RU2564382C2 - Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне - Google Patents

Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне Download PDF

Info

Publication number
RU2564382C2
RU2564382C2 RU2013127642/28A RU2013127642A RU2564382C2 RU 2564382 C2 RU2564382 C2 RU 2564382C2 RU 2013127642/28 A RU2013127642/28 A RU 2013127642/28A RU 2013127642 A RU2013127642 A RU 2013127642A RU 2564382 C2 RU2564382 C2 RU 2564382C2
Authority
RU
Russia
Prior art keywords
infrared range
mid
sample
attenuation
fluid
Prior art date
Application number
RU2013127642/28A
Other languages
English (en)
Other versions
RU2013127642A (ru
Inventor
Хенрик ЙУХЛЬ
Original Assignee
ФОСС Аналитикал А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ФОСС Аналитикал А/С filed Critical ФОСС Аналитикал А/С
Publication of RU2013127642A publication Critical patent/RU2013127642A/ru
Application granted granted Critical
Publication of RU2564382C2 publication Critical patent/RU2564382C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/04Dairy products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

Изобретение предназначено для определения компонентов текучего неоднородного вещества в среднем инфракрасном диапазоне. Система измерения затухания содержит проточную трубку (4), средство (10) переноса для создания потока образца через трубку (4), средство (14) измерения затухания в среднем инфракрасном диапазоне и средство (18) вычисления, причем средство (14) измерения затухания функционирует с синхронизацией по времени со средством (10) переноса, а средство (18) вычисления обеспечено прогнозирующей моделью. Изобретение обеспечивает улучшение повторяемости при сохранении точности. 1 з.п. ф-лы, 1 ил., 2 табл.

