RU2568422C9 - Способ определения параметров вектора электрического сигнала промышленной частоты - Google Patents

Способ определения параметров вектора электрического сигнала промышленной частоты Download PDF

Info

Publication number
RU2568422C9
RU2568422C9 RU2014137374/28A RU2014137374A RU2568422C9 RU 2568422 C9 RU2568422 C9 RU 2568422C9 RU 2014137374/28 A RU2014137374/28 A RU 2014137374/28A RU 2014137374 A RU2014137374 A RU 2014137374A RU 2568422 C9 RU2568422 C9 RU 2568422C9
Authority
RU
Russia
Prior art keywords
input
output
signal
vector
angle
Prior art date
Application number
RU2014137374/28A
Other languages
English (en)
Other versions
RU2568422C1 (ru
Inventor
Виктор Александрович Мамаев
Надежда Николаевна Кононова
Кирилл Андреевич Муравьев
Сергей Сергеевич Ястребов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северо-Кавказский федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северо-Кавказский федеральный университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северо-Кавказский федеральный университет"
Priority to RU2014137374/28A priority Critical patent/RU2568422C9/ru
Application granted granted Critical
Publication of RU2568422C1 publication Critical patent/RU2568422C1/ru
Publication of RU2568422C9 publication Critical patent/RU2568422C9/ru

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к области электротехники, в частности для обработки синусоидального электрического сигнала с целью определения параметров его вектора. Способ включает использование цифрового информационно-измерительного устройства, состоящего из нелинейного преобразователя (НП) и линейного преобразователя (ЛП). При этом НП имеет один вход и два выхода, причем к его входу подведен электрический сигнал промышленной частоты fс, а на каждом из двух выходов НП выводится информация, связанная со значениями модуля и угла поворота вектора электрического сигнала промышленной частоты fс. ЛП имеет два входа, каждый из которых связан только с соответствующим выходом НП. При этом ЛП имеет два выхода, причем на эти выходы выводится в формате, необходимом для последующего использования, а именно на его первом выходе выдается информация, которая однозначно связана с параметром, который однозначно определяет модуль вектора, а на другой выход выводят информацию об угле поворота этого вектора. Структура НП включает несколько субблоков, среди которых первый субблок имеет один выход, на который выводят генерируемый им первый вспомогательный синусоидальный сигнал промышленной частоты с единичной амплитудой. Причем аргумент функции синуса задают через сумму двух изменяемых слагаемых, при этом первое слагаемое определяется произведением 2πfс·t, а второе слагаемое является вводимым в вычислительный процесс изменяемым фазовым углом θ. Кроме того, в НП включены второй, третий, четвертый и пятый субблоки. При этом второй субблок имеет один вход и один выход, причем как на его единственный вход, так и на второй вход третьего субблока подают аналоговый электрический синусоидальный сигнал aс(t) промышленной частоты fс, при этом второй субблок определяет такой его интегральный параметр, как действующее значение A, которое однозначно связывают с модулем вектора A _
Figure 00000002
. При этом информацию о значении A передают на первый вход ЛП и первый вход третьего субблока, при этом третий субблок выполняет операцию деления поданного на его второй вход аналогового электрического синусоидального сигнала ac(t) на поданный со второго субблока на первый вход третьего субблока действующего значения аналогового электрического синусоидального сигнала ac(t). Результат этого деления в виде второго зависимого только от времени t вспомогательного сигнала с выхода третьего субблока подают на первый вход четвертого субблока, а на второй вход четвертого субблока с выхода первого субблока подают первый синусоидальный вспомогательный сигнал, причем четвертый субблок осуществляет перемножение сигналов, поданных соответственно на его первый и второй входы. Результат перемножения в виде третьего вспомогательного сигнала выводят на выход четвертого субблока, при этом третий вспомогательный сигнал является функцией двух параметров, а именно времени t и вводимого в вычислительный процесс изменяемого фазового угла θ. Третий вспомогательный сигнал подают на вход пятого субблока, который осуществляет первое интегрирование по времени t в пределах задаваемого промышленной частотой fc периода, и к полученной после первого интегрирования функциональной зависимости применяют операцию второго интегрирования по параметру вводимого в вычислительный процесс изменяемого угла θ и на интервале от 0 до 2π определяют такое значение угла θ, при котором численное значение второго интегрирования будет равно 2
Figure 00000028
или с принятой погрешностью близко этому значению. Удовлетворяющий этому условию изменяемый угол θ принимают за угол поворота ψс вектора A _
Figure 00000002
, являющегося векторным изображением электрического сигнала промышленной частоты fc, причем информация об угле поворота ψс подается на второй выход НП и далее на второй вход ЛП. Технический результат заключается в упрощении алгоритма получения параметров вектора. 2 ил.

