RU2567422C2 - Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи - Google Patents

Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи Download PDF

Info

Publication number
RU2567422C2
RU2567422C2 RU2014109085/02A RU2014109085A RU2567422C2 RU 2567422 C2 RU2567422 C2 RU 2567422C2 RU 2014109085/02 A RU2014109085/02 A RU 2014109085/02A RU 2014109085 A RU2014109085 A RU 2014109085A RU 2567422 C2 RU2567422 C2 RU 2567422C2
Authority
RU
Russia
Prior art keywords
metal
furnace
bath
slag
opt
Prior art date
Application number
RU2014109085/02A
Other languages
English (en)
Other versions
RU2014109085A (ru
Inventor
Эдуард Эдгарович Меркер
Галина Абдулаевна Карпенко
Виктор Александрович Степанов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2014109085/02A priority Critical patent/RU2567422C2/ru
Publication of RU2014109085A publication Critical patent/RU2014109085A/ru
Application granted granted Critical
Publication of RU2567422C2 publication Critical patent/RU2567422C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области металлургии, в частности к электропечам с погруженными в шлаковый расплав графитовыми электродами, имеющими осевые отверстия, через которые в зону электрических дуг подают железорудные металлизованные окатыши (ЖМО), осуществляют их плавление с дожиганием окиси углерода кислородом, поступающим из сопел водоохлаждаемой фурмы в пространство между электродами над шлаком, и дополнительный подогрев шлакометаллической ванны. Определяют тепловую мощность шлакометаллической ванны по выражению Δqв=Qв/τ+(Qэкз+QСО+QT), где QB - расход электроэнергии на плавку, кВт·ч/т; QCO, QT, Qэкз - приходы тепла в ванну от дожигания СО, топлива и экзотермических реакций в печи, кВт, и текущую скорость нагрева металла (Vt, °C/сек), регулируют текущий расход ЖМО (Vок, кг/с) в зависимости от тепловой мощности шлакометаллической ванны (ΔqВ, кВт) и текущей скорости нагрева металла в ней (Vt, °C/сек) при соблюдении равенства этой величины оптимально необходимой скорости нагрева металла (Vt(опт), °C/сек). Изобретение позволяет повысить эффективность плавки ЖМО, снизить расход электроэнергии, увеличить производительность печи и уменьшить энергоемкость производства. 2 з.п. ф-лы, 3 ил.

