RU2551837C2 - Фазометр с гетеродинным преобразованием частоты - Google Patents

Фазометр с гетеродинным преобразованием частоты Download PDF

Info

Publication number
RU2551837C2
RU2551837C2 RU2013147228/28A RU2013147228A RU2551837C2 RU 2551837 C2 RU2551837 C2 RU 2551837C2 RU 2013147228/28 A RU2013147228/28 A RU 2013147228/28A RU 2013147228 A RU2013147228 A RU 2013147228A RU 2551837 C2 RU2551837 C2 RU 2551837C2
Authority
RU
Russia
Prior art keywords
signal processing
code
output
registers
digital converter
Prior art date
Application number
RU2013147228/28A
Other languages
English (en)
Other versions
RU2013147228A (ru
Inventor
Вадим Аркадьевич Жмудь
Александр Валерьевич Ляпидевский
Original Assignee
Открытое акционерное общество "Новосибирский институт программных систем"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Новосибирский институт программных систем" filed Critical Открытое акционерное общество "Новосибирский институт программных систем"
Priority to RU2013147228/28A priority Critical patent/RU2551837C2/ru
Publication of RU2013147228A publication Critical patent/RU2013147228A/ru
Application granted granted Critical
Publication of RU2551837C2 publication Critical patent/RU2551837C2/ru

Links

Images

Landscapes

  • Measuring Phase Differences (AREA)
  • Superheterodyne Receivers (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

