download PDF

Info

Publication number
RU2584545C1
RU2584545C1 RU2015100926/07A RU2015100926A RU2584545C1 RU 2584545 C1 RU2584545 C1 RU 2584545C1 RU 2015100926/07 A RU2015100926/07 A RU 2015100926/07A RU 2015100926 A RU2015100926 A RU 2015100926A RU 2584545 C1 RU2584545 C1 RU 2584545C1
Authority
RU
Russia
Prior art keywords
frequency
signals
navigation
points
difference
Prior art date
Application number
RU2015100926/07A
Other languages
English (en)
Inventor
Виктор Васильевич Шеболков
Игорь Георгиевич Дорух
Original Assignee
Открытое акционерное общество "Азовский оптико-механический завод" (ОАО "АОМЗ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Азовский оптико-механический завод" (ОАО "АОМЗ") filed Critical Открытое акционерное общество "Азовский оптико-механический завод" (ОАО "АОМЗ")
Priority to RU2015100926/07A priority Critical patent/RU2584545C1/ru
Application granted granted Critical
Publication of RU2584545C1 publication Critical patent/RU2584545C1/ru

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации. Достигаемый технический результат - повышение помехозащищенности, повышение точности определения координат объекта навигации. Указанный результат достигается за счет того, что способ основан на излучении объектом навигации высокочастотного гармонического сигнала, приеме его в нескольких опорных радионавигационных точках с известными координатами, при этом с объекта навигации дополнительно излучают второй высокочастотный гармонический сигнал, частота которого отличается от частоты первого высокочастотного гармонического сигнала на заданную величину, в каждой из опорных радионавигационных точек принимают этот сигнал наряду с первым, формируют из принятых сигналов сигналы разностной частоты, передают сформированные сигналы в центральный пункт обработки, где из каждого из них дополнительно формируют сигналы масштабной частоты, величина которой в n раз меньше разностной частоты, измеряют и фиксируют разности фаз сигналов разностной частоты, поступивших из разных опорных точек, а также разности фаз сформированных из них сигналов масштабной частоты, по окончании измерений результаты измерений разностей фаз пересчитывают в координаты объекта навигации с учетом взаимного расположения центрального пункта обработки и опорных радионавигационных точек. 2 ил.