Description

[0001] Настоящее изобретение относится к системе и способу количественного определения компонентов текучего неоднородного вещества с помощью спектрального анализа в среднем инфракрасном диапазоне (определяемом здесь как использующий длины волн из спектральной области от 2,5 мкм до 10 мкм), в частности к определению композиционных параметров жидкости, в которой взвешены частицы, в особенности молока, содержащего жир.
[0002] Известно определение компонентов образца, например одного или нескольких из следующего: жир, лактоза, глюкоза, белок, мочевина и/или нежелательные примеси в жиросодержащих жидких образцах, в частности в образцах крови, молока или молочных продуктов, или, например, одного или нескольких из следующего: белок, влага и/или крахмал в зернах хлебных злаков, при помощи методик затухания в среднем инфракрасном диапазоне. Согласно таким методикам образец исследуют путем пропускания через образец излучения в среднем инфракрасном спектральном диапазоне. Затем измеряют затухание излучения, по которому проводят исследование, в среднем инфракрасном диапазоне, вызываемое образцом.
[0003] Системы или инструменты для измерения содержат средства измерения затухания в среднем инфракрасном диапазоне для измерения затухания в инфракрасной области образца в некотором количестве диапазонов волн, чаще всего по непрерывному спектральному диапазону, и средства вычисления, которые приспособлены вычислять концентрации интересующих компонентов в образце, исходя из измеренных в среднем инфракрасном диапазоне значений затухания образца. Вычисления выполняют с использованием эталонной или прогнозирующей модели, которая устанавливает зависимость между интересующим компонентом и измеренными значениями затухания в среднем инфракрасном диапазоне.
[0004] Одна проблема, связанная с таким измерением в среднем инфракрасном диапазоне, например образцов молока, заключается в том, что вычисленные результаты (часто называемые косвенными или прогнозируемыми результатами, поскольку непосредственными результатами анализа являются результаты, полученные с применением стандартных химических способов сравнения) варьируются при варьирующемся распределении частиц по размерам, здесь жировых шариков, в образцах.
[0005] Это может быть продемонстрировано теоретически, как будет описываться далее. Допустим, что кювету диаметром 8 мм заполняют сырым молоком, содержащим 4% жира. Типичная толщина светопоглощающего слоя в образце составляет 0,05 мм для излучения в среднем инфракрасном диапазоне. Полезный (т.е. облученный) объем кюветы можно предположить равным 2,5 мм3. Содержание жира составляет 4% по весу, а густота молока, как правило, составляет 0,93 г/мл, что при объеме жира, присутствующего в кювете, дает около 0,12 мм3.
[0006] Жировые шарики в неоднородном (негомогенизированном) виде составляют порядка 4 мкм - 10 мкм в диаметре. Если предположить, что их распределение по размерам следует распределению Пуассона, то теоретическое определение воспроизводимости жира в кювете можно вычислить, как показано в Таблице 1, где последняя строка представляет воспроизводимость жира в кювете, заполненной не гомогенизированным молоком, вычисленную для различных размеров жировых шариков.
Таблица 1
Диаметр (мкм) 4 5 6 7 8 9 10
Объем (×10-8 мм3) 3,35 6,54 11,3 18 26,8 38,2 52,4
Количество (×106) 3,226 1,652 0,956 0,602 0,403 0,283 0,206
R(отн) 0,056 0,078 0,102 0,129 0,157 0,188 0,220
R(абс) 0,002 0,003 0,004 0,005 0,006 0,008 0,009
[0007] Как и следовало ожидать, воспроизводимость ухудшается с увеличением диаметра жирового шарика. Однако эти результаты гораздо лучше, чем тем, которые характерны для негомогенизированного молока, находящегося в неподвижном состоянии в кювете, где, как правило, получают абсолютные воспроизводимости до 0,1.
[0008] Для того чтобы свести к минимуму эту проблему, известные инструменты или системы, применяемые для измерений, приспособлены измерять в своих измерительных отделениях гомогенизированные образцы и содержат встроенные гомогенизаторы, которые должны обеспечивать то, чтобы различные образцы, подвергаемые измерению, подвергались одинаковой гомогенизации, так чтобы у них было одинаковое распределение частиц по размерам. Экспериментальным путем легко продемонстрировать, что воспроизводимости, наблюдаемые для гомогенизированного молока, находящегося в неподвижном состоянии в кювете, очень близки к теоретическим значениям, представленным выше. В молоке, например, гомогенизаторы должны действовать так, чтобы обеспечивать размеры частиц от 0,2 мкм до 2 мкм. Однако гомогенизаторы систем инструментов подвержены механическому изнашиванию, что означает, что их гомогенизирующая эффективность со временем ухудшается, приводя тем самым к варьированию в распределении по размерам жировых шариков, и таким образом снижая точность измерений.
[0009] Одно решение, позволяющее избежать потребности в гомогенизаторах, предоставлено в документе WO 92/17767. Здесь раскрывается, что измерения затухания в среднем инфракрасном диапазоне должны быть выполнены на неоднородных (негомогенизированных) образцах молока, находящихся в неподвижном состоянии в кювете, в среднем инфракрасном диапазоне спектральной области от 1160 см-1 (8,62 мкм) и до 1350 см-1 (7,41 мкм). Это представляет область, в которой С-O-связь поглощает энергию и на которую, как было установлено, не влияет рассеяние от частиц жира.
[0010] В документе WO 2008/146276 описана система, которая приспособлена выполнять измерения затухания в текучем неоднородном молоке в ближней инфракрасной области спектра и собирать данные измерений как от света, отраженного текучим молоком, так и от света, проходящего сквозь него. Однако другие компоненты, например вода, оказывают очень сильное влияние на затухание в этой ближней инфракрасной области.
