RU2577839C2 - Усовершенствованный способ окисления и реактор - Google Patents

Усовершенствованный способ окисления и реактор Download PDF

Info

Publication number
RU2577839C2
RU2577839C2 RU2013136377/05A RU2013136377A RU2577839C2 RU 2577839 C2 RU2577839 C2 RU 2577839C2 RU 2013136377/05 A RU2013136377/05 A RU 2013136377/05A RU 2013136377 A RU2013136377 A RU 2013136377A RU 2577839 C2 RU2577839 C2 RU 2577839C2
Authority
RU
Russia
Prior art keywords
oxygen
volume
reactor
aqueous medium
specified
Prior art date
Application number
RU2013136377/05A
Other languages
English (en)
Other versions
RU2013136377A (ru
Inventor
Нареш САЧЕК
Чжисюн ТА
Фрэнк Р. ФИТЧ
Original Assignee
Линде Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезелльшафт filed Critical Линде Акциенгезелльшафт
Publication of RU2013136377A publication Critical patent/RU2013136377A/ru
Application granted granted Critical
Publication of RU2577839C2 publication Critical patent/RU2577839C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00108Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00186Controlling or regulating processes controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Sludge (AREA)
  • Thermal Insulation (AREA)

Abstract

Изобретение относится к способу и устройству для окисления реагентов в водной реакционной среде с использованием газообразного молекулярного кислорода. Способ окисления материала в окислительном реакторе, включающем внешний циркуляционный контур, имеющий приспособление для увеличения давления во внешнем контуре, включает стадии: a) измерение концентрации кислорода в реакторе, b) выведение объема водной среды из реактора и измерение концентрации кислорода в этом объеме, c) введение кислорода в объем в растворенном виде и обеспечение достаточным временем пребывания для достижения желательного концентрации кислорода, где количество введенного кислорода определяют путем измерения растворенного кислорода в реакторе и его давления и измерения плотности объема и концентрации кислорода в незаполненном объеме, d) введение объема обратно в реактор при повышенном давлении и через устройство Вентури в жидкостный распределитель, e) образование циркуляционной схемы в реакторе, в результате чего повышенная концентрация кислорода поддерживается в водной среде в нижней части реактора, и где внешний циркуляционный контур поддерживают под давлением во время проведения стадий c), d) и е). Устройство включает окислительный реактор, приспособление для перемешивания, приспособление для выведения водной среды из реактора, приспособление для введения кислорода в водную среду и приспособление для введения водной среды обратно в реактор. Изобретение обеспечивает увеличение концентрации кислорода в реакционной среде и повышение эффективности реакционного процесса. 5 н. и 28 з.п. ф-лы, 1 ил.