Description

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.
Известен защищенный патентом РФ №2204145, кл. G01S 3/46, 2003, способ определения координат источника излучения, основанный на приеме его сигнала тремя антеннами, образующими ортогональные базы.
Существенным признаком аналога, совпадающим с заявляемым способом, является определение направления на источник излучения.
Известен также защищенный патентом РФ №2013785, кл. G01S 13/00, 1994, способ определения местоположения подвижных объектов, заключающийся в излучении кодированных сигналов передатчиками объектов, приеме сигналов в N пространственно разнесенных пунктах с последующей ретрансляцией их на центральный пункт обработки и измерении задержек между принятыми сигналами.
Ретрансляция сигналов на центральный пункт обработки является существенным признаком и заявляемого способа.
Причиной, препятствующей достижению технического результата в этих аналогах, является необходимость использования достаточно сложной системы единого времени.
Известен разностно-дальномерный способ определения местоположения мобильных объектов, заключающийся в поочередном излучении сетью опорных навигационных пунктов, расположенных в точках пространства с известными координатами, когерентных гармонических сигналов, их приеме на мобильном объекте, принятых от каждого опорного объекта, и вычислении по ним координат мобильного объекта [Бакулев П.А., Сосновский А.А. Радиолокационные и радионавигационные системы. - М.: Радио и связь, 1994, с. 211-214].
Измерение фазовых сдвигов сигналов и вычисление по ним координат мобильного объекта является существенным признаком и заявляемого способа.
Причиной, препятствующей достижению в этом аналоге технического результата, обеспечиваемого изобретением, является необходимость в использовании высокоточной шкалы единого времени на объекте навигации и сложность реализации при больших расстояниях между опорными радионавигационными точками и объектом навигации.
Наиболее близким по технической сущности к заявляемому (прототипом) является обращенный разностно-дальномерный способ определения координат [Кинкулькин И.Е., Рубцов В.Д., Фабрик М.А. Фазовый метод определения координат. - М.: Сов. радио, 1979, с. 10-11, с. 97-100].
Способ заключается в одновременном излучении объектом навигации и передатчиком, установленным в неподвижной точке с известными координатами, непрерывных гармонических высокочастотных сигналов и одновременном приеме указанных гармонических сигналов в нескольких опорных радионавигационных точках и формировании там из принятых сигналов сигналов разностной частоты.
Существенными признаками прототипа, совпадающими с заявляемым способом, являются излучение высокочастотных гармонических сигналов объектом навигации, прием излучаемых гармонических высокочастотных сигналов в опорных радионавигационных точках с известными координатами, формирование там сигналов разностной частоты из принятых высокочастотных сигналов.
Причинами, препятствующими достижению в способе-прототипе технического результата, обеспечиваемого изобретением, являются следующие.
Первой причиной является необходимость непрерывного излучения сигнала неподвижным передатчиком. Это ухудшает условия электромагнитной совместимости оборудования. Возникает необходимость одновременного приема и передачи двух сигналов с близкими частотами, что ухудшает условия обеспечения информационной безопасности оборудования и облегчает возможность подавления его работы. Указанные обстоятельства снижают помехозащищенность устройств, реализующих способ.
Второй причиной является то обстоятельство, что координаты неподвижного передатчика всегда определяются с некоторой погрешностью, что в конечном итоге приводит к снижению точности измерения координат объекта навигации.
Третьей причиной являются небольшие размеры области пространства, в пределах которой возможно однозначное определение координат объекта навигации с высокой точностью. Размеры этой области пространства в способе-прототипе ограничены зоной, в которой расстояния между объектом навигации и каждой из опорных радионавигационных точек должны разниться между собой не более чем на половину длины волны сигнала частоты, равной разности частот СВЧ-сигналов, излучаемых объектом навигации и передатчиком, установленным в неподвижной точке.
Технической задачей, на решение которой направлено изобретение, является повышение помехозащищенности устройств, реализующих предлагаемый способ, повышение точности определения координат объекта навигации и расширение области пространства, в пределах которой возможно однозначное определение координат объекта навигации без уменьшения точности этого определения.