[0011] Согласно одному аспекту настоящего изобретения предоставлен способ определения компонентов текучего неоднородного образца, включающий получение образца вещества; протекание образца через область измерения, что может быть обеспечено потоком через кювету; одновременное взаимодействие текучего образца в области измерения с излучением в среднем инфракрасном диапазоне; последующее измерение значений затухания в среднем инфракрасном диапазоне при одном или нескольких диапазонах волн, как правило, по спектрофотометрическому анализу взаимодействующего излучения, по меньшей мере, в области с длиной волны, в которой интересующий компонент влияет на затухание в среднем инфракрасном диапазоне, и вычисление в средстве вычисления показателя интересующего компонента в образце по измеренным в среднем инфракрасном диапазоне значениям затухания.
[0012] Путем выполнения измерений на текучем образце может быть удобно выполнено эффективное усреднение измерения и тем самым может быть достигнута повышенная точность. Измерения повторяют много раз, пока образец протекает через область измерения со скоростью потока, выбранной так, чтобы, по меньшей мере, часть образца в области измерения заменялась новым образцом во время выполнения ряда измерений, предпочтительно на каждом измерении. Наиболее предпочтительно скорость потока выбирают так, чтобы весь образец в области измерения заменялся на каждом измерении.
[0013] Среди специалистов в области техники считается общепринятым, что в отличие от измерений в ближней инфракрасной области измерений в среднем инфракрасном диапазоне на текучем образце следует избегать, поскольку ожидается низкая точность и воспроизводимость, как будет объяснено ниже.
[0014] Частица во взвеси или мицелла в эмульсии, как правило, содержит иные химические связи, чем окружающая жидкость, и каждый вибрационный резонанс этих связей вызывает определенное затухание, которое, например, может быть показательным в качестве определенной частоты в интерферограмме, записанной средством измерения затухания интерферометрического типа. Если во время измерения частица или мицелла находится в фиксированном положении в кювете, соответствующая частота и амплитуда будут постоянными по всей необработанной интерферограмме.
[0015] Как правило, интерферограмму умножают на колоколообразную функцию аподизации, чтобы сгладить неоднородности в начале и в конце сканирования. Таким образом, если частица или мицелла движется через кювету во время сканирования, полученная в результате интерферограмма будет нарушена. Если частица проходит вначале или в конце сканирования, соответствующая амплитуда в интерферограмме будет сокращена ввиду аподизации. Следовательно, после преобразования Фурье аподизированной интерферограммы частица, которая проходит в начале или в конце сканирования, будет иметь меньший пик поглощения, чем частица, которая проходит в середине сканирования.
[0016] Если во время измерения частица или мицелла движется по кювете очень быстро, записывается лишь ограниченное количество колебаний, и частота затухания (волновое число) в среднем инфракрасном диапазоне плохо определяется. Это ведет к значительному размыванию пика поглощения после преобразования Фурье, которое также ограничивает точность измерения.
[0017] Естественно, при большом количестве малых частиц или мицелл в текучей жидкости записываемые интерферограммы будут представлять среднее значение и будут относительно не нарушены течением. Однако при среднем количестве частиц, которые являются более крупными по сравнению с объемом облученной кюветы, например жировых шариков в негомогенизированном молоке, описанные выше эффекты скорости потока будут влиять на записываемую интерферограмму и устанавливать ограничение повторяемости измерений.
[0018] Описанный здесь эффект сильнее в средней инфракрасной части спектра при спектроскопии с использованием преобразования Фурье, чем в ближней инфракрасной части спектра (как правило, к ней относят длины волн от 0,8 мкм до 2,5 мкм). Во-первых, поскольку поглощение гораздо сильнее в среднем инфракрасном диапазоне, чем в ближнем инфракрасном диапазоне, в среднем инфракрасном диапазоне измеряют значительно меньший объем образца, что делает статистические изменения в количестве частиц или мицелл относительно большими. Во-вторых, поскольку измерения текучих образцов в ближней инфракрасной области обычно выполняют со спектрометрами DDA (диодно-матричный детектор), со временем DDA будет одинаково усреднять все спектральные компоненты (длины волн), устраняя проблему скорости потока, описанную выше в отношении среднего инфракрасного диапазона.
[0019] В одном варианте осуществления применительно к измерению жиросодержащего жидкого образца, такого как молоко или кровь, способ может дополнительно включать этап нагревания образца перед исследованием излучением в среднем инфракрасном диапазоне. Это снижает тенденцию взвешенных частиц жира агломерировать.
[0020] Согласно второму аспекту настоящего изобретения предоставлена система измерения затухания в среднем инфракрасном диапазоне для количественного определения показателя интересующего компонента в неоднородном текучем образце, причем система содержит проточную трубку для введения в образец неоднородного текучего вещества; средство переноса, соединенное с проточной трубкой для того, чтобы вызывать протекание в нее образца; средство измерения затухания в среднем инфракрасном диапазоне, приспособленное подавать излучение в среднем инфракрасном диапазоне в образец, когда он протекает, и генерировать сигнал, характерный для изменения интенсивности в среднем инфракрасном диапазоне подаваемого излучения в среднем инфракрасном диапазоне после его прохождения через текучий образец, и средство вычисления, подсоединенное для того, чтобы получать сигнал, генерируемый средством измерения, и чтобы вычислять показатель одного или нескольких интересующих компонентов в зависимости от полученного сигнала и от прогнозирующей модели, например обеспечиваемой эталоном или искусственной нейронной сетью, которая устанавливает математическую зависимость между значениями затухания в среднем инфракрасном диапазоне текучего неоднородного вещества и интересующим компонентом.
[0021] Далее будет описан иллюстративный вариант осуществления настоящего изобретения со ссылкой на графические материалы где:
[0022] фиг.1 иллюстрирует структурную схему иллюстративной системы, способной осуществлять способ согласно настоящему изобретению.
