RU2561616C2 - Способ получения массивов ориентированных углеродных нанотрубок на поверхности подложки - Google Patents

Способ получения массивов ориентированных углеродных нанотрубок на поверхности подложки Download PDF

Info

Publication number
RU2561616C2
RU2561616C2 RU2014100407/02A RU2014100407A RU2561616C2 RU 2561616 C2 RU2561616 C2 RU 2561616C2 RU 2014100407/02 A RU2014100407/02 A RU 2014100407/02A RU 2014100407 A RU2014100407 A RU 2014100407A RU 2561616 C2 RU2561616 C2 RU 2561616C2
Authority
RU
Russia
Prior art keywords
carbon nanotubes
substrate
working gas
synthesis
flow
Prior art date
Application number
RU2014100407/02A
Other languages
English (en)
Other versions
RU2014100407A (ru
Inventor
Вячеслав Евгеньевич Архипов
Артем Владимирович Гусельников
Александр Владимирович Окотруб
Александр Леонидович Смирнов
Геннадий Николаевич Грачев
Сергей Николаевич Багаев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук
Федеральное государственное бюджетное учреждение науки Институт лазерной физики Сибирского отделения Российской академии наук Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук, Федеральное государственное бюджетное учреждение науки Институт лазерной физики Сибирского отделения Российской академии наук Российской Федерации filed Critical Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук
Priority to RU2014100407/02A priority Critical patent/RU2561616C2/ru
Publication of RU2014100407A publication Critical patent/RU2014100407A/ru
Application granted granted Critical
Publication of RU2561616C2 publication Critical patent/RU2561616C2/ru

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к технологиям получения массивов углеродных нанотрубок на поверхности подложки. В реакционной камере формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора для синтеза углеродных нанотрубок. Поток рабочего газа направляют на поверхность подложки со скоростью 100-1000 м/с. Вдоль потока рабочего газа направляют инфракрасное импульсное лазерное излучение с частотой импульсов 5-100 кГц и энергией импульсов 0,05-0,5 Дж для его активации и локального нагрева поверхности подложки до 600-1000°C. Упомянутую реакционную камеру перемещают над поверхностью подложки. В частном случае осуществления изобретения на поверхность подложки дополнительно направляют поток инертного газа, экранирующий зону синтеза углеродных нанотрубок от воздуха, при его давлении, превышающем давление потока рабочего газа. Обеспечивается получение массивов ориентированных углеродных нанотрубок на подложках, имеющих поверхности большой площади - до нескольких квадратных метров. 1 з.п. ф-лы, 4 ил., 1 пр.