Description

Изобретение относится к области электротехники, в частности к способу и устройству на его основе, в задачу которого входит определение параметров вектора электрического гармонического сигнала промышленной частоты, а именно его модуля и угла поворота вектора.
Для аналитического описания аналогового электрического синусоидального сигнала aс(t) промышленной частоты fс используют выражение
a c ( t ) = A m ( c ) sin ( 2 π f c t + ψ c ) .           (1)
Figure 00000001
В выражении (1) применены обозначения: Am(c) - амплитуда аналогового синусоидального электрического сигнала ас(1) промышленной частоты fc; ψc - начальная фаза колебания мгновенного значения электрического синусоидального сигнала ac(t).
При решении ряда практических задач для момента времени t=0 аналоговый сигнал (1) представляют, например, в декартовой системе координат комплексной плоскости неподвижным вектором A _
Figure 00000002
(2, а) действующего значения синусоидальной функции (1), либо, например, неподвижным вектором A _
Figure 00000002
действующего значения синусоидальной функции (1) при условии отображении вектора в полярной системе координат, причем, когда условно принято, что полюс и полярная ось этой системы координат совпадают соответственно с началом координат комплексной плоскости и с направлением ее действительной оси +1, то неподвижный вектор действующего значения A _
Figure 00000002
в полярной системе координат может быть представлен выражением (2, б):
A _ = | A | _ e j ψ c = A e j ψ c = A x + j A y ,  где A = A x 2 + A y 2 , ψ c = a r c t g ( A y A x ) ,  a)                                                                                                                                     (2)
Figure 00000003
A _ = | A _ | ψ c = A ψ c .  б)
Figure 00000004
В выражениях (2, а) значения Аx и Ay являются проекциями вектора A _
Figure 00000002
соответственно на действительную (+1) и мнимую (+j) оси комплексной плоскости, при этом угол ψc определяет угол поворота вектора A _
Figure 00000002
относительно действительной оси +1 комплексной плоскости (2, а); при векторном изображении (2, б) угол ψс - это угол поворота вектора A _
Figure 00000002
по отношению к отмеченному выше направлению полярной оси; причем модуль A = | A _ |
Figure 00000005
| вектора A _
Figure 00000002
(2) с амплитудой Am(c) синусоидального электрического сигнала ac(t) (1) связан выражением A = A m ( c ) 2
Figure 00000006
.
Применительно к системе переменного тока промышленной частоты fс под синусоидальным электрическим сигналом (1) подразумевают гармонические или напряжение ac(t)=u(t) или ток ac(t)=i(t).
Информацию о действующем A (или амплитудном Am(c)) значении и начальной фазе ψc колебания синусоидального электрического сигнала промышленной частоты fc (1) используют в устройствах измерения, релейной защиты и автоматики объектов системы электроснабжения при решении задач, связанных с обеспечением требуемого функционирования этой системы, как в нормальном режиме, так и при возникновении в системе анормального режима.
Известны состоящие из блока нелинейного преобразователя (НП) и блока линейного преобразователя (ЛП) цифровые информационно-измерительные устройства (ЦИИУ) [Шнеерсон Э.М. Цифровая релейная защита. - М.: Энергоатомиздат, 2007. С. 39-40], причем блок НП осуществляет цифровую обработку поступающего на его вход мгновенного значения периодического электрического сигнала, при этом в основе цифровой обработки используют метод ортогональных составляющих, в основе которого положены адаптированные к особенностям цифровой обработки периодических электрических сигналов синус- и косинус-преобразования Фурье [Бессонов Л.А. Теоретические основы электротехники. Электрические цепи: Учебник. - 10-е изд. - М.: Гардарика, 2001. С. 204-206; Дьяков А.Ф. Микропроцессорная автоматика и релейная защита электроэнергетических систем: учебн. пособие для вузов / А.Ф. Дьяков, Н.И. Овчаренко. - М.: Издательский дом МЭИ, 2008. С. 17-19]. В результате предписанного алгоритма функционирования и выполнения соответствующих вычислительных процедур на выходе НП ЦИИУ и соответствующем формате получают информацию о модуле А и значении угла поворота ψс, причем при их вычислении используют полученные на основе синус- и косинус-преобразований Фурье значения проекций Аy и Ax вектора A _
Figure 00000002
на соответственно мнимую j и действительную +1 оси комплексной плоскости, при этом для вычислений модуля A и угла поворота ψc вектора A _
Figure 00000002
в алгоритме функционирования НП ЦИИУ используют такие нелинейные математические операции, как возведение в степень, извлечение квадратного корня, деление, определение обратной тригонометрической функции (2, а). Информация с выхода НП поступает на соответствующие входа линейного преобразователя (ЛП), который формирует на выходах ЦИИУ сигналы о значениях А и ψс в необходимом для дальнейшего использования формате другими компонентами устройств релейной защиты, автоматики или управления.
Реальный электрический сигнал f(t) во многих случаях является периодическим несинусоидальным электрическим сигналом с периодом повторения T = 1 f c
Figure 00000007
, в котором любую кратную промышленной частоте fс k-ую гармонику представляют аналитическим выражением
a k ( t ) = A m ( k ) sin ( 2 π k f c t + ψ k   ) ,        (3)
Figure 00000008
где k=1, 2, 3, …, т.е. реальный электрический сигнал f(t) представляют состоящим из суммы гармоник, т.е.
f ( t ) = k = 1 a k ( t ) = a k = 1 ( t ) + k = 2 a k ( t ) =                                                                                                               ( 4 ) = A m ( c ) sin ( 2 π f c t + ψ c ) + k = 2 A m ( k ) sin ( 2 π k f c t + ψ k )
Figure 00000009