[0023] Система 2 измерения затухания в среднем инфракрасном диапазоне для количественного определения показателя интересующего компонента в неоднородном жидком образце показана на фиг.1. Система 2 содержит проточную трубку 4, содержащую первый конец 6 для введения в неоднородный жидкий образец в держателе 8 образца и содержащую второй конец 10 для вывода образца из системы 2, подсоединяемый здесь к стоку. Система 2 также содержит средство 10 переноса, в данном примере в форме насоса, которое соединено с проточной трубкой 8 и способно вызывать поток через трубку 4. Средство 14 измерения затухания в среднем инфракрасном диапазоне выполнено как часть системы 2 для измерения затухания излучения в среднем инфракрасном диапазоне, которая взаимодействует с образцом, когда он протекает через область измерения, границы которой здесь определены потоком через кювету 16, которая находится в жидкостном соединении с образцом, протекающим через трубку 4.
[0024] Пригодным средством 14 измерения затухания в среднем инфракрасном диапазоне является интерферометр известного типа, например интерферометр Майкельсона. Это интерферометрическое средство 14 измерения расположено совместно по отношению к области измерения 16, определенной здесь потоком через кювету, так чтобы иметь возможность выявлять излучение в среднем инфракрасном диапазоне после прохождения через образец. При использовании интерферограмма, выполненная интерферометром, обрабатывается с использованием преобразования Фурье для того, чтобы генерировать зависимое от длины волны изменение интенсивности, представляющее затухание образцом излучения в среднем инфракрасном диапазоне.
[0025] В целом, областью измерения 16 может быть любая область, в которой при использовании предусмотрено, что текучий образец исследуют излучением в среднем инфракрасном диапазоне. Таким образом, по меньшей мере, часть измеряемого образца заменяется во время любого периода измерения. Затем это обеспечивает эффективное усредненное измерение, которое повышает точность и повторяемость результатов измерения.
[0026] Средство 18 вычисления, например, содержащее встроенный микропроцессор или автономный персональный компьютер, или распределенную систему, содержащую по меньшей мере один компонент в месте, удаленном от системы 2, и функционально подключенное телекоммуникационной сетью, подсоединено для получения сигнала, характерного для измеренного в среднем инфракрасном диапазоне затухания, такой как интерферограмма или интерферограмма, подвергнутая преобразованию Фурье, и выполнено так, чтобы вычислять известным образом показатель, такой как определенная концентрация, интересующего компонента в образце с применением эталонной или другой прогнозирующей модели (например, искусственных нейронных сетей), которая устанавливает математическую зависимость между значениями затухания в среднем инфракрасном диапазоне и интересующим компонентом.
[0027] Нагревательный блок 20 может быть включен в определенные варианты осуществления для отдельных измерительных приложений для нагревания образца перед тем, как он будет протекать через измерительную кювету 16. Нагревательный блок может, например, содержать электрическую резистивную спираль вокруг трубки 4.
[0028] В отдельной системе 2 для измерения образцов неоднородного (негомогенизированного) молока или молочного продукта наиболее полезно введен нагреватель для нагрева образца молока до примерно 41°C. Это снижает тенденцию частиц жира в молоке агломерировать. Нагревание может также выгодно применяться при измерении других жиросодержащих жидкостей, таких как кровь.
[0029] Результаты определений типичных интересующих компонентов, представленных здесь в виде процентного содержания жира, белка, лактозы, суммарного количества твердых веществ (TS) и количества твердых веществ, не содержащих жир (SNF), в образцах молока приведены в Таблице 2 вместе с абсолютными и относительными показателями точности А(абс) и А(отн), а также абсолютной и относительной повторяемостью R(абс) и R(отн) этих определений.
Таблица 2
Компонент Низкое содержание Высокое содержание Среднее содержание А(абс) R(абс) А(отн) R(отн)
Жир 2,06 5,95 4,32 0,04 0,007 0,91 0,16
Белок 2,93 4,62 3,59 0,019 0,004 0,52 0,12
Лактоза 4,33 5,48 4,67 0,032 0,005 0,69 0,11
TS 11,00 16,23 13,31 0,051 0,017 0,39 0,13
SNF 8,65 10,99 9,37 0,012 0,006 0,13 0,06
[0030] Эти определения были выполнены согласно способу настоящего изобретения с применением системы, описанной согласно фиг.1.
[0031] Использовали пятнадцать образцов молока и были выполнены измерения в трех повторностях для каждого образца, причем каждая повторность представляла собой среднее значение сорока сканирований в области одной и той же длины волны. Чтобы иметь возможность составить эталонную модель, некоторые образцы содержали белок, жир и/или лактозу, намеренно добавленные в известных количествах. Столбец «Низкое содержание» представляет наименьшее количество соответствующего компонента в образце, «Высокое содержание» - наибольшее количество и «Среднее содержание» - среднее значение для всех образцов. Затем, в качестве примера, была известным образом составлена только эталонная модель частичных наименьших квадратов (PLS), использующая максимум шесть факторов, для применения в последующих прогнозах.
[0032] Каждый образец был исследован путем излучения в среднем инфракрасном диапазоне и полученные в результате интерферограммы передач обработаны преобразованием Фурье до так называемого «однолучевого» спектра (т.е. спектра с зависимой от интенсивности длиной волны (или частотой) без поправок на внешние артефакты, такие как те, которые вызываются источником: кюветой или детектором). Коэффициент пропускания был вычислен относительно воды, чтобы удалить те артефакты, которые не связаны с взаимодействием с образцом.
[0033] Образцы нагревали до 41°C и проведены через кювету 16 со скоростью потока 1 мл в минуту.
[0034] Как можно видеть, абсолютная точность А(абс) для всех компонентов составляет приблизительно 0,04, а абсолютная повторяемость R(абс) составляет примерно 0,01. Это удивительно, учитывая, что теоретически, как обсуждалось выше, ожидается, что измерения в среднем инфракрасном диапазоне на текучем образце будут даже хуже, чем те, что выполнены на образце, находящемся в состоянии покоя в кювете.