Description

Изобретение относится к технологиям получения массивов ориентированных углеродных нанотрубок на подложках путем плазмохимического осаждения.
Известен способ получения массивов ориентированных углеродных нанотрубок (УНТ) методом каталитического химического осаждения из газовой фазы (CVD). Эта технология основана на проведении реакций термохимического разложения углеродсодержащих соединений на поверхности подложек с нанесенным слоем металлического катализатора. Температура синтеза лежит в диапазоне 600°C-1200°C, в зависимости от исходного углеродсодержащего вещества. Подачу и регулирование газовых потоков: инертного газа-носителя, водорода и исходного углеродсодержащего вещества в реакционную камеру осуществляют через несколько независимых каналов. Внутри реактора в высокотемпературной зоне располагают специально подготовленные подложки с нанесенным слоем катализатора, на которых в процессе синтеза растет массив ориентированных углеродных нанотрубок [HuanWang, JiyunFeng, XijunHu, and Ka Ming Ng "Synthesis of Aligned Carbon Nanotubes on Double-Sided Metallic Substrateby Chemical Vapor Deposition" J. Phys. Chem. С 2007, 111, 12617-12624; Kuei-Yi Lee, Shin-ichi Honda, Mitsuhiro Katayama, Takashi Miyake, Katsuya Himuro, Kenjiro Oura, Jung-Goo Lee, Hirotaro Mori, Takashi Hirao «Vertically aligned growth of carbon nanotubes with long length and high density» J. Vac. Sci. Technol. (2005) В 23, p. 1450]. Для синтеза массивов нанотрубок на подложках большой площади необходимы реакторы с большими линейными размерами. Кроме того, при синтезе на больших подложках слоя из одинаковых по структуре нанотрубок, необходимо обеспечить одинаковые условия протекания процесса, что существенно усложняет конструкцию ректора и удорожает производство УНТ.
Известен способ получения УНТ при использовании плазмохимического осаждения [Y. Yabe, Y. Ohtake, Т. Ishitobi, Y. Show, Т. Izumi, H. Yamauchi «Synthesis of well-aligned carbon nanotubes by radiofrequency plasma enhanced CVD method» Diamond and Related Materials 13 (2004), p. 1292-1295]. Этим способом удается выращивать массивы УНТ, вертикально выровненных относительно поверхности. Вертикальное выравнивание растущих УНТ происходит вдоль направления напряженности поля, что достигается либо применением электрода с постоянным потенциалом смещения, либо соответствующим расположением подложки в ВЧ или СВЧ поле. Плазма также позволяет существенно снизить температуру синтеза до 400°C, т.к. диссоциация углесодержащих прекурсоров происходит в объеме газовой фазы, а не при контакте молекул со стенками реактора, как в термическом CVD. Применение метода PECVD имеет сложность, которая заключается в высокой чувствительности кинетики и механизма роста УНТ от режима синтеза (состав газовых смесей, давление и температура в реакторе) и от аппаратурных вариантов создания плазмы (тлеющий разряд, ВЧ- и СВЧ-разряд, горячий катод, индуктивная плазма) с учетом геометрии камеры [Н. Wang, J. Lin, С.Н.А. Huan, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong «Controlled synthesis of aligned carbon nanotube arrays on catalyst patterned silicon substrates by plasma-enhanced chemical vapor deposition» AppliedSurfaceScience V. 181, 2001, p. 248-254; M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, V. Filip "Growth of aligned carbon nanotubes by plasma-enhanced chemicalvapor deposition: Optimization of growth parameters" J. Appl. Phys. 90, 2001, p. 1529].
Известен способ получения углеродных нанотрубок путем напыления на обрабатываемые подложки углеродных пленок, содержащих нанотрубки, в вакуумной камере в атмосфере инертного газа, магнетронным распылением мишени [Патент РФ №2218299, МПК B82B 3/00, C23C 14/35]. Этот способ является наиболее близким аналогом предлагаемого и принят за прототип изобретения.
Недостатком прототипа является использование при реализации способа замкнутой камеры, что ограничивает размеры размещаемых в ней обрабатываемых подложек.
Изобретение решает задачу создания способа получения массивов ориентированных углеродных нанотрубок на подложках, имеющих поверхности большой площади - до нескольких квадратных метров.
Поставленная задача решается тем, что предлагается способ получения массивов углеродных нанотрубок на поверхности подложки, в соответствии с которым в реакционной камере формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора синтеза углеродных нанотрубок, который направляют на поверхность подложки со скоростью 100-1000 м/с, при этом вдоль потока рабочего газа направляют инфракрасное импульсное лазерное излучение с частотой импульсов 5-100 кГц и энергией импульсов 0,05-0,5 Дж для его активации и локального нагрева поверхности подложки до 600-1000°C, причем упомянутую реакционную камеру перемещают над поверхностью подложки.
Дополнительно на обрабатываемую поверхность подложки может направляться поток инертного газа при его давлении, превышающем давление потока рабочего газа, для экранирования зоны синтеза углеродных нанотрубок от кислорода воздуха.
На Фиг. 1 представлена схема установки для внекамерного синтеза массивов УНТ, где 1 - реакционная камера, 2 - лазерный луч, 3 - подложка, 4 - поворотные зеркала.
На Фиг. 2 представлена схема реакционной камеры для внекамерного синтеза массивов ориентированных УНТ, где 2 - лазерный луч, 3 - подложка, 5 - инертный газ, 6 - место крепления камеры к координатному столу, 7 - рабочий газ, 8 - испаритель, 9 - массив ориентированных УНТ, 10 - вход и выход охлаждающей воды, 11 - оптический плазменный разряд, 12 - фокусирующая линза.
На Фиг. 3 и Фиг. 4 приведены фотографии массивов ориентированных углеродных нанотрубок, полученных при разных условиях синтеза.