Description

Областью применения изобретения является металлургия, а именно электрометаллургия производства стали на основе применения непрерывной подачи металлизованных окатышей (брикетов и др. сыпучих материалов) в ванну дуговой печи [1 - Меркер Э.Э. и др. Способ управления электрическим режимом дуговой печи. Патент РФ на изобретение №2385952 от 13.05.09. Бюллетень №19].
В процессе электроплавки стали при непрерывной подаче железорудных металлизованных окатышей (ЖМО) в ванну дуговой печи определяют величину тепловой мощности излучения электрических дуг в агрегате и в зависимости от которой рассчитывают фактическую величину теплосодержания ванны Δ q в = Q в τ
Figure 00000001
, кВт, где Qв - расход электроэнергии (кВт*ч) за время τ, сек плавки ЖМО в печи, а текущую температуру металла в ванне (tв, °C) находят из выражения t в = Δ q в / ( G τ * c ¯ )
Figure 00000002
, где c ¯
Figure 00000003
- теплоемкость металла в ванне печи, кДж/(кг*°C); Gτ - текущая масса металла в печи, кг. Недостатком известного способа [1 - Меркер Э.Э. и др. Способ управления электрическим режимом дуговой печи. Патент РФ на изобретение №2385952 от 13.05.09. Бюллетень №19] является то обстоятельство, что значение Δqв определяют только по значению Qв без учета других источников прихода тепла в дуговую печь, т.е. без QСО - прихода тепла от дожигания окиси углерода над ванной, кВт; Qт - приход тепла от сжигания топлива (природного газа, мазута или углеродистого порошка), кВт; Qэкз - тепло экзотермических реакции окисления углерода [С, %], кремния [Si, %], фосфора [Р, %] и других элементов, что снижает точность расчета текущей величины Δqв и скорости плавления окатышей Vпл, кг/с и не позволяет более эффективно осуществлять подачу ЖМО при оптимальной скорости загрузки окатышей (Vок, КГ/С) в дуговую печь.
Известен способ электроплавки металлизованных окатышей в дуговой печи [2 - Меркер Э.Э. и др. Дуговая печь для выплавки стали с использованием металлизованных окатышей. Патент РФ №2374582 от 27.11.09. Бюллетень №33] с подачей ЖМО (брикетов и других материалов) через полые графитовые электроды с применением водоохлаждаемой фурмы с двумя ярусами сопел для подачи кислорода на продувку металла и дожигание окиси углерода (CO) над ванной. При этом фурма снабжена измерительной штангой с датчиком температуры, что позволяет измерять текущую температуру металла (Тм, °C) в печи и осуществлять расход окатышей (брикетов и др.) в дуговую печь по фактической температуре (tв, °C) шлакометаллического расплава в печи.
В качестве недостатка в указанном способе электроплавки окатышей следует отметить то, что при подаче ЖМО по ходу плавки стали не учитывается оптимальный уровень перегрева металла (ΔТл, °C) над линией ликвидус, т.е. при наличии Топт=ΔТлликв=ΔТл+(1539-85[С, %]), где [С, %] - текущее содержание углерода в металле, %; Tликв - температура ликвидуса, °C.
Это достигается благодаря тому, что концентрацию углерода [С, %] определяют по активности кислорода в металле (а [O]) с помощью датчика Э.Д.С. и температуры [3 - Меркер Э.Э., Степанов А.Т. Датчик для замера окисленности и температуры жидкого металла. Авт. свид. СССР №640198. Открытия изобретения. 1978. №48. С. 158], который позволяет непрерывно по ходу плавки стали [4 - Лузгин В.П. и др. Кислородные зонды в сталеплавильном производстве. // М.: Металлургия, 1989. - 144 с.; рис. 35 стр. 97] измерять в металле температуру Tм и Tопт для оптимизации режима загрузки ЖМО в агрегате.