Claims (2)

1. Система (2) измерения затухания в среднем инфракрасном диапазоне для количественного определения показателя одного или нескольких интересующих компонентов в неоднородном текучем веществе, причем система (2) содержит проточную трубку (4), содержащую первый конец (6) для введения в образец неоднородного текучего вещества; средство (10) переноса, соединенное с проточной трубкой (4) для создания потока образца через трубку (4); средство (14) измерения затухания в среднем инфракрасном диапазоне, приспособленное подавать излучение в среднем инфракрасном диапазоне в образец и генерировать сигнал, характерный для изменения интенсивности в среднем инфракрасном диапазоне подаваемого излучения в среднем инфракрасном диапазоне после его прохождения через образец, и средство (18) вычисления, подсоединенное для получения сигнала, генерируемого средством (14) измерения, и предназначенное для вычисления показателя одного или нескольких интересующих компонентов в зависимости от полученного сигнала, отличающаяся тем, что средство (14) измерения функционирует с синхронизацией по времени со средством (10) переноса для подачи излучения в среднем инфракрасном диапазоне в текучий образец, и при этом средство (18) вычисления обеспечено прогнозирующей моделью, с помощью которой установлена математическая зависимость между значениями затухания в среднем инфракрасном диапазоне текучего неоднородного вещества и интересующего компонента и которая предназначена для вычисления показателя также в зависимости от прогнозирующей модели.
2. Система по п. 1, отличающаяся тем, что прогнозирующая модель устанавливает математическую зависимость между значениями затухания в текучем молоке, и при этом система дополнительно содержит нагреватель (20), предназначенный для нагрева молока и получения нагретого образца, в который средство (14) измерения может подавать излучение в среднем инфракрасном диапазоне.
RU2013127642/28A 2010-12-03 2010-12-03 Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне RU2564382C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/068816 WO2012072143A1 (en) 2010-12-03 2010-12-03 Mid-infrared spectral analysis of a flowing heterogeneous material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2015120621A Division RU2688954C2 (ru) 2015-06-01 2015-06-01 Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне

Publications (2)

Publication Number Publication Date
RU2013127642A RU2013127642A (ru) 2015-01-10
RU2564382C2 true RU2564382C2 (ru) 2015-09-27

Family

ID=44317892

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013127642/28A RU2564382C2 (ru) 2010-12-03 2010-12-03 Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне

Country Status (16)

Country Link
US (1) US20130228690A1 (ru)
EP (1) EP2646800B1 (ru)
JP (1) JP2013544364A (ru)
KR (1) KR20140023264A (ru)
CN (1) CN103238056B (ru)
AU (1) AU2010364670B2 (ru)
BR (1) BR112013013230B1 (ru)
CA (1) CA2817983C (ru)
ES (1) ES2761699T3 (ru)
MX (1) MX2013006156A (ru)
NO (1) NO345987B1 (ru)
NZ (1) NZ610613A (ru)
PL (1) PL2646800T3 (ru)
RU (1) RU2564382C2 (ru)
UA (1) UA105995C2 (ru)
WO (1) WO2012072143A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2805771C1 (ru) * 2019-08-29 2023-10-24 ФОСС Аналитикал А/С Стандартизация выходного сигнала датчика электрического свойства

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014003573B1 (pt) * 2011-08-19 2020-03-24 Foss Analytical A/S Método de compensação de desvio de amplitude em um espectrômetro que gera dados espectrais ópticos a partir de uma amostra desconhecida em um suporte de amostra einstrumento de espectrometria
PL2769187T3 (pl) * 2011-10-17 2019-08-30 Foss Analytical A/S Sposób kompensacji dryfu częstotliwości w interferometrze
US9540701B2 (en) 2014-02-28 2017-01-10 Asl Analytical, Inc. Apparatus and method for automated process monitoring and control with near infrared spectroscopy
DK3204749T3 (en) * 2014-10-07 2018-07-16 Foss Analytical As LIQUID ANALYZER
CN105466882A (zh) * 2015-11-13 2016-04-06 厦门出入境检验检疫局检验检疫技术中心 一种鉴别单一碳水化合物掺伪原料乳的方法
CN205246522U (zh) * 2015-12-26 2016-05-18 深圳市前海安测信息技术有限公司 血糖测试数据采集设备
BG67049B1 (bg) 2016-04-12 2020-04-15 „Бултех 2000“ Оод Устройство и метод за анализ на мляко