Способ осуществляют следующим образом.
Как показано на Фиг. 1, в реакционной камере 1, установленной с возможностью перемещения, формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора синтеза углеродных нанотрубок. На поток рабочего газа одновременно с его формированием воздействуют лазерным лучом 2, направляя его с помощью поворотных зеркал 4.
Схема реакционной камеры приведена на Фиг. 2. Поток рабочего газа направляют на обрабатываемую поверхность подложки 3 со скоростью 100-1000 м/с. Для активации реакционного газа и локального разогрева обрабатываемой поверхности подложки используют инфракрасный импульсный лазер (1 кВт, 60 кГц), вызывающий электронный разряд и образование области лазерной плазмы в реакционной камере. Инфракрасное импульсное лазерное излучение с частотой импульсов 5-100 кГц и энергией импульсов 0,05-0,5 Дж направляют вдоль потока рабочего газа. Активированный рабочий газ из реакционной камеры попадает на обрабатываемую поверхность подложки 3, которая уже разогрета локально до температуры синтеза углеродных нанотрубок, что приводит к синтезу на поверхности подложки углеродных нанотрубок на площади, равной сечению потока рабочего газа.
Реакционную камеру 1 перемещают с помощью координатного стола по поверхности металлической подложки 3 с заданной скоростью, обеспечивающей синтез массива УНТ заданной длины.
В целях защиты зоны синтеза углеродных нанотрубок от окружающего кислорода в нее подают инертный газ. При этом параметры выходного отверстия реакционной камеры, скорости потоков газов и величину зазора между реакционной камерой и подложкой подбирают таким образом, чтобы поток инертного газа экранировал реакционную зону синтеза от окружающего воздуха. Локальная область подложки, например, диаметром до 8 мм нагревается лазерным лучом до температуры 600-1000°C. Поступающие к поверхности подложки продукты разложения рабочего газа - активированные молекулы углеводородов и активированные наночастицы металлического катализатора, являющиеся зародышами нанотрубок, попадают на нагретую поверхность подложки, образуя на ней массив ориентированных углеродных нанотрубок. Подбор частоты следования и энергии лазерных импульсов, а также скорости и массового расхода потока рабочего газа обеспечивает практически полную активацию исходных реагентов.
Реакционная камера способна перемещаться над поверхностью на координатном столе, что позволяет наносить нанотрубки в любой точке подложки, а также покрыть слоем ориентированных нанотрубок всю подложку площадью до 2 м2.
Так как в процессе синтеза углеродных нанотрубок реакционная камера перемещается над поверхностью подложки, то толщина их массива зависит от скорости перемещения, что демонстрируется на фотографиях, выполненных методом электронной микроскопии.
Фотография, приведенная на Фиг. 3, выполнена методом растровой электронной микроскопии для образца, полученного при скорости перемещения реакционной камеры 4 мм/с, при этом диаметр УНТ составляет ~70 нм, а длина 8-10 мкм. Черная полоса - массив УНТ на медной пластине (А). Электронно-микроскопическое изображение слоев УНТ на медной подложке сбоку (Б) и сверху (В). Толщина слоя 8 мкм. Скорость перемещения реакционной камеры 4 мм/с.
На фотографии, приведенной на Фиг. 4, выполненной этим же методом, видно, что уменьшение скорости движения подложки до 2 мм/с привело к увеличению длины УНТ до 15-18 мкм. Черная полоса - это массив УНТ на медной пластине (А). Электронно-микроскопическое изображение слоев УНТ на медной подложке сбоку (Б) и сверху (В). Толщина слоя 15 мкм.
Пример
Поток рабочего газа, содержащий этилен и пентакарбонил железа, подают в реакционную камеру в область активации лазерным излучением. Одновременно, параллельно потоку рабочего газа и лазерному излучению, подают инертный экранирующий газ, например аргон. Поток этилена делят на две части: одну часть направляют напрямую в реакционную камеру, другую часть предварительно насыщают парами катализатора, что позволяет осуществлять регулирование содержания катализатора в реакционной смеси. Скорости потоков составляют для прямого потока этилена 30 л/ч, насыщенного катализатором - 8,6 л/ч, для аргона - скорость 900 л/ч. Затем осуществляют перемещение реакционной камеры со скоростью 2 мм/с (камера имеет возможность перемещения по двум осям координат x, y с заданной скоростью). Одновременно с перемещением камеры включают излучение ИК лазера, преимущественно CO2 лазера, обеспечивающего частоту импульсов в диапазоне 5-100 кГц и энергию импульса в диапазоне 0,5-0,05 Дж, предпочтительная скорость потока рабочего газа может быть в диапазоне 100-1000 м/с. Лазерный луч, проходя через систему фокусировки, вызывает плазменный разряд, при этом часть излучения, проходя через зону разряда, попадает на подложку и нагревает ее до температуры около 750°C, необходимой для протекания реакции синтеза УНТ. Поток смеси газов, пройдя высокотемпературную зону лазерного разряда, активируется и попадает на подложку, где и происходит синтез массива УНТ. Время синтеза определяется скоростью движения реакционной камеры. Для экранирования активированного потока в зоне синтеза от кислорода воздуха (внешней атмосферы) подают инертный газ под давлением, превышающем давление потока рабочего газа в реакционной камере. После завершения реакции синтеза УНТ на подложке отключают лазерное излучение и подачу рабочего газа.
Таким образом, предлагаемый способ позволяет получать массивы ориентированных углеродных нанотрубок на подложках, имеющих поверхности большой площади - до нескольких квадратных метров.