Применив к сигналу (4) метод ортогональных составляющих, в конечном итоге получают такие основные параметры входящей в структуру несинусоидального сигнала f(t) любой k-ой гармоники (3), как значения ее амплитуды Am(k) и начального фазового угла колебания ψk. При номере гармоники k=1 на основе метода ортогональных составляющих получают информацию о действующем значении A = A m ( l ) 2
Figure 00000010
и начальном фазовом угле колебания ψс синусоидального сигнала ac(t) промышленной частоты fс, которые далее принимаем соответственно за первый (амплитуда А) и второй (угол поворота ψс) параметры вектора A _
Figure 00000002
, отображающего в векторной форме электрический гармонический сигнал промышленной частоты (1).
Применение отмеченных выше нелинейных математических операций, при реализации метода ортогональных составляющих в нелинейном преобразователе (НП), обуславливает использование сложного алгоритма функционирования НП, и что, как следствие, усложняет структуру ЦИИУ, а также создает определенные сложности в достижении требуемой точности получаемой информации о значениях основных параметров k-ой гармоники.
В качестве близкого по технической сущности предлагаемому способу и выбранного в качестве прототипа является изобретение [Патент №2442180 (RU), MПK G01R 29/10. Способ определения параметров гармоники несинусоидального электрического сигнала / В.А. Мамаев (RU), Н.Н. Кононова (RU)) - №2010141201/28; заявл. 07.10.2010; опубл. 10.12.2012, бюл. №4].
В прототипе для получения значений амплитуды Аm(k) и начальной фазы колебания ψk гармоники с номером k (3), входящей в структуру периодического несинусоидального электрического сигнала f(t) (4), предложен способ функционирования нелинейного преобразователя (HП) цифрового информационно-измерительного устройства (ЦИИУ), который обеспечивает упрощение структуры нелинейного преобразователя (НП) за счет исключения при определении значений амплитуды Am(k) и начальной фазы колебания ψk k-ой гармоники выполнения некоторых математических нелинейных операций, например возведение в степень, извлечение квадратного корня, деление, поиск значения обратной тригонометрической функции. По прототипу применительно к любой k-ой гармонике функционирование нелинейного преобразователя (НП) основано на выполнении им вычислительных процедур с привлечением математического выражения следующей структуры
A k ( θ ) = 2 T t 0 t 0 + T f ( t ) f В С П ( t , θ ) d t = 2 T t 0 t 0 + T f ( t ) sin ( 2 k π f c t + θ ) d t ,           (5)
Figure 00000011
в котором: t0 - момент времени запуска в нелинейном преобразователе (НП) процесса выполнения операции интегрирования; Т=1/fс период колебания входящей в структуру несинусоидального периодического сигнала f(t) первой гармоники (k=1); θ - дополнительный изменяемый (скользящий) вводимый в вычислительном процессе фазовый угол, который изменяют в диапазоне от 0 до 2π.
По своей сущности среди предлагаемых в прототипе трех вариантов получения значений амплитуды Аm(k) и начальной фазы колебания ψk k-ой гармоники ak(t) (4) предлагаемому изобретению близок вариант, в основе которого в вычислительном процессе нелинейный преобразователь (НП) осуществляет вычисления по выражению (5) в условиях изменения дополнительного вводимого в вычислительный процесс фазового угла θ.
В прототипе для определения параметров k-ой гармоники нелинейный преобразователь (НП) осуществляет последовательно две операции интегрирования. Первую операцию интегрирования осуществляют по времени t согласно выражению (5) на интервале периода Т несинусоидального периодического сигнала f(t), при этом в качестве подынтегрального выражения используют произведение двух сомножителей, при этом первый сомножитель является периодическим несинусоидальным электрическим сигналом f(t) (3), а вторым сомножителем является вспомогательная функция синуса fвсп(t, θ) (6), аргумент которой состоит из двух слагаемых, первое из которых связано с временем t, а вторым слагаемым является дополнительно вводимый в вычислительный процесс изменяемый (скользящий) фазовый угол θ:
f В С П ( t , θ ) = l sin ( 2 k π f c t + θ ) .           (6)
Figure 00000012
В результате интегрирования формируется набор данных, который аналитически связан только с амплитудой Am(k) k-ой гармоники и с вводимым в вычислительный процесс дополнительным изменяемым (скользящим) фазовым углом θ, при этом эти данные являются отображением следующей косинусоидальной зависимости
A ( k ) ( θ ) = A m ( k ) cos ( ψ k θ ) .           (7)
Figure 00000013
Следующие действия нелинейного преобразователя (НП) по прототипу направлены на поиск координат максимума функции (7), которые однозначно определяют значения начальной фазы колебания θkk и амплитуды Am(k)=A(k)k) k-ой гармоники ak(t) (3). При номере гармоники k=1 способ по прототипу обеспечит получение параметров электрического сигнала ac(t) (1) промышленной частоты fс, т.е. Am(c)=Am(l) и ψckk, которые могут быть использованы в качестве формирования параметра вектора A _
Figure 00000002
.
Недостатком способа по прототипу является достаточно сложный алгоритм функционирования нелинейного преобразователя (НП) цифрового информационно-измерительного устройства (ЦИИУ), обеспечивающего получение значения начальной фазы ψс колебания электрического синусоидального сигнала ac(t) промышленной частоты fс, так как нелинейным преобразователь (НП) цифрового информационно-измерительного устройства (ЦИИУ) выполняет соответствующие математические операции для получения массива численных значений функции (5) в широком диапазоне значений угла θ, и на основе данных этого массива осуществляет поиск координат максимума функции (7), с которыми однозначно можно связать первый и второй параметры вектора A _
Figure 00000002