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528950A1 (de) * 1995-08-07 1997-02-13 Centec Ges Fuer Labor Und Proz Verfahren und Vorrichtung zur Bestimmung produktspezifischer Qualitätsparameter einer Flüssigkeit
US6297505B1 (en) * 1996-11-01 2001-10-02 Foss Electric A/S Method and flow system for spectrometry and a cuvette for the flow system
DE10352924A1 (de) * 2003-11-11 2005-07-14 Johann Wolfgang Goethe-Universität Frankfurt am Main Vorrichtung und Verfahren zur qualitativen und/oder quantitativen Analyse von Inhaltsstoffen in Flüssigkeiten, insbesondere in Getränke- und Prozessflüssigkeiten
RU2325631C1 (ru) * 2006-12-14 2008-05-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет имени Н.Г. Чернышевского" Способ определения концентрации компонентов в потоке водно-нефтяной смеси

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK151393C (da) * 1978-12-06 1988-05-16 Foss Electric As N Fremgangsmaade til kvantitativ bestemmelse af fedt i en vandig fedtemulsion
DE3922670C2 (de) * 1989-04-10 1993-10-14 Milchwirtschaftliche Foerderun Verfahren zur Qualitätssicherung von Milch oder Milchprodukten
JPH0447254A (ja) * 1990-06-15 1992-02-17 Snow Brand Milk Prod Co Ltd 近赤外線を用いて脱脂乳、牛乳、クリーム及びチーズの成分含量を測定する方法及び装置
FI87838C (fi) 1991-04-05 1993-02-25 Lauri Jalkanen Foerfarande foer kvantitativ bestaemning av fett fraon en emulsion som innehaoller fettpartiklar
GB2283091B (en) * 1993-10-19 1997-10-01 John Christopher Richmond Apparatus and method for spectroscopic analysis
US6315955B1 (en) * 1995-04-06 2001-11-13 Delaval International A.B. Method and apparatus for quantitative particle determination in fluids
NL1013805C2 (nl) * 1999-04-27 2000-10-30 Co Peratie Rundveeverbetering Inrichting voor het analyseren van producten en daarvoor bestemde sensor.
SE0100931D0 (sv) * 2001-03-16 2001-03-16 Miris Ab Mid infra red analysis
IL146404A0 (en) * 2001-11-08 2002-07-25 E Afikin Computerized Dairy Ma Spectroscopic fluid analyzer
EP1493019B1 (de) * 2002-04-03 2006-08-16 Johann Wolfgang Goethe-Universität Frankfurt am Main INFRAROTMESSVORRICHTUNG FÜR DIE SPEKTROMETRIE WäSSRIGER UND NICHT WäSSRIGER SYSTEME
DK1508031T3 (da) * 2002-05-28 2009-08-17 Foss Analytical As Fremgangsmåde og spektrometer til kvantitativ bestemmelse af en bestanddel i en pröve
PL2032966T3 (pl) * 2006-06-07 2013-05-31 Valorex Sa Sposób oznaczania jakości żywieniowej tłuszczów mleka
US8446582B2 (en) * 2007-05-31 2013-05-21 Afimilk Agricultural Cooperative Ltd. System and method for analyzing fluids
US8072596B2 (en) * 2008-04-09 2011-12-06 S.A.E. Afikim Milking System Agricultural Cooperative Ltd System and method for on-line analysis and sorting of milk coagulation properties
US8169468B2 (en) * 2008-04-26 2012-05-01 Intuitive Surgical Operations, Inc. Augmented stereoscopic visualization for a surgical robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528950A1 (de) * 1995-08-07 1997-02-13 Centec Ges Fuer Labor Und Proz Verfahren und Vorrichtung zur Bestimmung produktspezifischer Qualitätsparameter einer Flüssigkeit
US6297505B1 (en) * 1996-11-01 2001-10-02 Foss Electric A/S Method and flow system for spectrometry and a cuvette for the flow system
DE10352924A1 (de) * 2003-11-11 2005-07-14 Johann Wolfgang Goethe-Universität Frankfurt am Main Vorrichtung und Verfahren zur qualitativen und/oder quantitativen Analyse von Inhaltsstoffen in Flüssigkeiten, insbesondere in Getränke- und Prozessflüssigkeiten
RU2325631C1 (ru) * 2006-12-14 2008-05-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет имени Н.Г. Чернышевского" Способ определения концентрации компонентов в потоке водно-нефтяной смеси