Для достижения указанного технического результата в известном способе определения местоположения объекта навигации, заключающемся в излучении объектом навигации высокочастотного гармонического сигнала, приеме его в нескольких опорных радионавигационных точках с известными координатами, с объекта навигации дополнительно излучают второй высокочастотный гармонический сигнал, частота которого отличается от частоты первого высокочастотного гармонического сигнала на заданную величину, в каждой из опорных радионавигационных точек принимают этот сигнал наряду с первым, формируют из принятых сигналов сигналы разностной частоты, передают сформированные сигналы в центральный пункт обработки, где из каждого из них дополнительно формируют сигналы масштабной частоты, величина которой в n раз меньше разностной частоты, измеряют и фиксируют разности фаз сигналов разностной частоты, поступивших из разных опорных точек, а также разности фаз сформированных из них сигналов масштабной частоты, по окончании измерений результаты измерений разностей фаз пересчитывают в координаты объекта навигации с учетом взаимного расположения центрального пункта обработки и опорных радионавигационных точек.
Сущность изобретения поясняется чертежом, на котором приведены:
- на фиг. 1 - взаимное положение объекта навигации и трех опорных радионавигационных точек в прямоугольной системе координат 0XY;
- на фиг. 2 - зона однозначного определения координат объекта навигации в привязке к этим точкам.
Функционирование способа поясняется фиг. 1, на которой показаны мобильный объект (МО) навигации, находящийся в точке с неизвестными координатами Xмо и Yмо, опорные радионавигационные точки ОРТ1, ОРТ2 и ОРТ3, расположенные в точках с известными координатами X1 и Y1, Х2 и Y2 и Х3 и Y3 соответственно, а также центральный пункт обработки (ЦПО), расстояния от которого до точек ОРТ1, ОРТ2 и ОРТ3 равны соответственно R1, R2 и R3. Там же показаны расстояния D1, D2, D3 между объектом навигации и опорными радионавигационными точками.
С объекта навигации в течение заданного интервала времени излучают в направлении точек ОРТ1, ОРТ2 и ОРТЗ сигнал SMO(t), представляющий собой сумму двух гармонических высокочастотных сигналов с амплитудами А, частотами ω1 и ω2 и случайными начальными фазами φ1 и φ2:
Figure 00000001
Интервал времени, в течение которого излучается рассматриваемый сигнал, выбирается достаточным для выполнения фазовых измерений в ЦПО (подробнее об этом будет сказано ниже).
Излучаемый МО сигнал принимается в точках ОРТ1, ОРТ2 и ОРТЗ, удаленных от объекта навигации на расстояния D1, D2 и D3 соответственно. Принимаемые в указанных точках сигналы S1(t), S2(t) и S3(t) имеют следующий вид:
Figure 00000002
Figure 00000003
Figure 00000004
где С=2,9979·108 м/с - скорость распространения радиоволн в атмосфере.
В каждой из опорных радионавигационных точек из принятого сигнала Si(t)
Figure 00000005
представляющего собой сумму двух высокочастотных гармонических сигналов с частотами ω1 и ω2, формируют сигналы с разностной частотой
Figure 00000006
(частотой биений):
Figure 00000007
Figure 00000008
Figure 00000009
Эти сигналы различаются амплитудами и временными задержками, которые определяются расстояниями D1, D2 и D3 соответственно. Сформированные сигналы разностной частоты по проводным каналам передают в ЦПО.
Таким образом, в ЦПО приходят три следующих сигнала:
1) сигнал, поступивший из ОРТ1:
Figure 00000010
где С1 - скорость распространения гармонического сигнала по проводному каналу.
Он отличается от сигнала SOPT1(t) амплитудой и дополнительным фазовым сдвигом
Figure 00000011
который обусловлен прохождением расстояния R1, разделяющего ОРТ1 и ЦПО.
Этот сигнал можно представить в следующем виде:
Figure 00000012
где
Figure 00000013
2) сигнал, поступивший из ОРТ2:
Figure 00000014
Он отличается от сигнала SOPT2(t) амплитудой и дополнительным фазовым сдвигом
Figure 00000015
который обусловлен прохождением расстояния R2, разделяющего ОРТ2 и ЦПО.
Этот сигнал также можно представить в виде:
Figure 00000016
где
Figure 00000017
3) сигнал, поступивший из ОРТ3:
Figure 00000018
Он отличается от сигнала SOPT3(t) амплитудой и дополнительным фазовым сдвигом
Figure 00000019
который обусловлен прохождением расстояния R3, разделяющего ОРТ3 и ЦПО.
Его также можно представить в виде:
Figure 00000020
где
Figure 00000021
В ЦПО измеряют разность фаз Δψ2121 сигналов Sц2(t) и Sц1(t) и разность фаз Δψ2323 сигналов Sц2(t) и Sц3(t):
Figure 00000022
Figure 00000023
Как следует из этих выражений, разности фаз Δψ21 и Δψ23 не зависят от начальных фаз излучаемых МО сигналов φ1 и φ2.
Вторые слагаемые
Figure 00000024
и
Figure 00000025
в выражениях для Δψ21 и Δψ23 не зависят от пространственного положения объекта навигации. Они представляют собой дополнительные фазовые сдвиги сигнала с частотой ωp при передаче их из соответствующих опорных точек в ЦПО. Эти фазовые сдвиги определяются взаимным расположением в пространстве ЦПО относительно опорных точек ОРТ1, ОРТ2 и ОРТ3, их можно рассчитать заранее и вычесть из измеренных в ЦПО разностей фаз Δψ21 и Δψ23. Это позволяет найти разности фаз сигналов с частотой ωp, формируемых в опорных точках ОРТ2 и ОРТ1 и ОРТ2 и ОРТ3, которые необходимы для нахождения разностей расстояний D2-D1 и D2-D3, используемых для вычисления координат объекта навигации.