Задачей изобретения является повышение энергоэффективности электроплавки металлизованных окатышей (брикетов и др.) при непрерывной подаче ЖМО через полые (трубчатые) электроды, т.е. осуществление процесса электроплавки окатышей при существенном снижении расхода электроэнергии (Qв→min, кВт*ч/т), повышении производительности агрегата и заметном уменьшении энергоемкости производства. В частности, это достигается благодаря тому, что при электроплавке ЖМО через полые (трубчатые) электроды [5 - Меркер Э.Э., Карпенко Г.А. Способы электроплавки стали в дуговой печи. Патент РФ №2476603 от 14.06.2011. Бюллетень №6; Патент РФ №2483119 от 27.05.2013. Бюллетень №6] совместно с окатышами подают в ванну дуговой печи углеродсодержащие материалы и природный газ, что позволяет интенсифицировать процессы электроплавки стали и снизить удельный расход электроэнергии на плавку и повысить производительность печи. Однако, при этом образуется окись углерода (CO), которая не дожигается дополнительными потоками кислорода в печи, что представляется возможным осуществить с помощью устройств (например, ТКГ - топливно-кислородных горелок) или фурмой для дожигания CO кислородом [6 - Сугнура Сабуро и др. Способ выплавки стали в дуговой печи. Заявка 59 - 104419, Япония. Заявл. 03.12.1982, №57 - 212502. Опубл. 16.06.1984. МКИ C21C 5/52]. При этом тепло, выделяющееся за счет сжигания на выходе из сопел ТКГ или за счет дожигания CO кислородом над ванной, используется для нагрева металла и шлака в дуговой печи, сокращая при этом потребность в электроэнергии и повышая производительность агрегата.
Однако, несмотря на достигнутые успехи в повышении энергоэффективности электроплавки стали с применением подачи ЖМО в ванну агрегата, все вышеизложенные и другие способы [7 - Меркер Э.Э. и др. Способ электроплавки стали в дуговой печи. Патент РФ №2360009 от 27.06.09. Бюллетень №18] не позволяют комплексно решить данную проблему, заключающуюся в том, чтобы осуществлять оптимальный расход окатышей (Vок, кг/с) при существующей скорости их плавления (Vпл, кг/с) в ванне печи с учетом определения ее тепловой мощности (Δqв, кВт) и оптимальной скорости нагрева металла (Vt опт, °C/мин) на основе всех поступающих источников тепла (Qв, QСО, Qт и др.) в металл и шлак агрегата необходимо осуществлять процесс регулирования расхода окатышей (Vок, кг/с) по данным оптимальной скорости нагрева металла (Vt (опт)) в ходе протекания электроплавки ЖМО в печи.
Наиболее близким к изобретению по технической сущности и достигаемому результату является способ [7 - Меркер Э.Э. и др. Способ электроплавки стали в дуговой печи. Патент РФ №2360009 от 27.06.09. Бюллетень №18] электроплавки металлизованных окатышей в дуговой печи с использованием полых (трубчатых) электродов, через которые осуществляют подачу окатышей в ванну (Vок, кг/с) в зону высоких температур под электродами в зависимости от тепла (Qв, кВт*ч/т), усвоенного ванной, т.е. металлом и шлаком. При этом скорость загрузки окатышей (Vок, кг/с) осуществляют при соблюдении ее равенства со скоростью их плавления (Vпл, кг/с) при условии [Qв/ΔН*Gок)]≥1,2, где ΔН - изменение энтальпии загруженных в ванну окатышей при их нагреве от исходной температуры плавления, кВт*ч/т; Gок - масса загруженных окатышей в данный момент в печь, кг. При этом Q в = Q Σ д ( Q и з л ф + Q и з л ш л )
Figure 00000004
, где Q Σ д
Figure 00000005
- тепловая мощность всех электрических дуг в печи, кВт*ч/т; Q и з л ф
Figure 00000006
и Q и з л ш л
Figure 00000007
- соответственно потери тепла излучением от электрических дуг на футеровку свода и стен печи и от излучения шлаком в рабочее пространство печи, кВт*ч/т. Недостатком данного способа (прототипа) является то, что для определения величин Q и з л ф
Figure 00000008
и Q и з л ш л
Figure 00000009