Description

УРОВЕНЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к способу и устройству для окисления реагентов в водной реакционной среде с использованием газообразного молекулярного кислорода для увеличения концентрации кислорода в водной реакционной среде и повышения эффективности реакционного процесса.
В промышленных условиях реакции окисления в водной фаза осуществляют, используя разнообразные источники кислорода, такие как воздух, кислород и окислители, такие как пероксид водорода. В промышленных масштабах процессы окисления воздухом и кислородом представляют собой значительно менее дорогостоящую альтернативу по сравнению с окислением окислителями, но создают проблему, обусловленную низкой природной растворимостью кислорода в воде. Растворимость кислорода в воде уменьшается при увеличении концентрации растворенных веществ, в частности ионов, а также при повышении температуры. Когда окислительные реакции используют для производства химических веществ, сточная вода и выходящие потоки из скруббера часто имеют высокие концентрации растворенных веществ, и окисление осуществляют при повышенной температуре реакции. Оба эти фактора уменьшают эффективную растворимость кислорода.
Воздух часто воспринимается как менее дорогостоящая альтернатива кислорода для газожидкостных систем окисления, но в некоторых случаях окисление воздухом не является достаточно интенсивным в данном устройстве, окислительной системе или газожидкостном контактном оборудовании, и кислород представляет собой жизнеспособную альтернативу.
Существуют разнообразные окислительные реакторы, используемые в современных промышленных процессах, причем помимо растворения кислорода на выбор типа реактора влияют многочисленные технологические требования, такие как теплоперенос, суспендирование твердых веществ, перемешивание и безопасность, включая поддержание парового пространства вне пределов взрывоопасной области. Экономические факторы, такие как стоимость оборудования, энергопотребление, технологическая сложность, надежность и обслуживание также являются важными для определения оптимальной и жизнеспособной окислительной системы.
Одно ключевое соображение при конструировании любой окислительной системы с использованием газообразного молекулярного кислорода заключается в том, чтобы обеспечивать оптимальное использование кислорода.
Типичные окислительные реакторы представляют собой емкостные реакторы с перемешиванием или колонны, работающие под давлением, где кислород барботируется в нижней части. В простой барботажной колонне или емкостном реакторе, где барботируется кислород, пузырьки газа поднимаются в водной среде, в то время как некоторое количество газообразного кислорода растворяется в водной среде, а остальное количество кислорода выходит из жидкой среды при достижении поверхности жидкости в верхней части. Если емкостный реактор или колонна находится в открытом состоянии, что является типичным для большинства окислительных систем, осуществляющих переработку неорганических веществ и очистку сточных вод, кислород, отделяющийся от поверхности жидкости, вместе с парами из водной среды выходит в атмосферу.
Однако для производства химических веществ редко встречается вариант, в котором обогащенный кислородом поток выпускают в атмосферу, и в промышленных процессах используют емкостные реакторы и колонны с крышками. Выделяющиеся газообразные пузырьки собираются в незаполненном объеме емкостного реактора или паровом пространстве колонны и рециркулируют обратно в барботер посредством компрессора или нагнетателя. Это может значительно увеличивать сумму расходов за счет энергии и технологического оборудования, несмотря на более эффективное использование кислорода.
Емкостные реакторы перемешиванием (STR) с барботированием газа часто обеспечивают улучшенное растворение кислорода по сравнению с простыми барботажными колоннами или емкостными реакторами без перемешивания. Однако использование реакторов STR ограничено случаями малых объемов окисления, и повышение масштаба до очень больших реакторов не является распространенным. Кроме того, для повышения эффективности использования кислорода может оказаться необходимым контур рециркуляции кислорода.
Барботажные колонны и реакторы STR высокого давления часто обеспечивают непревзойденную эффективность окисления и растворение газа, но они стоят в несколько раз дороже по сравнению с работающими при давление окружающей среды системами, и, кроме того, может потребоваться контур рециркуляции кислорода. Когда скорость окислительной реакции является низкой, работающие при высоком давлении системы способствуют повышению интенсивности реакции вследствие повышенной концентрации растворенного кислорода. Использование работающих при высоком давлении барботажных колонн и реакторов STR, как правило, ограничено случаями, в которых требуется окисление меньших объемов.
Для окисления больших объемов часто используют окислительные системы, имеющие большие емкостные реакторы с внешними контурами. Кислород в данных процессах растворяют в небольшом потоке водной среды, выводимой из основного емкостного реактора, и газообразный кислород интенсивно смешивают, используя статические или динамические смесительные устройства, иногда даже достигая состояния насыщения, и повторно вводя вместе с очень большим числом пузырьков газа в основной емкостный реактор. Внешние насосы используют для движения текучей среды через внешние контуры. В некоторых системах в выведенную водную среду поступает кислород при повышенном давлении в отдельном емкостном реакторе, и кислород растворяется и обеспечивает насыщение при повышенном давлении перед повторным введением обратно в объем жидкости для образования пузырьков. Для всех этих систем задача заключается в том, чтобы максимально увеличивать эффективность использования кислорода или скорость поглощения кислорода.