Однозначное измерение координат объекта навигации возможно только в той области пространства, обслуживаемой радионавигационной системой, для которой фазовые сдвиги Δψ21 и Δψ23 сигналов разностной частоты не выходит за пределы интервала [-π/2÷π/2]. Это условие выполняется, если в пределах указанной области пространства расстояния от любой ее точки до любой из опорных радионавигационных точек различаются между собой не более чем на половину длины волны λp сигнала разностной частоты ωp. Область пространства, для которой выполняется это условие, ограничена четырехугольником ABEF, сторонами которого являются линии положения АВ, EF, BE и AF (фиг. 2), уравнения которых имеют следующий вид:
Figure 00000026
где параметр L1 равен
Figure 00000027
для линии AF и
Figure 00000028
для линии BE, а параметр L2 равен
Figure 00000029
для линии АВ и
Figure 00000030
для линии EF.
Для расширения области однозначного определения координат необходимо увеличивать величину λp и, следовательно, снижать величину разностной частоты ωp.
Следует отметить, что само по себе снижение величины разностной частоты ωp, например, путем сближения частот ω1 и ω2 высокочастотных гармонических сигналов при неизменной погрешности фазовых измерений автоматически приводит к снижению точности измерения разностей расстояний и как следствие этого - к снижению точности измерения координат.
Для предотвращения снижения точности разностей расстояний фазовые измерения в предлагаемом способе осуществляют на двух частотах: непосредственно на разностной ωp и дополнительно сформированной в ЦПО масштабной ωnp/n, частота которой выбирается в n раз меньше ωp. Сигналы масштабной частоты формируют для каждого из сигналов Sц1(t), Sц2(t) и Sц3(t), поступивших в центральный пункт обработки из точек ОРТ1, ОРТ2 и ОРТ3.
Учитывая, что фазовые измерения на частоте ωp однозначны только в той области пространства, для которой разности расстояний, которые соответствуют сигналам Sц1(t), Sц2(t) и Sц3(t), не превосходят половину длины волны сигнала разностной частоты, фактические разности фаз
Figure 00000031
для любых двух сигналов на частоте ωp определяют по формулам:
Figure 00000032
Figure 00000033
где Δψp и Δψn - разности фаз сигналов, измеренные в ЦПО на частотах ωp и ωn;
int(x) - целая часть аргумента x.
Коэффициент k и фактическую разность фаз
Figure 00000034
вычисляют для сигналов каждой из пар ОРТ по измеренным в ЦПО разностям фаз Δψp и Δψn.
Ниже приведен алгоритм пересчета результатов фазовых измерений в координаты объекта навигации. Этот алгоритм применим для локальных навигационных систем, когда допустимо пренебречь сферичностью Земли, а скорость распространения радиоволн в зоне действия навигационной системы можно считать постоянной.
Исходными данными для расчета являются:
- разность фаз Δψn21 сигналов, измеренная в ЦПО на частоте ωn для радионавигационных точек ОРТ1 и ОРТ2;
- разность фаз Δψn23 сигналов, измеренная в ЦПО на частоте ωn для радионавигационных точек ОРТ2 и ОРТ3;
- разность фаз Δψp21 сигналов, измеренная в ЦПО на частоте
Figure 00000035
для радионавигационных точек ОРТ1 и ОРТ2;
- разность фаз Δψp23 сигналов, измеренная в ЦПО на частоте
Figure 00000035
для радионавигационных точек ОРТ2 и ОРТ3.
Кроме того, в расчете используют следующие константы:
- значение первой высокой частоты ω1;
- значение второй высокой частоты ω2;
- скорость распространения радиоволн в атмосфере С;
- скорость распространения радиосигнала по проводному каналу С1,
- расстояние R21 между второй ОРТ2 и первой ОРТ1 опорными радионавигационными точками;
- расстояние R23 между третьей ОРТ3 и второй ОРТ2 опорными радионавигационными точками;
- расстояния R1, R2 и R3 между ЦПО и ОРТ1, ОРТ2 и ОРТ3 соответственно;
- коэффициент n превышения разностной частоты над масштабной.
Порядок расчета следующий.
1. Вычисляют разностную
Figure 00000036
и масштабную
Figure 00000037
частоты.
2. Вычисляют разности фазовых сдвигов сигналов разностной частоты ωp при распространении их от опорных радионавигационных точек к ЦПО:
Figure 00000038
Figure 00000039
3. Вычисляют величины
Figure 00000040
Figure 00000041
4. Вычисляют фактические разности фаз:
Figure 00000042
5. Решают навигационную задачу - определяют координаты объекта навигации:
а) вычисляют разности расстояний от объекта навигации до опорных точек
Figure 00000043
Здесь D1, D2, D3 - расстояния от объекта навигации (МО) до первой ОРТ1, второй ОРТ2 и третьей ОРТ3 опорных радионавигационных точек в соответствии с фиг. 1;
б) ΔD21 и ΔD23 нормируют по длинам базовых линий и вычисляют параметр γ:
Figure 00000044
в) определяют постоянные параметры:
a2123; b=γΔd23-Δd21,
где α21 - угол между осью
Figure 00000045
и базовой линией R21;
α23 - угол между осью
Figure 00000045
и базовой линией R23.
г) каким-либо из численных итерационных методов решают уравнение для вычисления угла β23 между базовой линией R23 и направлением на объект навигации:
cos(a23)-γcosβ23=b;
д) вычисляют расстояние D2 от точки ОРТ2 до объекта навигации
Figure 00000046
е) вычисляют координаты объекта навигации в местной прямоугольной системе координат, начало которой находится в точке ОРТ2:
Figure 00000047
При необходимости координаты объекта навигации пересчитывают в исходную прямоугольную систему координат