Claims (2)

1. Способ получения массивов углеродных нанотрубок на поверхности подложки, отличающийся тем, что в реакционной камере формируют поток рабочего газа, содержащего несущий газ, газообразный углеводород и предшественник катализатора для синтеза углеродных нанотрубок, при этом упомянутый поток рабочего газа направляют на поверхность подложки со скоростью 100-1000 м/с, причем вдоль потока рабочего газа направляют инфракрасное импульсное лазерное излучение с частотой импульсов 5-100 кГц и энергией импульсов 0,05-0,5 Дж для его активации и локального нагрева поверхности подложки до 600-1000°C, причем упомянутую реакционную камеру перемещают над поверхностью подложки.
2. Способ по п. 1, отличающийся тем, что на поверхность подложки дополнительно направляют поток инертного газа, экранирующий зону синтеза углеродных нанотрубок от воздуха, при его давлении, превышающем давление потока рабочего газа.
RU2014100407/02A 2014-01-09 2014-01-09 Способ получения массивов ориентированных углеродных нанотрубок на поверхности подложки RU2561616C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014100407/02A RU2561616C2 (ru) 2014-01-09 2014-01-09 Способ получения массивов ориентированных углеродных нанотрубок на поверхности подложки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014100407/02A RU2561616C2 (ru) 2014-01-09 2014-01-09 Способ получения массивов ориентированных углеродных нанотрубок на поверхности подложки

Publications (2)

Publication Number Publication Date
RU2014100407A RU2014100407A (ru) 2015-07-20
RU2561616C2 true RU2561616C2 (ru) 2015-08-27

Family

ID=53611323

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014100407/02A RU2561616C2 (ru) 2014-01-09 2014-01-09 Способ получения массивов ориентированных углеродных нанотрубок на поверхности подложки

Country Status (1)

Country Link
RU (1) RU2561616C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638610C2 (ru) * 2016-03-29 2017-12-14 Общество с ограниченной ответственностью "Оптогард Нанотех" (ООО "Оптогард Нанотех)" Устройство для лазерно-плазменного синтеза высокотвердых микро- и наноструктурированных покрытий
RU2812939C1 (ru) * 2023-04-10 2024-02-05 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ плазменного получения покрытия из наноразмерных частиц и устройство для плазменного получения покрытия из наноразмерных частиц для осуществления способа