, а именно его модуль А и угол поворота ψс, кроме того, значение амплитуды Аm(k=1)=Аm(с) (см. (5) и (7)) могут изменяться в широком диапазоне значений, что может проявиться в качестве негативного фактора, сказывающегося на точности определения параметров вектора A _
Figure 00000002
.
Теоретической основой предлагаемого способа определения параметров вектора электрического сигнала промышленной частоты fс, а именно угла поворота ψc вектора A _
Figure 00000002
и его модуля А (2), является следующее.
Как и в прототипе, для k=1 нелинейный преобразователь (НП) цифрового информационно-измерительного устройства (ЦИИУ) формирует первый вспомогательный синусоидальный сигнал fвсп_1(t, θ) (8) промышленной частоты fс:
f в с п _ 1 ( t , θ ) = 1 sin ( 2 π f c t + θ ) ,            (8)
Figure 00000014
у которого единичная амплитуда, а аргумент функции синуса состоит двух слагаемых, одно из которых через операцию умножения связано с промышленной частотой fс и временем t, а второе слагаемое является вводимым в вычислительный процесс дополнительным изменяемым (скользящим) фазовым углом θ:
Согласно предлагаемому изобретению для подводимого к цифровому информационно-измерительному устройству (ЦИИУ) электрического синусоидального сигнала ac(t) (1) промышленной частоты fс его нелинейный преобразователь (НП) по выражению (9) определяет такой интегральный параметр этого сигнала, как действующее значение А сигнала ас(1):
A = 1 T 0 T [ a c ( t ) ] 2 d t = A m ( c ) 2         (9)
Figure 00000015
Согласно предлагаемому изобретению нелинейный преобразователь (НП) осуществляет деление подводимого к цифровому информационно-измерительному устройству (ЦИИУ) электрического синусоидального сигнала ac(t) (1) промышленной частоты fс на полученное по выражению (9) его действующее значение A (9) и в результате получают второй вспомогательный сигнал fвсп_2(t) со структурой
f В С П _ 2 ( t ) = 2 sin ( 2 π f c t + ψ c )           (10)
Figure 00000016
Согласно предлагаемому изобретению нелинейный преобразователь (НП) перемножает второй вспомогательный сигнал (10) и первый вспомогательный сигнал fвсп_1(t) (8) и получают третий вспомогательный сигнал fвсп_3(t, θ), состоящий из двух слагаемых, одно из которых однозначно зависит только от разности значения искомого фазового угла ψc и вводимого в вычислительный процесс изменяемого (скользящего) угла θ, а второе слагаемое является некоторой гармонической функцией косинуса (11):
f всп_3 ( t , θ ) = f всп_2 ( t ) f всп_1 ( t ) = 2 2 cos ( ψ c θ ) 2 2 cos ( 4 π f c t + ψ c + θ )    (11)
Figure 00000017
Далее нелинейный преобразователь (НП) выполняет операцию интегрирования третьего вспомогательного сигнала fвсп_3(t, θ) (11) по времени в пределах от t0 до t0+T и формирует структуру четвертого вспомогательного сигнала fвсп_4(θ) (12), текущие значения которого не зависят от значения амплитуды Аm(c) подводимого к ЦИИУ сигнала a(t) (1), текущее значение определяется только численным значением водимого в вычислительный процесс изменяемого (скользящего) фазового угла θ, при этом максимальное значение четвертого вспомогательного сигнала fвсп_4(θ) не может превышать значения 2
Figure 00000018
:
f всп_4 ( θ ) = 2 T t 0 t 0 + T f всп_3 ( t , θ ) d t = 2 cos ( ψ c θ ) .           (12)
Figure 00000019
Согласно предлагаемому изобретению в процессе вычисления текущего значения зависимости (12) нелинейный преобразователь (НП) осуществляет поиск такого значения скользящего фазового угла θc, при котором четвертый вспомогательный сигнал fвсп_4(θ) (12) будет равен или с заданной погрешностью близок числовой константе, а именно 2
Figure 00000020
:
f всп_4 ( θ c ) = 2 T t 0 t 0 + T f всп_3 ( t , θ ) d t = 2 cos ( ψ c θ c ) = 2.          (13)
Figure 00000021
Согласно предлагаемому изобретению основанная на выражениях (8), (9), (12) и условии (13) последовательность действий может быть использована в основе организации функционирования соответствующих субблоков нелинейного преобразователя (НП) цифрового информационно- измерительного устройства (ЦИИУ), что обеспечит получение значений первого и второго параметров вектора A _
Figure 00000002
, т.е. его модуля А и угла поворота ψc, так как при равенстве ψcс функция (13) приобретает значение f ( θ с = ψ с ) всп_4 = 2
Figure 00000022
.
В условиях функционирования системы электроснабжения переменного тока реальный электрический сигнал ас.(реал.)(t) помимо основного электрического сигнала ac(t) (1) с промышленной частотой fс и своем составе может иметь кратные этой частоте гармоники, т.е. подводимый к цифровому информационно-измерительному устройству (ЦИИУ) периодический электрический сигнал ас.(реал.)(t) может быть «зашумлен гармониками», т. е. в этом случае являться негармонической, но периодической функцией времени t:
a с . ( р е а л . ) ( t ) = a c ( t ) + k = 2 a k ( t ) .          (14)
Figure 00000023
Если учесть, что амплитуды k-ых гармоник в системе электроснабжения во многих практических случаях заметно меньше амплитуды основной гармоник промышленной частоты fс, то действующее значение Ас.(реал) реального периодического несинусоидального электрического сигнала ас.(реал.)(t) в этих условиях будет близко к действующему значению A гармоники основной частоты fс(k=1)
A = A m ( c ) 2 A c . ( р е а л . ) = 1 T t 0 t 0 + T [ a c . ( р е а л . ) ( t ) ] 2 d t .           (15)
Figure 00000024
Из этого следует, что при решении конкретной практической задачи при относительно слабых «помехах» от гармоник с частотой, большей промышленной fс, и при соблюдении условия, когда численное значение выражения (13) будет близким значению 2
Figure 00000020
, то предлагаемый способ может обеспечить приемлемую точностью определения угла поворота ψc вектора некоторой фиктивной (расчетной) синусоиды A _ ф
Figure 00000025
, модуль Aф которой будет близок модулю A гармоники с частотой fс.