Figure 00000048
То обстоятельство, что в предлагаемом способе измерения разности фаз выполняют на двух частотах разностной ωp и масштабной ωn, частота которой в n раз меньше ωp, позволяет сделать вывод, что предлагаемый способ позволяет значительно (примерно в n2 раз) расширить область пространства, в которой возможно однозначное определение координат объекта навигации, по сравнению с прототипом и одновременно не ухудшить точность их измерения.
В предлагаемом способе для такого расширения частота ωn выбирается достаточно низкой (исходя из размеров требуемой области определения координат), а частота ωp достаточно высокой (исходя из требуемой точности их определения).
Для примера на фиг. 2 показаны две заштрихованные области пространства, ограниченные четырехугольниками ABEF и GNMK соответственно, в которых возможно однозначное определение координат объекта навигации на частотах ωn и ωp соответственно. Четырехугольник ABEF соответствует частоте ωn, примерно в пять раз меньшей, чем четырехугольник GNMK, соответствующий частоте ωp.
В способе-прототипе фазовые измерения выполняются только на частоте биений ωp. Ее в принципе можно выбрать достаточно низкой, но это приведет к снижению точности измерения координат, которая и без того снижена из-за погрешности определения координат неподвижного передатчика.
В предлагаемом же способе фазовые измерения осуществляются не только на частоте ωp, но и на частоте ωn, которая в n раз ниже ωp. При этом фазовые измерения на частоте ωn используются лишь для исключения неоднозначности фазовых измерений, а для решения навигационной задачи используют более точные вычисленные значения фактических разностей фаз
Figure 00000049
на частоте ωр. По сравнению с прототипом точность определения координат в предлагаемом способе не снижается, а повышается за счет исключения погрешности определения координат неподвижного передатчика.
Предлагаемый способ не требует непрерывного излучения второго высокочастотного сигнала, что исключает связанное с этим передатчиком снижение помехозащищенности устройств, реализующих способ.
Техническая реализация способа не вызывает затруднений.
В качестве примера реализации рассмотрим реализацию предлагаемого способа для построения локальной навигационной системы для управления движением транспорта в местах повышенной опасности, где требуется высокоточное определение местоположения высокоскоростных движущихся объектов: на критических участках трасс их движения (например, при приближении к местам переключения стрелок на железнодорожных путях, вблизи крутых закрытых поворотов автомобильных трасс). Для реализации системы может быть выбран диапазон частот 1200-1400 МГц. Зона действия локальной навигационной системы может составлять несколько сотен метров. Формирование двух гармонических сигналов (основного и дополнительного) на объекте навигации можно реализовать на основе двух синтезаторов частоты, синхронизируемых общим опорным генератором и сумматора. В качестве синтезаторов частоты можно применить, например, микросхемы типа ADF4360-5, в которых предусмотрена возможность изменения частоты путем подачи соответствующих цифровых кодов на входы управления и которые позволяют сформировать два высокостабильных гармонических сигнала с разносом частот от (0,1-100) МГц, в качестве опорного генератора термостабилизарованный кварцевый генератор типа NT3225SA.
Для приема гармонических сигналов в опорных радионавигационных точках можно использовать интегральные СВЧ-усилители - микросхемы типа SPF5122Z. В качестве узла формирования сигнала разностной частоты можно использовать смеситель на транзисторе BFP620, в качестве нагрузки которого служит фильтр нижних частот с частотой среза 10 МГц.
Передачу сигналов разностной частоты из опорных радионавигационных точек в центральный пункт обработки можно реализовать по проводным каналам либо по радиоканалам с разделением их по частоте.
Нормирование принятых в центральном пункте обработки сигналов по амплитуде осуществляется путем амплитудного ограничения принятых сигналов разностной частоты с помощью логарифмических усилителей AD8309.
Формирование сигналов масштабной частоты реализуется путем деления по частоте сигналов разностной частоты, например, с помощью делителей частоты на микросхемах К561ИЕ20 или К561ИЕ20.
Измерение разности фаз сигналов разностной частоты в центральном приемном пункте может быть реализовано с помощью фазового детектора на микросхеме SYPD-1.
Аналоговые сигналы с выхода фазового детектора подаются через аналого-цифровые преобразователи на входные порты микропроцессора типа STM, в котором реализуется решение навигационной задачи по приведенному выше алгоритму.
Способ может найти применение для построения локальных навигационных систем для управления движением транспорта в местах повышенной опасности, где требуется высокоточное определение местоположения высокоскоростных транспортных средств на критических участках трасс их движения (например, при приближении к местам переключения стрелок на железнодорожных путях, вблизи крутых закрытых поворотов автомобильных трасс).