Особое внимание можно уделить окислительным реакциям, где вещество M растворяют в водной среде и окисляют молекулярным кислородом. Это представляет следующая реакция:
M+x/2O2 → MOx.
В данной окислительной системе реакция классифицируется как очень медленная, если растворение кислорода происходит значительно быстрее по сравнению с его расходованием в окислительной реакции.
В таком случае существует конечная концентрация растворенного кислорода в объеме водной фазы. Концентрация растворенного кислорода будет находиться между пренебрежимо малым нижним предельным значением и верхним предельным значением, соответствующим равновесной концентрации растворимости. Удельная скорость окисления математически представляет следующее выражение:
R=kmn·[M]m·[O2]n,
где R представляет собой удельную скорость реакции;
kmn представляет собой константу скорости окисления, как правило, зависящую от температуры;
m представляет собой порядок по отношению к веществу M;
n представляет собой порядок по отношению к кислороду;
[M] представляет собой концентрацию растворенного вещества, подлежащего окислению; и
[O2] представляет собой концентрацию растворенного кислорода.
Концентрация [M] растворенного вещества, подлежащего окислению в периодическом реакторе, начинается с очень высокой концентрации в начале периодического процесса, и по мере протекания окисления концентрация [M] достигает минимального уровня, уменьшая в значительной степени удельную скорость реакции, вплоть до завершения периодического процесса.
Удельная скорость достигает максимального значения, когда концентрация растворенного кислорода приближается к уровню растворимости при данном давлении; чтобы поддерживать удельную скорость вблизи максимального значения, требуются высокие уровни концентрации растворенного кислорода. Эти высокие уровни достигаются посредством контакта большого избытка молекулярного газообразного кислорода, которые должны быть повторно использованы путем рециркуляции или превращены в отходы, причем оба эти варианта увеличивают капитальные расходы или эксплуатационные расходы.
Помимо увеличения до максимального уровня удельной скорости окисления, реакции проводят при повышенной температуре. Как правило, увеличение температуры реакции увеличивает константу скорости kmn, но уменьшает растворимость кислорода и концентрацию растворенного кислорода. Альтернативное повышение давления вместе с температурой представляет собой другой подход, но в масштабах крупного производства с окислением дешевых исходных материалов, таких как минералы, руды и дешевые неорганические химические вещества, требующие значительных капитальных расходов емкостные реакторы высокого давления не являются экономически привлекательными, и, таким образом, требуется менее дорогостоящее и эффективное решение. Настоящее изобретение выполняет данное требование, предлагая усовершенствованный способ окисления и устройство, которое обеспечивает не только высокую эффективность использования кислорода, но также повышенную скорость поглощения кислорода.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В первом варианте осуществления настоящего изобретения предложен способ окисления материала в окислительном реакторе, в котором окислительный реактор дополнительно включает внешний циркуляционный контур, имеющий приспособление для увеличения давления во внешнем контуре, включающий следующие стадии:
измерение концентрации кислорода в окислительном реакторе;
выведение объема водной среды из окислительного реактора и измерение концентрации кислорода в данном объеме;
введение кислорода в данный объем для достижения желательного концентрации кислорода;
введение данного объема обратно в окислительный реактор при повышенном давлении через устройство Вентури (Venturi) для приложения высокого обратного давления к потоку данного объема; и
образование циркуляционной схемы в окислительном реакторе, в результате чего повышенная концентрация кислорода поддерживается в водной среде в нижней части окислительного реактора.
Количество кислорода, вводимое в данный объем, регулируют, чтобы обеспечивать растворение кислорода. Количество кислорода, вводимое в данный объем, также определяют по скорости потока кислорода, выходящего из окислительного реактора. В качестве альтернативы, количество кислорода, вводимого в данный объем определяют по концентрации растворенного кислорода в окислительном реакторе. Однако количество кислорода, вводимого в данный объем, регулируют, чтобы ингибировать образование свободных пузырьков в окислительном реакторе.
Глубина в окислительном реакторе, на которой вводят данный объем, представляет собой глубину, которая способствует сведению до минимума выделение газообразного кислорода в водную среду.
Введение данного объема в окислительный реактор обеспечивает перемешивание содержимого окислительного реактора, в результате чего суспендируются твердые вещества в водной среде, и улучшается теплоперенос в ее содержимом.
Настоящее изобретение дополнительно предлагает способ для увеличения концентрации кислорода в окислительном реакторе, включающий следующие стадии:
a) выведение объема водной среды из указанного окислительного реактора и повышение давления выводимой водной среды;
b) введение кислорода в указанный объем водной среды и растворение практически всего газообразного кислорода;
c) введение обогащенного кислородом объема водной среды обратно в указанный окислительный реактор; и
d) смешивание указанного обогащенного кислородом объема водной среды с объемом водной среды, находящейся в указанном окислительном реакторе.
В качестве альтернативы, настоящее изобретение предлагает способ улучшения окисления реагентов в окислительном реакторе, включающий следующие стадии:
a) выведение объема водной среды из указанного окислительного реактора и повышение давление выведенной водной среды;