Технический результат, достигаемый при использовании предлагаемого способа, состоит в упрощении функционирования цифрового информационно-измерительного устройства (ЦИИУ) и повышении его технического уровня.
Сущность предлагаемого изобретения заключается в способе определения параметров вектора A _
Figure 00000002
электрического сигнала промышленной частоты fс, а именно модуля A и угла поворота ψс вектора, которые соответственно рассматривают как первый и второй параметры вектора A _
Figure 00000002
, при этом определение параметров вектора осуществляет цифровое информационно-измерительное устройство (ЦИИУ), включающее в свою структуру два блока, первый из которых является нелинейным преобразователем (НП) и состоит из нескольких субблоков, имеет один вход и два выхода, а второй блок выполняет функции линейного преобразователя (ЛП) и имеет два входа и два выхода, при этом на вход второго субблока нелинейного преобразователя (НП) подают аналоговый электрический синусоидальный сигнал ac(t) (1) промышленной частоты fс, на первый выход нелинейного преобразователя (НП) выводят информацию A, которая является некоторым интегральным параметром аналогового электрического синусоидального сигнала ac(t) (1), на его второй выход выводят информацию о начальном фазовом сдвиге ψс аналогового электрического синусоидального сигнала aс(t) (1), причем с первого и второго выходов нелинейного преобразователя (НП), сигналы поступают соответственно на первый и второй входы линейного преобразователя (ЛП), который на своих первом и втором выходах в форматах, необходимых для последующего применения в конкретных устройствах измерения, релейной защиты и автоматики, выдает информационные выходные сигналы Авых и ψc.вых, которые согласно предлагаемому изобретению однозначно связывают соответственно с первым параметром вектора A _
Figure 00000002
, а именно модулем A, и вторым параметром вектора A _
Figure 00000002
, а именно с углом ψc поворота вектора A _
Figure 00000002
, который также является фазовым угловым сдвигом ψс аналогового электрического синусоидального сигнала ac(t) (1), при этом входящий в структуру нелинейного преобразователя (НП) первый субблок на своем выходе формирует первый синусоидальный вспомогательный сигнал fвсп_1(t, θ) (8) с единичной амплитудой, причем аргумент функции синуса состоит из двух слагаемых, первое из которых является произведением времени t и промышленной частоты fc, т.е. 2πfс·t, а второе слагаемое является вводимым в вычислительный процесс изменяемым (скользящим) фазовым углом θ.
Отличается тем, что с целью упрощения функционирования цифрового информационно-измерительного устройства (ЦИИУ) и повышения его технического уровня в структуре его нелинейного преобразователя (НП) предусмотрены второй, третий, четвертый и пятый субблоки, при этом второй субблок имеет один вход и один выход, причем второй субблок нелинейного преобразователя (НП) для поданного на его вход аналогового электрического синусоидального сигнала ac(t) (1) промышленной частоты fс вычисляет такой его интегральный параметр, как его действующее значение А (9), который принимают за первый параметр вектора A _
Figure 00000002
, при этом значение этого параметра с выхода второго субблока подают на первый выход нелинейного преобразователя (НП) и далее на первый вход линейного преобразователя (ЛП), а также значение первого параметра вектора A _
Figure 00000002
с выхода второго субблока подается на первый вход третьего субблока, причем на второй вход третьего субблока с входа второго субблока подают аналоговый электрический синусоидальный сигнал ac(t) (1) промышленной частоты fc, при этом третий субблок выполняет операцию деления поданного на его второй вход аналогового электрического синусоидального сигнала ac(t) (1) на поданное на первый вход третьего субблока действующее значение А (9) аналогового электрического синусоидального сигнала ac(t) (1), и результат этого деления в виде второго, зависимого только от времени t, вспомогательного сигнала fвсп_2(t) (10) с выхода третьего субблока подают на первый вход четвертого субблока, а на второй вход четвертого субблока с выхода первого субблока подают первый синусоидальный вспомогательный сигнал fвсп_1(t, θ), причем четвертый субблок осуществляет перемножение сигналов, поданных соответственно на его первый и второй входы, при этом на выход четвертого субблока выводят третий вспомогательный сигнал fвсп_3(t, θ), который является функцией двух параметров, а именно времени t и вводимого в вычислительный процесс изменяемого (скользящего) фазового угла θ, причем третий вспомогательный сигнал fвсп_3(t, θ) подают на вход пятого субблока, который осуществляет два интегрирования, а именно первое интегрирование осуществляет по времени t в пределах периода, равного Т=1/fс, и, с привлечением результатов первого интегрирования на интервале от 0 до 2π, вычисляет второй интеграл, но по параметру вводимого в вычислительный процесс изменяемому (скользящему) углу θ и при этом выполняет поиск такого численного значения этого угла, при котором результат второго интегрирования будет равен или с принятой погрешностью близок к константе 2
Figure 00000026
, при этом значение вводимого угла θ, при котором соблюдается это условие, принимают за угол поворот ψc вектора A _
Figure 00000002