Claims (1)

  1. Способ определения местоположения объекта навигации, заключающийся в излучении объектом навигации высокочастотного гармонического сигнала, приеме его в нескольких опорных радионавигационных точках с известными координатами, отличающийся тем, что с объекта навигации в течение заданного интервала времени дополнительно одновременно с первым излучают второй высокочастотный гармонический сигнал, частота которого отличается от частоты первого высокочастотного гармонического сигнала на заданную величину, в каждой из опорных радионавигационных точек принимают этот сигнал наряду с первым, формируют из принятых сигналов сигналы разностной частоты, передают эти сигналы в центральный пункт обработки, где из каждого из них дополнительно формируют сигналы масштабной частоты, в n раз меньшей разностной частоты, измеряют и фиксируют разности фаз сигналов разностной частоты, поступивших из разных опорных точек, а также разности фаз дополнительно сформированных из них сигналов масштабной частоты, интервал времени излучения высокочастотных гармонических сигналов выбирают достаточным для осуществления фазовых измерений, а сигналы масштабной частоты используют для исключения неоднозначности измерений разностей фаз сигналов разностной частоты, по окончании измерений результаты измерений разностей фаз сигналов разностной и масштабной частот пересчитывают в координаты объекта навигации с учетом взаимного расположения центрального пункта обработки и опорных радионавигационных точек.
RU2015100926/07A 2015-01-12 2015-01-12 Способ определения местоположения объекта навигации RU2584545C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015100926/07A RU2584545C1 (ru) 2015-01-12 2015-01-12 Способ определения местоположения объекта навигации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015100926/07A RU2584545C1 (ru) 2015-01-12 2015-01-12 Способ определения местоположения объекта навигации

Publications (1)

Publication Number Publication Date
RU2584545C1 true RU2584545C1 (ru) 2016-05-20

Family

ID=56012178

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015100926/07A RU2584545C1 (ru) 2015-01-12 2015-01-12 Способ определения местоположения объекта навигации

Country Status (1)