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2218299C1 (ru) * 2002-07-17 2003-12-10 Московский инженерно-физический институт (государственный университет) Способ получения углеродных нанотрубок
US7635503B2 (en) * 2006-02-21 2009-12-22 Intel Corporation Composite metal films and carbon nanotube fabrication
RU2414418C2 (ru) * 2008-07-14 2011-03-20 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ получения водорода и углеродных нанотрубок из углеводородного газа
US20120171106A1 (en) * 2008-01-04 2012-07-05 Raytheon Company Carbon nanotube growth via chemical vapor deposition using a catalytic transmembrane to separate feedstock and growth chambers
RU2478572C2 (ru) * 2011-01-30 2013-04-10 Мсд Текнолоджис Частная Компания С Ограниченной Ответственностью Способ получения углеродных нанотрубок и реактор (варианты)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2218299C1 (ru) * 2002-07-17 2003-12-10 Московский инженерно-физический институт (государственный университет) Способ получения углеродных нанотрубок
US7635503B2 (en) * 2006-02-21 2009-12-22 Intel Corporation Composite metal films and carbon nanotube fabrication
US20120171106A1 (en) * 2008-01-04 2012-07-05 Raytheon Company Carbon nanotube growth via chemical vapor deposition using a catalytic transmembrane to separate feedstock and growth chambers
RU2414418C2 (ru) * 2008-07-14 2011-03-20 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ получения водорода и углеродных нанотрубок из углеводородного газа
RU2478572C2 (ru) * 2011-01-30 2013-04-10 Мсд Текнолоджис Частная Компания С Ограниченной Ответственностью Способ получения углеродных нанотрубок и реактор (варианты)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638610C2 (ru) * 2016-03-29 2017-12-14 Общество с ограниченной ответственностью "Оптогард Нанотех" (ООО "Оптогард Нанотех)" Устройство для лазерно-плазменного синтеза высокотвердых микро- и наноструктурированных покрытий
WO2017171590A3 (ru) * 2016-03-29 2017-12-14 Общество С Ограниченной Ответственностью "Оптогард Нанотех" Устройство для лазерно-плазменного синтеза высокотвердых микро- и наноструктурированных покрытий
RU2812939C1 (ru) * 2023-04-10 2024-02-05 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ плазменного получения покрытия из наноразмерных частиц и устройство для плазменного получения покрытия из наноразмерных частиц для осуществления способа

Also Published As

Publication number Publication date
RU2014100407A (ru) 2015-07-20

Similar Documents

Publication Publication Date Title
US7261779B2 (en) System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
US7635458B1 (en) Production of ultrafine boron carbide particles utilizing liquid feed materials
RU2455119C2 (ru) Способ получения наночастиц
KR100676496B1 (ko) 열플라즈마 화학기상증착법을 이용한 고결정 탄소나노튜브제조방법
JP2017519631A (ja) パルス超音波周波数を有するメソ流体反応器
JP5914348B2 (ja) 結晶製造方法
Boscher et al. Photocatalytic anatase titanium dioxide thin films deposition by an atmospheric pressure blown arc discharge
WO2012060325A1 (ja) プラズマアニール方法及びその装置
JP2023506422A (ja) カーボンナノ構造体の堆積のための方法及び装置
KR101252333B1 (ko) 열플라즈마 화학기상증착법을 이용한 제어 가능한 그래핀 시트 제조방법
WO2019227395A1 (en) Fine grained 3C-SiC thick films and a process for preparing the same
RU2561616C2 (ru) Способ получения массивов ориентированных углеродных нанотрубок на поверхности подложки
Lee et al. Preparation of spherical hollow alumina particles by thermal plasma
US20040115364A1 (en) Method for the production of a functional coating by means of high-frequency plasma beam source
RU2760734C1 (ru) Производящая углеродные нанотрубки система
CN100376467C (zh) 激光干涉耦合制备纳米材料方法及其装置
Srivastava et al. Carbon dioxide decomposition by plasma methods and application of high energy and high density plasmas in material processing and nanostructures
US10745280B2 (en) Compact thermal reactor for rapid growth of high quality carbon nanotubes (CNTs) produced by chemical process with low power consumption
Vasiliev et al. Synthesis and deposition of coatings in the electron beam plasma
RU2567283C2 (ru) Способ и устройство для получения углеродных нанотрубок
RU214891U1 (ru) Устройство для газоструйного осаждения алмазных покрытий
RU2558812C1 (ru) Способ получения покрытия из карбида кремния на кварцевом изделии
RU2792526C1 (ru) Устройство для нанесения алмазных покрытий
Ristić et al. Diamond synthesis by lasers: recent progress
KR100687010B1 (ko) 저온을 이용한 탄소나노튜브 합성 장치