(2), являющегося векторным изображением аналогового электрического синусоидального сигнала aс(t) (1) промышленной частоты fс, причем информацию об угле поворота ψc подают на второй выход нелинейного преобразователя (НП) и далее на второй вход линейного преобразователя (ЛП), причем, если вследствие имеющих место в электрической сети процессов мгновенное значение периодического электрического сигнала, подводимого к входу второго субблока нелинейного преобразователя (НП) цифрового информационно-измерительного устройства (ЦИИУ), не будет гармоническим, то по предлагаемому способу в результате выполнения описанных выше последовательности действий на выход цифрового информационно-измерительного устройства (ЦИИУ) будет выведена информация о первом А и втором ψc параметрах некоторого вектора, который при определенных условиях могут считаться параметрами, которые с приемлемой точностью близки реальным параметрам гармоники промышленной частоты fс, входящей в структуру реального периодического, но несинусоидального сигнала ас.(реал)(t) (14).
На фиг. 1 приведена упрощенная структура цифрового информационного устройства (ЦИИУ), который имеет нелинейный преобразователь (НП) и линейный преобразователь (ЛН), при этом НП состоит из пяти субблоков (фиг. 2). НП имеет один вход Вх, он же считается входом ЦИИУ, и два выхода (Вых. 1 и Вых. 2). На вход ЦИИУ и одновременно на вход Вх НП подают электрический сигнал ac(t) промышленной частоты fс (1), который также подают на единственный вход субблока 2. Субблок 1 нелинейного преобразователя (НП) на своем единственном выходе Вых выдаст зависящий от времени t первый синусоидальный вспомогательный сигнал fвых_1(t, θ) (8), который имеет единичную амплитуду, причем для изменения начальной фазы колебания этого сигнала в аргумент функции синуса вводят изменяемый (скользящий) фазовый угол θ, что является необходимым условием выполнения ЦИИУ соответствующих вычислительных процедур, связанных с получением информации о значении угла ψс поворота вектора A _
Figure 00000002
(2). Субблок 2 в результате выполнения вычислительных процедур по выражению (9) на свой единственный выход Вых выводит значение А электрического сигнала ac(t) промышленной частоты fс, при этом значение А выводят на первый выход Вых. 1 НП, с которого подают на первый вход Вх. 1 линейного преобразователя (ЛП), который поступивший на этот вход сигнал преобразует в необходимый для последующего использования формат и в виде информационного сигнала Авых поступает на первый выход Вых. 1 ЛП и далее на первый выход Вых. 1 ЦИИУ, при этом информацию, содержащуюся в сигнале Авых, однозначно связывают с одним из параметров вектора A _
Figure 00000002
, а именно с величиной его модуля А (2). Нелинейный преобразовать (HП) по предлагаемому в изобретении способу выполняет выше описанные в сущности изобретения вычислительные процедуры и на своем втором выходе Вых. 2 формирует некоторую информацию, связанную с со значение угла ψс поворота вектора A _
Figure 00000002
(2). Со второго выхода Вых. 2 нелинейного преобразователя (НП) эту информацию подают на второй вход Вх. 2 линейного преобразователя (ЛП), который после приведения этой информации в формат, необходимый для последующего использования, в виде информационного сигнала ψс.вых подают на второй выход Вых. 2 ЛП и далее на второй выход Вых. 2 ЦИИУ, при этом информацию, содержащуюся в сигнале ψс.вых, однозначно связывают со вторым параметром вектора A _
Figure 00000002
, а именно с величиной угла поворота ψc вектора A _
Figure 00000002
(2). В отдельных случаях в структуре цифрового информационно-измерительного устройства (ЦИИУ) линейный преобразовать (ЛП) может отсутствовать.
На фиг. 2 приведена структура нелинейного преобразователя (НП), входящего в цифровое информационно-измерительное устройство (ЦИИУ) (фиг. 1). НП включает пять субблоков. Функциональное назначение первого и второго субблоков изложено при описании фиг. 1. С учетом выполняемых функций первым и вторым субблоками третий, четвертый и пятый субблоки функционируют и решают следующие задачи. С единственного выхода второго субблока 2 на первый вход Вх. 1 третьего субблока 3 подают численное значение А, а на второй вход Вх. 2 третьего субблока 3 с входа Вх второго субблока 2 (входа НП) подают электрический сигнал ac(t) промышленной частоты fc (1). Третий субблок 3 осуществляет деление поданного на его второй вход электрического сигнала ac(t) на поданный на его первый вход численное значение А и результат деления в виде зависящего от времени второго вспомогательного сигнала fвсп_2(t) (10) поступает на единственный выход третьего субблока 3 и далее поступает на первый вход Вх. 1 четвертого субблока 4, на второй вход Вх. 2 которого с выхода первого субблока 1 подают первый вспомогательный сигнал fвсп_1(t, θ) (6). Четвертый субблок 4 осуществляет перемножение поданных на его первый и второй входы сигналов и результат этого перемножения в виде третьего вспомогательного сигнала fвсп_3(t, θ) подает на его единственный выход Вых. Третий вспомогательный сигнал fвсп_3(t, θ) является функцией времени t и вводимого в вычислительный процесс дополнительного угла θ, при этом этот сигнал подают на единственный вход Вх пятого субблока 5. Этот субблок осуществляет две операции определенного интегрирования, при этом первая операция интегрирования осуществляется по времени t на интервале периода Т, соответствующего промышленной частоте fс, а вторая операция интегрирования осуществляется с привлечением результатов первого интегрирования по вводимому в вычислительный процесс дополнительному углу θ с поиском такого его значения θс в диапазоне изменения от 0 до 2π, при котором численное значение выполнения операции второго интегрирования будет равно 2
Figure 00000027
или с допустимой погрешностью близко к нему. Выведенное на выход Вых пятого субблока 5 значение угла θс однозначно считают вторым параметром вектора A _
Figure 00000002
, т.е. его углом поворота ψс вектора A _
Figure 00000002
.
Способ может быть реализован на основе известных методов цифровой обработки электрических сигналов с использованием схемотехнических решений, используемых в цифровой технике.