Country Link
RU (1) RU2584545C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775155C1 (ru) * 2021-08-24 2022-06-28 Акционерное общество "РАДИОАВИОНИКА" Способ определения местоположения объекта навигации

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2258242C2 (ru) * 2003-06-23 2005-08-10 Военно-космическая академия им. А.Ф. Можайского Разностно-дальномерный способ пеленгования источника радиоизлучения и реализующее его устройство
WO2006129003A2 (fr) * 2005-05-31 2006-12-07 France Telecom Procede et dispositif de localisation d’un terminal dans un reseau local sans fil
RU2365932C1 (ru) * 2008-01-09 2009-08-27 Вячеслав Адамович Заренков Способ точного позиционирования и мониторинга мобильных объектов
WO2012042315A1 (en) * 2010-09-30 2012-04-05 Nokia Corporation Positioning
JP5116818B2 (ja) * 2010-08-20 2013-01-09 中国電力株式会社 位置標定システム、及び位置標定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2258242C2 (ru) * 2003-06-23 2005-08-10 Военно-космическая академия им. А.Ф. Можайского Разностно-дальномерный способ пеленгования источника радиоизлучения и реализующее его устройство
WO2006129003A2 (fr) * 2005-05-31 2006-12-07 France Telecom Procede et dispositif de localisation d’un terminal dans un reseau local sans fil
RU2365932C1 (ru) * 2008-01-09 2009-08-27 Вячеслав Адамович Заренков Способ точного позиционирования и мониторинга мобильных объектов
JP5116818B2 (ja) * 2010-08-20 2013-01-09 中国電力株式会社 位置標定システム、及び位置標定方法
WO2012042315A1 (en) * 2010-09-30 2012-04-05 Nokia Corporation Positioning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КИНКУЛЬКИН И.Е.Фазовый метод определения координат. Москва, Советское радио, 1979, с.10-11,97-100. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775155C1 (ru) * 2021-08-24 2022-06-28 Акционерное общество "РАДИОАВИОНИКА" Способ определения местоположения объекта навигации

Similar Documents

Publication Publication Date Title
ES2290188T3 (es) Procedimiento y dispositivo para determinar la distancia y velocidad relativa de un objeto alejado.
RU2604652C2 (ru) Локальная фазовая разностно-дальномерная радионавигационная система
CN108603928A (zh) 用于降低由雷达系统中的相位噪声引起的干扰的方法和系统
JP2017524927A (ja) ドップラー能力を高めたレーダー動作
US9857452B2 (en) Method for locating and positioning using broadcast FM signals and phase difference computation technique
US20200241105A1 (en) Phase-comparison of multi-frequency transmissions for assisting the determination of position or time
RU2559813C1 (ru) Способ определения местоположения объекта навигации
Lindner et al. Dual tone approach for unambiguous six-port based interferometric distance measurements
US20030132880A1 (en) Precision position measurement system
RU2718593C1 (ru) Способ определения по измеренным относительным дальностям координат объекта
RU2602432C1 (ru) Широкополосная фазоразностная локальная радионавигационная система
Edstaller et al. A cooperative radar system with active reference target synchronization for kinematic target analysis
RU2604871C2 (ru) Способ определения местоположения объекта навигации
RU2584545C1 (ru) Способ определения местоположения объекта навигации
JP3826191B2 (ja) 移動体測位方法及び移動体誘導方法
Scheiblhofer et al. A high-precision long range cooperative radar system for rail crane distance measurement
JP6874686B2 (ja) ターゲット情報検出システム及びターゲット情報検出方法
RU2597007C1 (ru) Фазоразностный способ определения местоположения объекта навигации
WO2017091100A1 (ru) Способ определения местоположения объекта навигации
RU2575483C2 (ru) Фазовый разностно-дальномерный способ определения местоположения объекта навигации
Reustle et al. A 24 GHz SIMO radar tachymeter for precise transponder localization
RU2588057C1 (ru) Способ определения местоположения объектов для систем локальной навигации
RU2567114C1 (ru) Система для измерения координат объекта навигации
JP2002168946A (ja) 測距レーダ装置
RU2602506C1 (ru) Фазоразностная радионавигационная система с широкополосным сигналом

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170113