b) введение кислорода в указанный объем водной среды и растворение практически всего газообразного кислорода;
c) введение обогащенного кислородом объема водной среды обратно в указанный окислительный реактор; и
d) смешивание указанного обогащенного кислородом объема водной среды с объемом водной среды, находящейся в указанном окислительном реакторе.
Кислород вводят для выведения объема водной среды при повышенном манометрическом давлении, составляющем от 0 до бар (от 0 до 2 МПа), в то время как окислительный реактор поддерживается приблизительно на уровне давления окружающей среды. Кислород можно получать из любого источника, такого как установленный на месте генератор кислорода, емкостный реактор с жидким кислородом или кислородный баллон. Можно использовать насос, чтобы осуществлять выведение объема водной среды из окислительного реактора и его нагнетание до повышенного давления. Водную среду можно насыщать при повышенном давлении посредством введения кислорода, используя устройство для растворения кислорода, такое как газовый диффузор или барботер, статический смеситель или устройство Вентури, а также их сочетание.
Обогащенный кислородом объем водной среды вводят в окислительный реактор при высокой скорости через один или несколько распылителей или сужающихся трубок, которые способны преобразовывать энергию давления в кинетическую энергию. Это введение осуществляют, как правило, на глубине, чтобы создавать высокий гидростатический напор для сведения до минимума или предотвращения выделения растворенного кислорода, а также для обеспечения смешивания с объемом водной среды, которая уже присутствует в окислительном реакторе. Количество кислорода в выводимом объеме водной среды может достигать уровня насыщения при повышенном давлении и, как правило, обеспечивает более высокую концентрацию, чем в водной среде, присутствующей в окислительном реакторе. Выведение объема водной среды можно также осуществлять в периодическом режиме по мере протекания реакции в окислительном реакторе.
В еще одном варианте осуществления, настоящее изобретение предлагает способ окисления органического материала в окислительном реакторе, в котором окислительный реактор дополнительно включает внешний циркуляционный контур, имеющий приспособление для увеличения давления во внешнем контуре, включающий следующие стадии:
a) измерение концентрации кислорода в окислительном реакторе;
b) выведение объема органической среды из окислительного реактора и измерение концентрации кислорода в данном объеме;
c) введение кислорода в данный объем для достижения желательного концентрации кислорода;
d) введение данного объема обратно в окислительный реактор при повышенном давлении и через устройство Вентури для приложения высокого обратного давления к потоку данного объема; и
e) образование циркуляционной схемы в окислительном реакторе, в результате чего повышенная концентрация кислорода поддерживается в органической среде в нижней части окислительного реактора.
Настоящее изобретение также предлагает устройство, включающее окислительный реактор; приспособление для выведения водной среды из окислительного реактора; приспособление для введения кислорода в водную среду при повышенном давлении; и приспособление для введения водной среды обратно в окислительный реактор.
Приспособление для выведения водной среды из окислительного реактора включает насос. Приспособление для введения водной среды, которая содержит повышенную концентрацию кислорода, обратно в окислительный реактор включает устройство, такое как набор распылителей или жидкостной распылитель. Скорость введения кислорода в водную среду регулируют, используя программируемый логический контроллер.
Способ согласно настоящему изобретению включает выведение дозированного объема водной среды из реакционного емкостного реактора, введение и растворение молекулярного кислорода при повышенном давлении в выведенный объем и повторное введение обогащенной растворенным кислородом среды обратно в емкостный реактор, который поддерживается при давлении окружающей среды. Этот обогащенный кислородом объем повторно вводят в окислительный реакционный емкостный реактор на желательной глубине с высокой кинетической энергией, которую обеспечивают, например, используя набор распылителей, таким образом, чтобы вызывать тщательное перемешивание обогащенной кислородом водной среды с объемом водной среды в окислительном реакционном емкостном реакторе. Перемешивание обогащенной кислородом водной среды осуществляют, чтобы обеспечивать перемешивание суспендированных твердых веществ, уменьшать тепловые градиенты, улучшать теплоперенос и ингибировать образование кислородных пузырьков в объеме жидкой фазы. Степень насыщения обогащенной кислородом водной среды тщательно регулируют таким образом, чтобы предотвращать образование пузырьков газа в объеме жидкой фазы в окислительном реакционном емкостном реакторе, и, таким образом, весь кислород остается в растворенном состоянии и оказывается доступным в жидкой фазе для гомогенных реакций в жидкой фазе или гетерогенных реакций между твердой и жидкой фазами.
Кроме того, обогащенную кислородом среду можно вводить, используя один или несколько симметрично расположенных распылителей, которые обеспечивают циркуляционную схему, получаемую в противном случае путем перемешивания. По существу, емкостные реакторы без мешалки можно также использовать в качестве окислительных реакторов. Регулирование температуры в любом окислительном реакторе, как правило, представляет собой важный фактор для его эксплуатации. Водную среду можно нагревать или тепло можно отводить во внешний контур или через поверхности теплопереноса, или можно использовать один или несколько традиционных способов для охлаждения и нагревания реактора, таких как циркуляция переносящих тепло текучих сред через рубашку или внешний контур, прикрепленный к стенке реактора или нагревательный/охлаждающий контур, расположенный внутри окислительного реактора.