Claims (1)

  1. Способ определения параметров вектора электрического сигнала промышленной частоты fс на основе цифрового информационно-измерительного устройства, состоящего из двух блоков, а именно блока нелинейного преобразователя и блока линейного преобразователя, при этом нелинейный преобразователь имеет один вход и два выхода, причем к его входу подведен электрический сигнал промышленной частоты fс, а на каждом из двух выходов нелинейного преобразователя выводится информация, связанная со значениями модуля и угла поворота вектора электрического сигнала промышленной частоты fс, причем линейный преобразователь имеет два входа, каждый из которых связан только с соответствующим выходом нелинейного преобразователя, при этом линейный преобразователь имеет два выхода, причем на эти выходы выводится в формате, необходимом для последующего использования, а именно на его первом выходе выдается информация, которая однозначно связана с некоторым интегральным параметром, который однозначно определяет модуль вектора, а на другой выход выводят информацию об угле поворота этого вектора, при этом структура нелинейного преобразователя включает несколько субблоков, среди которых первый субблок имеет один выход, на который выводят генерируемый им первый вспомогательный синусоидальный сигнал промышленной частоты с единичной амплитудой, причем аргумент функции синуса задают через сумму двух изменяемых слагаемых, при этом первое слагаемое определяется произведением 2πfс·t, а второе слагаемое является вводимым в вычислительный процесс изменяемым (скользящим) фазовым углом θ, отличающийся тем, что с целью упрощения функционирования цифрового информационно-измерительного устройства и повышения его технического уровня в структуру его нелинейного преобразователя включены второй, третий, четвертый и пятый субблоки, при этом второй субблок имеет один вход и один выход, причем как на его единственный вход, так и на второй вход третьего субблока подают аналоговый электрический синусоидальный сигнал aс(t) промышленной частоты fс, при этом второй субблок определяет такой его интегральный параметр, как действующее значение A, которое однозначно связывают с модулем вектора A _
    Figure 00000002
    , при этом информацию о значении A передают на первый вход линейного преобразователя и первый вход третьего субблока, при этом третий субблок выполняет операцию деления поданного на его второй вход аналогового электрического синусоидального сигнала ac(t) на поданный со второго субблока на первый вход третьего субблока действующего значения аналогового электрического синусоидального сигнала ac(t), при этом результат этого деления в виде второго зависимого только от времени t вспомогательного сигнала с выхода третьего субблока подают на первый вход четвертого субблока, а на второй вход четвертого субблока с выхода первого субблока подают первый синусоидальный вспомогательный сигнал, причем четвертый субблок осуществляет перемножение сигналов, поданных соответственно на его первый и второй входы, при этом результат перемножения в виде третьего вспомогательного сигнала выводят на выход четвертого субблока, при этом третий вспомогательный сигнал является функцией двух параметров, а именно времени t и вводимого в вычислительный процесс изменяемого (скользящего) фазового угла θ, причем третий вспомогательный сигнал подают на вход пятого субблока, который осуществляет первое интегрирование по времени t в пределах задаваемого промышленной частотой fc периода, и к полученной после первого интегрирования функциональной зависимости применяют операцию второго интегрирования по параметру вводимого в вычислительный процесс изменяемого (скользящего) угла θ и на интервале от 0 до 2π определяют такое значение угла θ, при котором численное значение второго интегрирования будет равно 2
    Figure 00000028
    или с принятой погрешностью близко этому значению, при этом удовлетворяющий этому условию изменяемый (скользящий) угол θ принимают за угол поворота ψс вектора A _
    Figure 00000002
    , являющегося векторным изображением электрического сигнала промышленной частоты fc, причем информация об угле поворота ψс подается на второй выход нелинейного преобразователя НП и далее на второй вход линейного преобразователя.
RU2014137374/28A 2014-09-15 2014-09-15 Способ определения параметров вектора электрического сигнала промышленной частоты RU2568422C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014137374/28A RU2568422C9 (ru) 2014-09-15 2014-09-15 Способ определения параметров вектора электрического сигнала промышленной частоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014137374/28A RU2568422C9 (ru) 2014-09-15 2014-09-15 Способ определения параметров вектора электрического сигнала промышленной частоты