необходимо осуществлять непрерывное измерение температуры металла (Тм, °C) по ходу электроплавки ЖМО, например, по способу [2 - Меркер Э.Э. и др. Дуговая печь для выплавки стали с использованием металлизованных окатышей. Патент РФ №2374582 от 27.11.09. Бюллетень №33] с измерением температуры металла и определением концентрации углерода в нем с помощью датчика Э.Д.С. и температуры, установленного в торце фурмы, позволяющая к тому же осуществлять дожигание окиси углерода (CO) струями кислорода. В то же время представляется возможным, например, по способу [6 - Сугнура Сабуро и др. Способ выплавки стали в дуговой печи. Заявка 59 - 104419, Япония. Заявл. 03.12.1982, №57 - 212502. Опубл. 16.06.1984. МКИ C21C 5/52] осуществить дополнительный нагрев металла и шлака с помощью боковых фурм (или ТКГ) в печи за счет дожигания CO кислородом над ванной, а также за счет сжигания топлива или углеродистого коксика в агрегате, что является дополнительным источником для определения величины Δqв или Qв, однако этот источник не учитывается в прототипе при определении расхода (Vок, кг/с) для данной скорости плавления окатышей (Vпл, кг/с) и, к тому же, не осуществляется непрерывный фактический контроль скорости нагрева металла (Vt, °C/мин).
Таким образом, настоящим изобретением решается важная научно-техническая задача на основе устранения существенных недостатков во всех известных способах по повышению энергоэффективности электроплавки металлизованных окатышей в дуговой печи, снижения расхода электроэнергии, увеличения производительности агрегатов и уменьшения энергоемкости производства.
Это достигается благодаря тому, что предлагаемый способ электроплавки металлизованных окатышей в дуговой печи, включающий подачу окатышей (брикетов и др. сыпучих материалов) через полые (трубчатые) электроды, топлива через топливно-кислородные горелки (ТКГ) на шлак, кислорода через сопла фурмы, а также измерение активности кислорода (углерода) в металле методом Э.Д.С. и температуры датчиком в ванне печи, отличается тем, что расход металлизованных окатышей (Vок, кг/с) осуществляют по зависимости от тепловой мощности ванны (Δqв, кВт) и скорости нагрева металла в ней (Vt, °C/мин), которую определяют по выражению V о к = ( Δ q в / ( V t * c ¯ ) G 0 ) / τ
Figure 00000010
, при этом Δqв=Qв/τ+(Qэкз+QCO+Qт), где Qв - расход электроэнергии на плавку, кВт*ч; QСО, Qт, Qэкз - приходы тепла в ванну от дожигания окиси углерода (CO), сжигания топлива из ТКГ и за счет экзотермических реакций в печи, кВт; G0 - начальный вес металла в печи до начала подачи окатышей в ванну, кг; c ¯
Figure 00000011
- средняя теплоемкость металла, кДж/(кг*°C), причем скорость нагрева металла Vt определяют как V t = ( T д " T д ' ) / ( τ 2 τ 1 )
Figure 00000012
, где T д '
Figure 00000013
и T д "
Figure 00000014
непрерывно измеряемые датчиком в ванне печи температуры металла (°C) в моменты времени τ1 и τ2 (мин), а также находят текущий вес металла в печи, равный Gr=G0+Vок·τ, и скорость обезуглероживания металла по выражению Vc=(C2-C1)/(τ21), [С, %]/сек, где C1 и C2 - концентрации углерода в моменты времени τ1 и τ2, причем C1 и C2 определяют по ходу процесса плавки ЖМО по активности кислорода (а [O]) в металле, измеряемый датчиком Э.Д.С. и температуры, и к тому же способ отличается тем, что расход окатышей (Vок, кг/с) регулируют по Vt=Vt(опт), то величину Δqв уменьшают, а если Vt>Vt(опт), то значение Δqв повышают до уровня, когда Vt=Vt(опт), при этом оптимальную скорость нагрева металла в печи Vt(опт) определяют как Vt(опт)=[(Tопт-Tликв)-Тм]/τ=(ΔТл+(1539+85[С, %])-Тм)/τ, где Tопт, Tликв, Тм - температура металла оптимальная в ванне дуговой печи, температура ликвидуса и текущая температура металла в печи, °C; ΔТл - степень перегрева металла над линией ликвидуса, равная, например, в дуговой печи 75±15°C; [С, %] - текущая концентрация углерода, определяемая с помощью датчика Э.Д.С. (3 - Авт. свид. СССР №640198. Открытия изобретения. 