Кроме того, настоящее изобретение обеспечивает сведение до минимума потери растворенного кислорода и образование пузырьков газа в находящемся при атмосферном давлении реакционном емкостном реакторе с одновременным поддержанием содержимого емкостного реактора при желательной температуре посредством отвода или подвода тепла, в результате чего улучшается окисление реагирующих компонентов, присутствующих в окислительном реакционном емкостном реакторе. Данный способ усовершенствует использование массопереноса, перенос механического момента, теплоперенос, технологию смешивания с приборами и средствами управления для экономически выгодной, естественно безопасной, надежной и устойчивой окислительной системы.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 схематически представляет окислительную реакторную систему согласно настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Рассмотрим чертеж, который представляет окислительный реактор согласно настоящему изобретению. Окислительный реактор 10 содержит жидкую реакционную среду, которая, как правило, представляет собой водную среду, содержащую реагенты, которые необходимы для производства химических веществ, фармацевтических изделий, химических продуктов тонкого органического синтеза и т.д. Открытая незаполненная область 2 может иметь различный объем в зависимости от общего размера окислительного реактора и количества присутствующей в нем водной среды. Настоящее изобретение также распространяется на реакторы, имеющие крышки, т.е. закрытый незаполненный объем, но поддерживаемые вблизи давления окружающей среды. Окислительный реактор 10 может быть оборудован или не оборудован мешалкой B. Если установлена мешалка, ее используют в качестве основного приспособления для перемешивания реагирующих ингредиентов. Измерительное устройство установлено в гидравлическом соединении через линию 1 с окислительным реактором 10 для измерения концентрации кислорода в водной среде.
Кислородный источник присоединен через линию 4 к насосу E, который своим действием выводит некоторый объем водной среды, присутствующей в окислительном реакторе 10, через линию 5. Эта водная среда, которая, как правило, представляет собой водную среду, содержит определенную концентрацию кислорода, но обычно это количество кислорода не обеспечивает насыщения. Насос E подает эту водную среду в устройство Вентури F, но перед тем, как водная среда попадает в устройство Вентури, в эту водную среду вводят кислород через линию 6 при повышенном давлении. Это увеличивает концентрацию кислорода, присутствующего в водной среде, которую вводят устройство Вентури F через линию 6, до уровня, который приближается, если и фактически не достигает уровня насыщения при повышенном давлении. Программируемый логический контроллер (PLC) D присоединен к кислородному впуску 4 и определяет, на основании желательного количества кислорода в водной среде, какое количество кислорода поступает в водную среду в линии 6.
Обогащенную кислородом водную среду вводят через устройство Вентури F при повышенном манометрическом давлении, составляющем от 0 до бар (от 0 до 2 МПа), через линию 7 в окислительный реактор 10.
Через распылитель (распылители), установленный у окончания линии 7, сжатую жидкую среду вводят реактор 10 на глубине в жидкостный распределитель C. Распылитель (распылители) преобразует энергию давления в кинетическую энергию, что обеспечивает циркуляцию обогащенной кислородом водный среды в оставшуюся ненасыщенной кислородом водную среду, которая уже присутствует в окислительном реакторе 10. Путем осуществления этого повторного введения насыщенной среды в окислительный реактор предотвращают перенасыщение кислородом, и требуемое количество кислорода для целей реакции можно в регулируемом режиме вводить в окислительный реактор 10.
В еще одном варианте осуществления кислород вводят не в линии 6, но у горловины устройства Вентури и в результате этого насыщение кислорода происходит в устройстве Вентури и линии 7 ниже по потоку относительно устройства Вентури.
В следующем варианте осуществления один или несколько жидкостных распылителей используют на окончании линии 7. Эти распылители обеспечивают, что ненасыщенная водная среда из окрестности распылителей и смешанный поток приближаются к полному насыщению кислородом за счет высокой скорости движения из распылителя. Механический момент потока, выходящего из распылителя, обеспечивает смешивание и перемешивание, что ускоряет реакцию и улучшает регулирование температуры в окислительном реакторе.
В еще одном варианте осуществления, реакционная среда представляет собой органический растворитель, и кислород используют для окисления органических веществ в органическом растворителе. Способы и устройства, которые описаны для водный среды, являются применимыми и в том случае, где реакционная среда является органической, и/или реагенты представляют собой органические вещества.
Что касается способа, описанного в настоящем изобретении, ингибирование или сведение до минимума пузырьков кислорода в окислительном реакторе и поддержание кислорода в растворенном состоянии, естественно, обеспечивает более безопасные условия в незаполненном объеме реактора по отношению к опасности взрыва.
В следующем варианте осуществления окисление органических веществ осуществляют без растворителя, и реагент сам растворяет кислород.
Хотя настоящее изобретение описано по отношению к конкретным вариантам его осуществления, понятно, что специалистам в данной области техники будут очевидны и другие многочисленные формы и модификации настоящего изобретения. Прилагаемую формулу настоящего изобретения следует истолковывать в широком смысле, включая все такие очевидные формы и модификации, которые действительно соответствуют идее и объему настоящего изобретения.