Publications (2)

Publication Number Publication Date
RU2568422C1 RU2568422C1 (ru) 2015-11-20
RU2568422C9 true RU2568422C9 (ru) 2016-02-27

Family

ID=54597966

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014137374/28A RU2568422C9 (ru) 2014-09-15 2014-09-15 Способ определения параметров вектора электрического сигнала промышленной частоты

Country Status (1)

Country Link
RU (1) RU2568422C9 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671398A (zh) * 2020-12-08 2021-04-16 东北大学 一种非正弦周期信号锁相方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU658569A1 (ru) * 1976-01-27 1979-04-25 Военный Инженерный Краснознаменный Институт Им.А.Ф.Можайского Устройство дл измерени параметров гармонических сигналов
SU1613967A1 (ru) * 1988-12-15 1990-12-15 Военная академия им.Ф.Э.Дзержинского Устройство дл измерени параметров частотно-модулированных гармонических сигналов
EP1076829A1 (de) * 1998-05-07 2001-02-21 Siemens Aktiengesellschaft Verfahren und schaltungsanordnung zur stromerfassung
RU2229138C1 (ru) * 2002-10-11 2004-05-20 Аванесян Гарри Романович Измеритель параметров гармонических процессов
RU2442180C1 (ru) * 2010-10-07 2012-02-10 Государственное образовательное учреждение высшего профессионального образования "Северо-Кавказский государственный технический университет" Способ определения параметров гармоники несинусоидального электрического сигнала

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU658569A1 (ru) * 1976-01-27 1979-04-25 Военный Инженерный Краснознаменный Институт Им.А.Ф.Можайского Устройство дл измерени параметров гармонических сигналов
SU1613967A1 (ru) * 1988-12-15 1990-12-15 Военная академия им.Ф.Э.Дзержинского Устройство дл измерени параметров частотно-модулированных гармонических сигналов
EP1076829A1 (de) * 1998-05-07 2001-02-21 Siemens Aktiengesellschaft Verfahren und schaltungsanordnung zur stromerfassung
RU2229138C1 (ru) * 2002-10-11 2004-05-20 Аванесян Гарри Романович Измеритель параметров гармонических процессов
RU2442180C1 (ru) * 2010-10-07 2012-02-10 Государственное образовательное учреждение высшего профессионального образования "Северо-Кавказский государственный технический университет" Способ определения параметров гармоники несинусоидального электрического сигнала

Also Published As

Publication number Publication date
RU2568422C1 (ru) 2015-11-20

Similar Documents

Publication Publication Date Title
CN105866543B (zh) 一种消除基波、谐波对间谐波检测干扰的间谐波检测方法
CN101871965B (zh) 电力正弦信号过零时间、频率、相位差的检测方法
Zhou A cross-coherence method for detecting oscillations
US4661769A (en) Measurement of magnitude and phase angle of voltage and current phasors and frequency deviation in power systems
US20120278020A1 (en) Apparatus and method for real time harmonic spectral analyzer
RU2568422C9 (ru) Способ определения параметров вектора электрического сигнала промышленной частоты
Chen A two-stage solution procedure for digital power metering according to IEEE standard 1459-2010 in single-phase system
JP2006098287A (ja) 高調波成分測定装置
RU2442180C1 (ru) Способ определения параметров гармоники несинусоидального электрического сигнала
Tiwari et al. Measurement of instantaneous power quality parameters using UWPT and Hilbert transform and its FPGA implementation
Salcic et al. An improved Taylor method for frequency measurement in power systems
Osipov et al. Algorithms of packet wavelet transform for power determination under nonsinusoidal modes
Levashov et al. The Ways of Reducing of the Active Power Measurement Error for the Method of Averaging of the Instantaneous Power
JP6425298B1 (ja) 位相分析回路
Beljić et al. Grid fundamental harmonic measurement in presence of Gaussian frequency deviation using 2-bit flash A/D converter
RU2534376C2 (ru) Способ определения начальной фазы колебания гармоники несинусоидального периодического электрического сигнала
RU2563556C1 (ru) Способ определения угла сдвига фаз между синусоидальными сигналами (варианты)
Mokeev Optimal filter synthesis
Peñaranda et al. Dynamic model validation via error indexes
JPH09211038A (ja) 位相・振幅検出装置の診断装置、位相検出装置、振幅検出装置、周波数検出装置、位相・振幅・周波数検出装置
JP2004279153A (ja) 電力計
Mamaev et al. Parameter determination of a nonsinusoidal periodic signal harmonic based on the modified sine transform
Son et al. An Advanced Frequency Estimation Algorithm Based on Analytic Compensation of Effects of Dominant Harmonic in Power Systems
Subtirelu Harmonic distortions analyzer for power rectifiers
Khodaparast et al. Implementation of the neural network for tracing of spot welders

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180916