1978. №48. с. 158) и температуры (4 - Кислородные зонды в сталеплавильном производстве. // М.: Металлургия, 1989. - 144 с.; рис. 35, стр. 97), который размещают в торце корпуса фурмы и, следовательно, способ отличается тем, что дожигание CO осуществляют кислородом, поступающего из сопел фурмы и ТКГ на шлак в пропорции от объема CO над ванной, который определяют, например, по зависимости VCO=3,1·10-4·VC·Gτ м3/с, где Gτ - текущий вес металла в печи, равный Gτ=G0+V·τ, а скорость обезуглероживания металла при этом равна Vс=(C2-C1)/(τ21), [C, %]/сек, где C1 и C2 - концентрации углерода в моменты времени τ1 и τ2, причем C1 и C2 определяют по ходу процесса плавки ЖМО по активности кислорода (а [O]) в металле, измеряемой датчиком Э.Д.С. и температуры, установленным в торце фурмы, при этом способ, отличающийся тем, что концентрацию углерода [%С] в металле определяют по активности кислорода (а [O]) и температуре металла (Тм, °C) с помощью датчика Э.Д.С. в торце фурмы, например, по корреляционному выражению а [O]=0,0025±0,0032/[%C], причем a [ O ] = exp ( E 1 ln a 0 " E 2 ln a 0 ' E 1 E 2 )
Figure 00000015
, где E1 и E2 - измеренные значения Э.Д.С. в ячейках датчика (мВ), а a 0 '
Figure 00000016
и a 0 "
Figure 00000017
- активности кислорода в стандартных электродах сравнения датчика.
Анализ известных (1 - Патент РФ на изобретение №2385952 от 13.05.09. Бюллетень №19; 2 - Патент РФ №2374582 от 27.11.09. Бюллетень №33; 5 - Патент РФ №2476603 от 14.06.2011. Бюллетень №6; 7 - Патент РФ №2360009 от 27.06.09. Бюллетень №18) и других способов электроплавки металлизованных окатышей в дуговой печи позволяет сделать заключение о наличии в предлагаемом изобретении существенной новизны, заключающейся в том, что текущий расход окатышей (Vок, кг/c) осуществляют и регулируют в ходе плавки стали по оптимальной скорости нагрева металла в печи (Vt(опт), °C/сек), учитывающей все источники поступления тепла в ванну агрегата при измерении текущей (Vt, °C/сек) с помощью датчика температуры.
Поэтому отношение Vt/Vt(опт)опт=1±0,05 представляется универсальным критерием для оптимизации энерготехнологического режима электроплавки стали ЖМО, позволяющим, в отличие от всех известных способов, обеспечивать высокую энергоэффективность процесса, повысить производительность печи и снизить в целом энергоемкость производства электроплавки.
Работа по данному способу осуществляется (см. фиг. 1) следующим образом. Способ электроплавки ЖМО осуществляется в дуговой печи (1), где показана центральная часть свода печи (2) и топливно-кислородные горелки (3) для дополнительного подогрева металла и шлака в печи. Для подачи электроэнергии в печь используются полые (трубчатые) графитовые электроды (4), расположенные в центральной части (5) свода дуговой печи, которая в своем составе имеет водоохлаждаемую фурму с соплами (6) и датчик Э.Д.С. и температуры (7), установленный в торце фурмы. Для интенсификации процессов электроплавки ЖМО используют наряду с топливом и кислород (8), подаваемый из сопел ТКГ на шлак. Дополнительное дожигание CO над ванной осуществляют кислородом (9), поступающим из сопел фурмы (6) в пространство между электродами (4) над шлаком в печи. В области вокруг электродов (4) имеется зона плавления окатышей.
В целях осуществления непрерывного контроля температуры металла (Тм, °C) и определения скорости нагрева металла (Vt, °C/сек) по ходу плавки кислородная фурма (фиг. 2) содержит измерительную штангу (11) с датчиком температуры и Э.Д.С. (19), и, кроме того, фурма имеет верхние сопла (12), позволяющие подавать кислород (13) на дожигание CO над шлаком (14) в печи. При этом нижние сопла фурмы (15) используются для подачи кислорода (16) на продувку расплава, что интенсифицирует экзотермические реакции окисления примесей в металле (17). Измерительная штанга (18) внутри фурмы (11) при электроплавке ЖМО погружается в металл (17), что позволяет с помощью датчика Э.Д.С. и температуры в штанге (19) осуществлять измерение (20) величины Э.Д.С. в электрохимической ячейке датчика совместно с температурой и определять тем самым значение активности кислорода и концентрации углерода в жидком металле (17), а затем и находить скорость обезуглероживания металла (Vс, °C/сек).