Claims (33)

1. Способ окисления материала в окислительном реакторе, в котором указанный окислительный реактор дополнительно включает внешний циркуляционный контур, имеющий приспособление для увеличения давления в указанном внешнем контуре, включающий следующие стадии:
a) измерение концентрации кислорода в указанном окислительном реакторе;
b) выведение объема водной среды из указанного окислительного реактора и измерение концентрации кислорода в указанном объеме;
c) введение кислорода в указанный объем в растворенном виде и обеспечение достаточным временем пребывания для достижения желательного концентрации кислорода, где количество введенного кислорода определяют путем измерения растворенного кислорода в реакторе и его давления и измерения плотности объема и концентрации кислорода в незаполненном объеме;
d) введение указанного объема обратно в указанный окислительный реактор при повышенном давлении и через устройство Вентури в жидкостный распределитель;
e) образование циркуляционной схемы в указанном окислительном реакторе, в результате чего повышенная концентрация кислорода поддерживается в водной среде в нижней части указанного окислительного реактора, и где внешний циркуляционный контур поддерживают под давлением во время проведения стадий c), d) и е).
2. Способ по п. 1, в котором количество кислорода, вводимого в указанный объем, регулируют, чтобы обеспечивать растворение указанного кислорода.
3. Способ по п. 1, в котором количество кислорода, вводимого в указанный объем, определяют способом, выбранным из группы, которую составляют скорость потока кислорода, выходящего из указанного окислительного реактора, и концентрация растворенного кислорода в указанном окислительном реакторе.
4. Способ по п. 1, в котором количество кислорода, вводимого в указанный объем, регулируют, чтобы ингибировать образование свободных пузырьков в указанном окислительном реакторе.
5. Способ по п. 1, в котором глубина, на которой указанный объем вводят в указанный жидкостный распределитель, является достаточной, чтобы обеспечивать высокий обратное давление на поток указанного объема.
6. Способ по п. 1, в котором введение указанного объема в указанный окислительный реактор перемешивает содержимое указанного окислительного реактора, в результате чего суспендируются твердые вещества, и улучшается теплоперенос в указанном окислительном реакторе.
7. Способ для увеличения концентрации кислорода в окислительном реакторе, включающий следующие стадии:
a) выведение объема водной среды из указанного окислительного реактора и измерение концентрации кислорода в объеме;
b) введение кислорода в растворенном виде в указанный объем водной среды и обеспечение достаточным временем пребывания для достижения желательного концентрации кислорода, где количество введенного кислорода определяют путем измерения растворенного кислорода в реакторе и его давления и измерения плотности объема и концентрации кислорода в незаполненном объеме;
c) введение обогащенного кислородом объема водной среды обратно в указанный окислительный реактор; и
d) смешивание указанного обогащенного кислородом объема водной среды с водной средой в указанном окислительном реакторе.
8. Способ по п. 7, в котором указанный кислород вводят при повышенном давлении.
9. Способ по п. 7, в котором указанный окислительный реактор поддерживают при давлении окружающей среды.
10. Способ по п. 1, в котором указанный обогащенный кислородом объем водной среды вводят в указанный окислительный реактор через устройство Вентури.
11. Способ по п. 7, в котором обогащенный кислородом объем водной среды вводят на глубине, чтобы обеспечивать смешивание с указанной водной средой.
12. Способ по п. 7, в котором указанный обогащенный кислородом объем водной среды приближается к насыщению кислородом.
13. Способ по п. 7, в котором насос используют для увеличения давления указанной обогащенной кислородом водной среды.
14. Способ по п. 7, в котором указанное выведение объема водной среды осуществляют в периодическом режиме.
15. Способ улучшения окисления реагентов в окислительном реакторе, включающий следующие стадии:
a) выведение объема водной среды из указанного окислительного реактора;
b) введение кислорода в растворенном виде в указанный объем водной среды и обеспечение достаточным временем пребывания для достижения желательного концентрации кислорода, где количество введенного кислорода определяют путем измерения растворенного кислорода в реакторе и его давления и измерения плотности объема и концентрации кислорода в незаполненном объеме;
c) введение обогащенного кислородом объема водной среды обратно в указанный окислительный реактор; и