Изобретение относится к измерительной технике и может использоваться в радиотехнике, метрологии и других отраслях промышленности для прецизионного измерения приращений фазы или разности фаз пары сигналов и их изменения во времени. Фазометр содержит средство сбора и обработки данных, времязадающее средство и по меньшей мере один канал обработки сигналов, причем каждый этот канал обработки сигналов содержит последовательно соединенные аналого-цифровой преобразователь и четыре регистра, при этом вход аналого-цифрового преобразователя является входом фазометра и входом канала обработки сигналов, времязадающее средство своими выходами подключено к тактовым входам аналого-цифрового преобразователя, четырех регистров и средства сбора и обработки данных, выходы канала обработки сигналов подключены к входам средства сбора и обработки данных; при этом в каждый канал обработки сигналов этого фазометра введены два вычитателя, сумматор и два удвоителя кода, причем входы сумматора подключены к выходу аналого-цифрового преобразователя и к выходу четвертого регистра, входы первого вычитателя подключены к выходам первого и третьего регистров, входы второго вычитателя подключены к выходу сумматора и через первый удвоитель кода к выходу второго регистра, вход второго удвоителя кода подключен к выходу первого вычитателя, выходами канала обработки сигналов являются выход второго вычитателя и выход второго удвоителя кода. Технический результат заключается в упрощении устройства. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к измерительной технике и может использоваться в радиотехнике, метрологии и других отраслях промышленности для прецизионного измерения приращений фазы или разности фаз пары сигналов и их изменения во времени.
Прецизионное измерение разности фаз пары сигналов необходимо при создании лазерных и радиочастотных измерителей вибраций и перемещений, где малые изменения фазы несут информацию об исследуемых процессах. Сигнал на входе фазометра - гармонический. Разность фаз Δφ(t) изменяется во времени таким образом, что содержит большую низкочастотную компоненту φНЧ(t) и малую высокочастотную компоненту δφ(t). В некоторых задачах требуется измерение только малой высокочастотной компоненты δφ(t) в условиях большой низкочастотной компоненты φНЧ(t). В других задачах требуется измерение только малой низкочастотной компоненты φНЧ(t) на фоне большой высокочастотной компоненты δφ(t). Иногда требуется измерение всех компонент разности фаз. В некоторых случаях достаточно измерять высокочастотные приращения одной фазы.
Известны высокочастотные широкополосные фазометры различных конструкций, измеряющие разность фаз двух гармонических сигналов.
Например, известен фазометр с гетеродинным преобразованием частоты, включающий: два аналого-цифровых преобразователя (АЦП); таймер, средство сбора и обработки данных и два канала обработки сигналов, причем каждый канал содержит четыре регистра, два вычитателя, два сумматора с коэффициентами [В.А. Жмудь, Д.О. Терешкин, А.В. Ляпидевский, А.В. Захаров, В.И. Гололобов. Повышение быстродействия цифрового прецизионного фазометра. Сборник научных трудов Новосибирского государственного технического университета. 2011 г. №4 (66). С.27].
Этот фазометр работает следующим образом.
Входные сигналы U1 и U2 высокой частоты ω1 имеют вид гармонических функций, амплитуда и фаза которых неизвестны, причем фаза должна быть измерена. Эти сигналы поступают на два идентичных АЦП, частота измерений которых задается частотой сигнала от подключенного к их тактовым входам таймера. Таймер формирует сигналы с известной частотой ω0. Результат работы АЦП в виде двоичного кода, равного цифровому значению входного сигнала в момент взятия отсчета, движется последовательно от первого до четвертого регистра каждого канала. Таким образом, в регистрах содержатся отсчеты за последние четыре момента времени. Первый вычитатель формирует разность первого и третьего отсчетов, второй вычитатель формирует разность второго и четвертого отсчетов. Сумматоры с коэффициентами формируют из выходных кодов вычитателей суммы с соответствующими коэффициентами, равными трем и пяти. Показано, что это позволяет вычислить когерентную и квадратурную компоненты входного сигнала, из которых на основе известных уравнений вычисляется фаза входного сигнала, а по разностям результатов вычислений в двух каналах может быть вычислена разность фаз двух входных сигналов. Все вычисления осуществляет средство сбора и обработки сигналов.
Недостаток этого фазометра состоит в излишней сложности, так как каждый сумматор с коэффициентами содержит сдвиговый регистр, в котором хранится предыдущее значение полученного кода; реализация коэффициентов 3 и 5 также излишне сложна, поскольку это требует сложения кода с этим же кодом, сдвинутым на один или два регистра, что соответствует умножению на 2 или на 4; первое вычисленное значение осуществляется только после восьми тактов работы устройства, то есть после получения восьми отсчетов входных сигналов.