На фиг. 3 приведена обобщенная схема дуговой печи (1), включающая полые электроды (4), фурму с измерительной штангой и датчиком Э.Д.С. и температуры (19) с приборами измерения температуры металла (21) с одновременным определением скорости нагрева металла (Vt, °C/сек), которая служит основным критерием эффективности определения оптимальной скорости подачи окатышей в печь через осевые отверстия (22) электродов (4) в дуговой печи. Основным источником прихода тепла в печь является электроэнергия, которая преобразуется на электродах в электрические дуги (28) и контролируется системой приборов (23) для определения электрических параметров электроплавки ЖМО.
Расход окатышей осуществляется устройством (24) с обеспечением регулирования подачи окатышей через полые электроды (4) в зависимости от теплового состояния шлакометаллической ванны (Δqв, кВт) с определением текущей скорости нагрева металла (Vt, °C/сек) и оптимизацией скорости загрузки окатышей (Vок, кг/с) по конвейерной системе (25) агрегата, которая взаимосвязана с бункером (26) подачи окатышей, а также исполнительным механизмом (27). В зависимости от тепловой мощности электрических дуг (28), расхода топлива и кислорода от ТКГ (8) и расхода кислорода (29) из сопел фурмы (9) изменяется расход ЖМО (Vок, кг/с) через отверстия в электродах (30) в своде печи, причем все виды подачи кислорода в рабочее пространство дуговой печи используются для дожигания CO (31) и окисления примесей металла в ванне печи.
Комплексное использование в дуговой печи (фиг. 1) тепловой мощности электрических дуг и ТКГ, а также источников тепла от использования кислородной фурмы (фиг. 2) позволяет интенсифицировать процессы электроплавки металлизованных окатышей (Δqв→max) на основе использования контроля (фиг. 3) и регулирования скорости нагрева металла (Vt, °C/сек) относительно оптимально необходимой скорости (Vt(опт), °C/сек), определяемой на основе принципа соблюдения равенства скоростей расхода окатышей (Vок, кг/с) и их плавления (Vпл, кг/с), что формируется необходимостью соблюдения Vt/Vt(опт)=1 по ходу электроплавки ЖМО.
Таким образом, применение метода контроля расход окатышей (Vок, кг/с) по ходу электроплавки ЖМО по информации о суммарной фактической величине Δqв, кВт и скорости нагрева металла (Vt, °C/сек) при соблюдении равенства этой величины оптимально необходимой скорости нагрева металла (Vt(опт), °C/сек), т.е. при соблюдении универсального критерия Vt/Vt(опт)опт=1±0,05, с учетом других факторов, таких как Vпл, Vс, ΔТл , является новизной существенно, отличающейся от всех известных способов электроплавки окатышей в ванне дуговой печи.
Предлагаемый способ электроплавки металлизованных окатышей в дуговой печи может быть реализован с использованием известных устройств (3 - Авт. свид. СССР №640198. . Открытия изобретения. 1978. №48. с. 158; 4 - Кислородные зонды в сталеплавильном производстве. // М.: Металлургия, 1989. - 144 с., рис. 35, стр. 97; 6 - Япония. Заявл. 03.12.1982, №57 - 212502. Опубл. 16.06.1984. МКИ C21C 5/52), а экономическая эффективность предлагаемого способа подтверждается результатами известных работ (1 - Патент РФ на изобретение №2385952 от 13.05.09. Бюллетень №19; 2 - Патент РФ №2374582 от 27.11.09. Бюллетень №33; 5 - Патент РФ №2476603 от 14.06.2011. Бюллетень №6; Патент РФ №2483119 от 27.05.2013. Бюллетень №6), использующие частично или полностью методы в предлагаемом изобретении, которые позволяют повысить энергоэффективность электроплавки стали.