d) смешивание указанного обогащенного кислородом объема водной среды с водной средой в указанном окислительном реакторе.
16. Способ по п. 15, в котором указанный кислород вводят при повышенном давлении.
17. Способ по п. 15, в котором указанный окислительный реактор поддерживается при давлении окружающей среды.
18. Способ по п. 15, в котором указанный обогащенный кислородом объем водной среды вводят в указанный окислительный реактор через устройство Вентури.
19. Способ по п. 15, в котором обогащенный кислородом объем водной среды вводят на глубине, чтобы обеспечивать смешивание с указанной водной средой.
20. Способ по п. 15, в котором указанный обогащенный кислородом объем водной среды приближается к насыщению кислородом.
21. Способ по п. 15, в котором насос используют для увеличения давления указанной обогащенной кислородом водной среды.
22. Способ по п. 15, в котором указанный выведение объема водной среды осуществляют в периодическом режиме.
23. Способ окисления органического материала в окислительном реакторе, в котором указанный окислительный реактор дополнительно включает внешний циркуляционный контур, имеющий приспособление для увеличения давления в указанном внешнем контуре, включающий следующие стадии:
a) измерение концентрации кислорода в указанном окислительном реакторе;
b) выведение объема органической среды из указанного окислительного реактора и измерение концентрации кислорода в указанном объеме;
c) введение кислорода в растворенном виде в указанный объем и обеспечение достаточным временем пребывания для достижения желательного концентрации кислорода, где количество введенного кислорода определяют путем измерения растворенного кислорода в реакторе и его давления и измерения плотности объема и концентрации кислорода в незаполненном объеме;
d) введение указанного объема обратно в указанный окислительный реактор при повышенном давлении и через устройство Вентури в жидкостный распределитель; и
e) образование циркуляционной схемы в указанном окислительном реакторе, в результате чего повышенная концентрация кислорода поддерживается в органической среде в нижней части указанного окислительного реактора, и где внешний циркуляционный контур поддерживают под давлением во время проведения стадий c), d) и е).
24. Способ по п. 23, в котором количество кислорода, вводимого в указанный объем, регулируют, чтобы обеспечивать растворение указанного кислорода.
25. Способ по п. 23, в котором количество кислорода, вводимого в указанный объем, определяют способом, выбранным из группы, которую составляют скорость потока кислорода, выходящего из указанного окислительного реактора, и концентрация растворенного кислорода в указанном окислительном реакторе.
26. Способ по п. 23, в котором количество кислорода, вводимого в указанный объем, регулируют, чтобы ингибировать образование свободных пузырьков в указанном окислительном реакторе.
27. Способ по п. 23, в котором глубина, на которой указанный объем вводят в указанный жидкостный распределитель, является достаточной, чтобы обеспечивать высокое обратное давление на поток указанного объема.
28. Способ по п. 23, в котором введение указанного объема в указанный окислительный реактор перемешивает содержимое указанного окислительного реактора, в результате чего суспендируются твердые вещества, и улучшается теплоперенос в указанном окислительном реакторе.
29. Устройство, включающее окислительный реактор; приспособление для перемешивания; приспособление для выведения водной среды из указанного окислительного реактора; приспособление для введения кислорода в указанную водную среду; и приспособление для введения указанной водной среды обратно в указанный окислительный реактор.
30. Устройство по п. 29, в котором указанное приспособление для выведения водной среды из указанного окислительного реактора включает насос.
31. Устройство по п. 29, в котором указанное приспособление для введения указанной водной среды обратно в указанный окислительный реактор включает устройство Вентури.
32. Устройство по п. 29, в котором скорость введения кислорода в указанную водную среду регулируют, используя программируемый логический контроллер.
33. Устройство по п. 29, в котором указанное приспособление для введения указанной водной среды обратно в указанный окислительный реактор включает жидкостной распылитель.
RU2013136377/05A 2011-01-04 2011-12-02 Усовершенствованный способ окисления и реактор RU2577839C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/984,206 2011-01-04
US12/984,206 US8541623B2 (en) 2011-01-04 2011-01-04 Oxidation method and reactor
PCT/US2011/063048 WO2012094078A1 (en) 2011-01-04 2011-12-02 Improved oxidation method and reactor