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2805771C1 (ru) * 2019-08-29 2023-10-24 ФОСС Аналитикал А/С Стандартизация выходного сигнала датчика электрического свойства

Also Published As

Publication number Publication date
AU2010364670B2 (en) 2015-03-05
NO345987B1 (no) 2021-12-06
WO2012072143A1 (en) 2012-06-07
UA105995C2 (ru) 2014-07-10
KR20140023264A (ko) 2014-02-26
BR112013013230A2 (pt) 2016-09-06
RU2013127642A (ru) 2015-01-10
NZ610613A (en) 2015-02-27
BR112013013230B1 (pt) 2020-02-11
NO20130731A1 (no) 2013-05-27
PL2646800T3 (pl) 2020-04-30
EP2646800B1 (en) 2019-11-27
US20130228690A1 (en) 2013-09-05
AU2010364670A1 (en) 2013-06-06
MX2013006156A (es) 2014-03-21
JP2013544364A (ja) 2013-12-12
CN103238056B (zh) 2016-04-27
ES2761699T3 (es) 2020-05-20
EP2646800A1 (en) 2013-10-09
CN103238056A (zh) 2013-08-07
CA2817983A1 (en) 2012-06-07
CA2817983C (en) 2021-03-30

Similar Documents

Publication Publication Date Title
RU2564382C2 (ru) Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне
US20120310541A1 (en) Online determination of inter alia fat, protein, lactose, somatic cell count and urea in milk by dielectric spectroscopy between 0.3 mhz and 1.4 ghz using chemometric evaluation
Strug et al. Development of a univariate membrane‐based mid‐infrared method for protein quantitation and total lipid content analysis of biological samples
Tao et al. Applications of spectroscopic techniques for fat and fatty acids analysis of dairy foods
KR20140038955A (ko) 혼탁 매질에서의 흡광 계수를 결정하기 위한 방법
Khosroshahi et al. Non-destructive assessment of milk quality using pulsed UV photoacoustic, fluorescence and near FTIR spectroscopy
He et al. Model robustness improvement by absorption and reduced scattering spectra in short wave near infrared spectral region
Pi et al. Non-destructive determination of components in processed cheese slice wrapped with a polyethylene film using near-infrared spectroscopy and chemometrics
Beganović et al. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy—Performance comparison of interference elimination techniques using glucose-water system
Cattaneo et al. New applications of near infrared spectroscopy on dairy products
Kalinin et al. Short-wave near infrared spectrometry of back scattering and transmission of light by milk for multi-component analysis
RU2688954C2 (ru) Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне
Zhang et al. Influence and correction of temperature on optical measurement for fat and protein contents in a complex food model system
Goula et al. Estimating the composition of tomato juice products by near infrared spectroscopy
JP2016033467A (ja) 高粘性溶液中の脂質量および/または水分量の分析方法および装置
Barba et al. Determining the composition of ammonia/water mixtures using short-wave near-infrared spectroscopy
Fang et al. Dielectric relaxation parameters help to analyze protein content in cow's milk and improve prediction accuracy
JP2015064370A (ja) 流動する不均質材料の中赤外線スペクトル分析
WO2001004612A2 (en) A method of determining the content of a component in a fluid sample and an apparatus therefor
Mulvey Determination of fat content in foods using a near-infrared spectroscopy sensor
Shkirin et al. Detection of Somatic Cells in Milk Using Laser Light Scattering
Song et al. Quantitative fat analysis of milk using a line-illumination spatially offset Raman probe through carton packaging
Naito et al. Attenuated total reflectance terahertz spectroscopy for quantitative measurement of somatic cell count in bovine milk
Chen et al. Near-infrared spectroscopic modeling optimization for quantitative determination of sugar brix in sugarcane initial-pressure juice
Kalinin et al. Can a hand-held near infrared spectrometer serve as an analyser of dietary fatty acids?