Claims (3)

1. Способ регулирования электроплавки железорудных металлизованных окатышей (ЖМО) в дуговой печи, включающий подачу в шлакометаллическую ванну через свод печи ЖМО с использованием полых электродов в зону электрических дуг, их плавление с дожиганием окиси углерода (СО) кислородом, поступающим из сопел водоохлаждаемой фурмы в пространство между электродами над шлаком, и дополнительный подогрев шлакометаллической ванны, при этом осуществляют непрерывный контроль температуры металла (Tм, °C) с помощью датчика Э.Д.С. и температуры измерительной штанги, расположенной внутри упомянутой фурмы, отличающийся тем, что определяют тепловую мощность шлакометаллической ванны по выражению
Δqв=Qв/τ+(Qэкз+QСО+QT),
где QB - расход электроэнергии на плавку, кВт·ч/т;
QCO, QT, Qэкз - приходы тепла в ванну от дожигания СО, топлива и экзотермических реакций в печи, кВт,
и текущую скорость нагрева металла (Vt, °C/сек) по выражению
Figure 00000018
,
где
Figure 00000019
и
Figure 00000020
- непрерывно измеряемая датчиком температура металла (°C) в ванне печи в моменты времени τ1 и τ2 (мин),
и регулируют текущий расход ЖМО (Vок, кг/с) в зависимости от тепловой мощности шлакометаллической ванны (ΔqВ, кВт) и текущей скорости нагрева металла в ней (Vt, °C/сек) при соблюдении равенства (Vt, °C/сек) оптимальной скорости нагрева металла (Vt(опт), °C/сек), при этом текущий расход ЖМО определяют по выражению
Figure 00000021
,
где G0 - начальный вес металла в печи до начала подачи ЖМО в ванну, кг,
c ¯
Figure 00000022
- средняя теплоемкость металла, кДж/(кг·°C),
τ - время, сек.
2. Способ по п. 1, отличающийся тем, что если Vt<Vt(опт), то величину Δqв уменьшают, если Vt>Vt(опт), то значение Δqв повышают до уровня, когда Vt=Vt(опт), при этом оптимальную скорость нагрева металла в печи Vt(опт) определяют из выражения
Vt(опт)=[(Tопт-Tликв)-TМ]/τ=(ΔTл+(1539+85[C,%])-TМ)/τ,
где Tопт, Тликв, ТМ - оптимальная температура металла в ванне дуговой печи, температура ликвидуса и текущая температура металла в печи, °C;
ΔТл - степень перегрева металла над линией ликвидуса, равная, например, в дуговой печи 75+15°C;
[C, %] - текущая концентрация углерода, определяемая с помощью датчика Э.Д.С. и температуры, который установлен в торце корпуса измерительной фурмы.
3. Способ по п. 1, отличающийся тем, что дожигание СО осуществляют кислородом, поступающим из сопел фурмы и топлива на шлак в пропорции от объема СО над ванной, который определяют по зависимости
VСО= 3,1·10-4·VС Gτ: м3/с,
где Gτ - текущий вес металла в печи, равный GT=G0+VОК·τ, а скорость обезуглероживания металла равна
Vc=(C2-C1)/(τ21), [С, %]/сек,
где C1 и С2 - концентрации углерода в моменты времени τ1 и τ2, причем С1 и С2 определяют по ходу процесса плавки ЖМО по активности кислорода (а[0]) в металле, измеряемой с помощью датчика Э.Д.С. и температуры, который установлен в торце измерительной фурмы.
RU2014109085/02A 2014-03-11 2014-03-11 Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи RU2567422C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109085/02A RU2567422C2 (ru) 2014-03-11 2014-03-11 Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109085/02A RU2567422C2 (ru) 2014-03-11 2014-03-11 Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи

Publications (2)

Publication Number Publication Date
RU2014109085A RU2014109085A (ru) 2015-09-20
RU2567422C2 true RU2567422C2 (ru) 2015-11-10

Family

ID=54147446

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109085/02A RU2567422C2 (ru) 2014-03-11 2014-03-11 Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи

Country Status (1)

Country Link
RU (1) RU2567422C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3621323A1 (de) * 1985-06-28 1987-01-08 Asea Ab Verfahren zur herstellung von stahl in einem lichtbogenofen
US4852120A (en) * 1988-11-08 1989-07-25 Nikko Industry Co., Ltd. Cooling apparatus for electric arc furnace electrodes
RU2360009C2 (ru) * 2005-09-07 2009-06-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Способ электроплавки стали в дуговой печи
RU2385952C2 (ru) * 2005-09-07 2010-04-10 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов"(технологический университет) Способ управления электрическим режимом дуговой печи
RU2476603C1 (ru) * 2011-06-14 2013-02-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ выплавки стали в дуговой печи

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3621323A1 (de) * 1985-06-28 1987-01-08 Asea Ab Verfahren zur herstellung von stahl in einem lichtbogenofen
US4852120A (en) * 1988-11-08 1989-07-25 Nikko Industry Co., Ltd. Cooling apparatus for electric arc furnace electrodes
RU2360009C2 (ru) * 2005-09-07 2009-06-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Способ электроплавки стали в дуговой печи
RU2385952C2 (ru) * 2005-09-07 2010-04-10 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов"(технологический университет) Способ управления электрическим режимом дуговой печи
RU2476603C1 (ru) * 2011-06-14 2013-02-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ выплавки стали в дуговой печи

Also Published As

Publication number Publication date
RU2014109085A (ru) 2015-09-20

Similar Documents

Publication Publication Date Title
JP5620030B2 (ja) 熔融プロセスを制御するための方法及び制御システム
Jalkanen et al. Converter steelmaking
EP0190313A1 (en) CONTINUOUS STEEL GENERATOR DEVICE.
RU2571971C2 (ru) Способ и система управления процессом плавления и рафинирования металла
RU2567422C2 (ru) Способ регулирования электроплавки железорудных металлизованных окатышей в дуговой сталеплавильной печи
JP5678718B2 (ja) 転炉での溶銑の脱炭精錬方法
Bedarkar et al. Energy balance in induction furnace and arc furnace steelmaking
RU2567425C1 (ru) Способ управления выплавкой стали в дуговой сталеплавильной печи
RU2385952C2 (ru) Способ управления электрическим режимом дуговой печи
RU2360009C2 (ru) Способ электроплавки стали в дуговой печи
RU2576213C1 (ru) Устройство для загрузки металлизованных окатышей в дуговую печь
EP4101936A1 (en) Method for detecting fluctuation in coagulation layer and blast furnace operation method
RU2567426C1 (ru) Дуговая печь для электроплавки стали
RU2761189C1 (ru) Способ электроплавки стали из железорудного металлизованного сырья и дуговая печь для его осуществления
JP6560868B2 (ja) スラグ処理方法
Jonker et al. Implementation of Tenova preheating technology at JSC Kazchrome
Patrizio et al. One bucket charging Fastarc™ in Jacksonville
Stepanov et al. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel–oxygen burners
Kashakashvili et al. Steel smelting in an improved ladle-furnace unit
Merker et al. Energy-saving conditions for electric melting of prereduced pellets in the bath of an arc furnace
Barati Application of Slag Engineering Fundamentals to Continuous Steelmaking
Merker Efficiency of Using Oxygen and Development of Locally Distributed Methods for Afterburning of Combustible Gases in Electric-Arc Furnace or Ladle Furnace
JP3121894B2 (ja) 金属溶解炉
RU2567424C1 (ru) Способ плавки стали из железорудных металлизованных окатышей в дуговой сталеплавильной печи
Harada et al. Optimization of Slag Reduction Process with Molten Slag Charging (Development of the Molten Slag Reduction Process-2)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190312