Publications (2)

Publication Number Publication Date
RU2013136377A RU2013136377A (ru) 2015-02-10
RU2577839C2 true RU2577839C2 (ru) 2016-03-20

Family

ID=44562710

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013136377/05A RU2577839C2 (ru) 2011-01-04 2011-12-02 Усовершенствованный способ окисления и реактор

Country Status (15)

Country Link
US (3) US8541623B2 (ru)
EP (1) EP2471765B1 (ru)
CN (1) CN103402622B (ru)
AU (1) AU2011353661B2 (ru)
BR (1) BR112013017263B1 (ru)
CA (1) CA2823635C (ru)
CL (1) CL2013001970A1 (ru)
DK (1) DK2471765T3 (ru)
ES (1) ES2547334T3 (ru)
MX (1) MX346609B (ru)
NZ (1) NZ612792A (ru)
PL (1) PL2471765T3 (ru)
PT (1) PT2471765E (ru)
RU (1) RU2577839C2 (ru)
WO (1) WO2012094078A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170167782A1 (en) * 2015-12-09 2017-06-15 Whirlpool Corporation Insulating material with renewable resource component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261822A2 (en) * 1986-09-18 1988-03-30 The BOC Group plc Treatment of aqueous waste material
RU2140898C1 (ru) * 1994-05-11 1999-11-10 Праксайр Текнолоджи, Инк. Способ окисления органических соединений и система для его осуществления
US6183695B1 (en) * 1990-03-02 2001-02-06 Sievers Instruments, Inc. Reagentless oxidation reactor and methods for using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2410570C2 (de) * 1974-03-06 1982-04-29 Basf Ag, 6700 Ludwigshafen Vorrichtung zum Ansaugen und Verdichten von Gasen und deren Vermischung mit Flüssigkeit
US5356600A (en) * 1990-09-24 1994-10-18 Praxair Technology, Inc. Oxygen enrichment method and system
GB9615159D0 (en) * 1996-07-19 1996-09-04 Boc Group Plc Treatment of liquid
BR0100483B1 (pt) * 2000-02-10 2009-01-13 processo para produÇço de diàxido de carbono.
NO20034330D0 (no) * 2003-09-26 2003-09-26 Norsk Hydro As Fremgangsmåte for blanding av to fluider og mikser for utövelse av slik fremgangsmåte
ITTO20040455A1 (it) * 2004-07-05 2004-10-05 Luca Gandini Pannello sottovuoto ad elevato isolamento termico ed acustico
US7692037B2 (en) * 2004-09-02 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US20090032446A1 (en) * 2007-08-01 2009-02-05 Triwatech, L.L.C. Mobile station and methods for diagnosing and modeling site specific effluent treatment facility requirements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261822A2 (en) * 1986-09-18 1988-03-30 The BOC Group plc Treatment of aqueous waste material
US6183695B1 (en) * 1990-03-02 2001-02-06 Sievers Instruments, Inc. Reagentless oxidation reactor and methods for using same
RU2140898C1 (ru) * 1994-05-11 1999-11-10 Праксайр Текнолоджи, Инк. Способ окисления органических соединений и система для его осуществления

Also Published As

Publication number Publication date
BR112013017263B1 (pt) 2019-01-22
US20140013778A1 (en) 2014-01-16
US20120172629A1 (en) 2012-07-05
PL2471765T3 (pl) 2015-11-30
US20130343962A1 (en) 2013-12-26
CL2013001970A1 (es) 2014-06-13
EP2471765B1 (en) 2015-06-24
AU2011353661B2 (en) 2017-01-05
ES2547334T3 (es) 2015-10-05
WO2012094078A1 (en) 2012-07-12
BR112013017263A2 (pt) 2016-10-25
CN103402622B (zh) 2016-08-17
CN103402622A (zh) 2013-11-20
AU2011353661A1 (en) 2013-07-25
CA2823635C (en) 2019-09-10
NZ612792A (en) 2015-06-26
CA2823635A1 (en) 2012-07-12
MX346609B (es) 2017-03-27
MX2013007780A (es) 2013-11-04
US8541623B2 (en) 2013-09-24
RU2013136377A (ru) 2015-02-10
DK2471765T3 (en) 2015-09-21
EP2471765A1 (en) 2012-07-04
PT2471765E (pt) 2015-10-14

Similar Documents

Publication Publication Date Title
Wu et al. The role of interface in microbubble ozonation of aromatic compounds
US7455776B2 (en) Method for mixing high viscous liquids with gas
KR970008900B1 (ko) 기체-액체 혼합방법 및 장치
EP3774006B1 (en) Methods and systems for producing high concentration of dissolved ozone in liquid media
Middleton et al. Gas–liquid mixing in turbulent systems
CN112978898A (zh) 一种水力-超声空化协同旋流微气泡强化臭氧传质装置
JPH11253796A (ja) Pcb分解反応容器
Gao et al. Ozone mass transfer in a new gas–liquid contactor–Karman contactor
US4597877A (en) Process and equipment for water treatment
JP2010535627A (ja) 曝気のための方法及び装置
RU2577839C2 (ru) Усовершенствованный способ окисления и реактор
CA2670028C (en) System and method for mixing high viscous liquids with gas
KR101862898B1 (ko) 개선된 산화 방법 및 반응기
JP7432178B2 (ja) 熱化学水素製造法のisプロセスにおけるプロセス溶液濃度の調整方法及びその装置
US10603643B2 (en) Process and device for dispersing gas in a liquid
JP2004034010A (ja) オゾン処理方法
Yablokova et al. REFINED MATHEMATICAL MODEL OF THE WATER OZONATION PROCESS IN INJECTION JET APPARATUS
Basiev et al. Organization of Counter-Mixing of Ozone Flows and Aqueous Solutions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201203