Наиболее близким к заявляемому устройству является фазометр с гетеродинным преобразованием частоты, принятый за прототип, включающий: два аналого-цифровых преобразователя (АЦП); времязадающее средство, средство сбора и обработки данных и два канала обработки сигналов, причем каждый канал обработки сигналов содержит восемь регистров и два алгебраических сумматора. При этом входами фазометра являются входы аналого-цифровых преобразователей, каждый аналого-цифровой преобразователь подключен через канал обработки сигналов к входам средства сбора и обработки данных, в каждом канале обработки сигналов все восемь регистров включены последовательно, вход первого из этих регистров является входом канала обработки сигналов, выходы алгебраических сумматоров являются выходами канала обработки сигналов, выходы первого, третьего, пятого и седьмого регистров подключены к входам первого алгебраического сумматора с множительными коэффициентами плюс три, минус три, плюс пять и минус пять соответственно, выходы второго, четвертого, шестого и восьмого регистров подключены к входам второго алгебраического сумматора с множительными коэффициентами плюс пять, минус пять, плюс три и минус три соответственно, выходы времязадающего средства соединены с тактовыми входами всех остальных элементов [В.А. Жмудь, Д.О. Терешкин, А.В. Ляпидевский, А.В. Захаров, В.И. Гололобов. Повышение быстродействия цифрового прецизионного фазометра. Сборник научных трудов Новосибирского государственного технического университета. 2011 г. №4 (66). С.33].
Этот фазометр с гетеродинным преобразованием частоты работает следующим образом.
Входные сигналы U1 и U2 высокой частоты ω1 имеют вид:
Figure 00000001
и
Figure 00000002
где А1 и А2 - амплитуда, которая меняется существенно медленней, чем U1(t) и U2(f), ω1 - одинаковая несущая частота сигналов, φ1 и φ2 - фазы этих сигналов. Требуется измерить разность фаз Δφ=φ21.
Для этого входные сигналы U1 и U2 поступают на два идентичных аналого-цифровых преобразователя, АЦП1 и АЦП2. Эти АЦП в моменты времени tn, задаваемые времязадающим устройством, формируют цифровые отсчеты значений входных сигналов с частотой следования ω0. Время преобразования АЦП существенно меньше, чем период поступающих на них сигналов. Частота взятия отчетов ω0 с некоторым приближением превышает в М раз частоту сигналов (1) и (2), т.е. ω0≈Мω1, где М=4.
В устройстве использовано два идентичных канала обработки сигналов, общими для этих каналов обработки сигналов в устройстве являются только времязадающее средство и средство обработки данных, остальные элементы дублируются по количеству каналов.
Рассмотрим работу одного канала обработки сигналов. Введем двойную индексацию таких отчетов, а именно: u11, u12, u13, u14, u21, u22, u23, u24, u31 и так далее.
Такая индексация делит получаемую последовательность отсчетов на 4 серии отсчетов с номерами (1, 5, 9,…); (2, 6, 10,…), (3, 7, 11,…) и (4, 8, 12,…). Получаемые отсчеты сигнала (1) могут трактоваться как отсчеты разностной частоты между частотой этого сигнала (1) и частотой преобразования ω0, задаваемой времязадающим устройством. Между каждой серией отчетов имеет место сдвиг фаз на величину Δϕ=2π/М=0,5π.
Следует учесть, что сдвиг фаз на π тождественен инверсии сигнала, а сдвиг фаз на 2π тождественен отсутствию сдвига. Сдвиг фаз на π/2 преобразует синус в косинус, а косинус - в минус синус.
Погрешность АЦП q(t) добавляется ко всем отсчетам, и для вычисления истинного значения отсчета сигнала (1) из полученного значения требуется вычесть этот сдвиг q. Поэтому справедливы равенства:
u111·cos[φ1(t11)]+q(t11)
u12=-A1·sin[φ1(t12)]+q(t12)
u13=-A1·cos[φ1(t13)]+q(t13)
u14=-А1·sin[φ1(t14)]+q(t14)
u15=A1·cos[φ1(t15)]+q(t15) и так далее.
Таким образом, получается последовательность когерентных и квадратурных отсчетов сигнала разностной частоты с чередующимся знаком. Эти отсчеты содержат информацию об изменяющейся фазе, а также погрешность АЦП q(t).
Если вычесть попарно значения этих отсчетов, можем получить оценки когерентной и квадратурной компонент сигнала разностной частоты, которые будут относиться к разным моментам времени:
Figure 00000003
Figure 00000004
Систематическая компонента погрешности АЦП вычитаются, то есть последние два члена в этих выражениях компенсируют друг друга, если они слабо зависят от времени.
Поскольку φ1 изменяется достаточно медленно в сравнении с темпом взятия отсчетов сигнала, сложение косинусов этой фазы, взятое в разные моменты времени t11 и t13, приблизительно дает удвоенный косинус, взятый в момент t12, находящийся посредине этих моментов:
Figure 00000005
Figure 00000006
Для приведения этих отсчетов к одинаковым моментам времени используется метод трапеций, из которого следуют соотношения:
Figure 00000007
Figure 00000008
Здесь X1 и Y1 - отсчеты когерентной и квадратурной компонент сигнала, вычисленные для момента времени t21, В2 и D2 - величины, вычисленные по соотношениям (5) и (6) для следующей четверки отсчетов.
Далее по известным соотношениям из отсчетов когерентной и квадратурной компонент сигнала вычисляется значение текущей фазы сигнала, причем в этих соотношениях влияние амплитуды на результат исключается вследствие свойств этих соотношений для пары сигналов, содержащих как когерентную, так и квадратурную компоненты.
Структура описываемого фазометра предназначена для реализации вычислений по соотношениям (3)-(6). Получаемый далее аналитический сигнал, представляющий собой последовательность Х1 и Y1 отсчетов когерентной и квадратурной компонент сигнала разностной частоты, используется средством сбора и обработки данных, например, компьютером. Это средство вычисляет значения фазы по известным соотношениям для фазы аналитического сигнала.
Для вычисления соотношений (3)-(6) восемь регистров каждого канала обработки сигналов включены последовательно, поэтому в первый регистр поступает текущее значение отсчета соответствующего АЦП, на следующем такте это значение перемещается во второй регистр, а в первый регистр поступает новое значение и так далее. После восьми тактов в восьми регистрах каждого канала обработки сигналов оказываются запомненными последние восемь отсчетов соответствующего АЦП.
Каждый алгебраический сумматор содержит четыре входа с коэффициентами в полном соответствии с соотношениями (7) и (8), а также с учетом (3) и (4). Таким образом, каждый алгебраический сумматор реализует вычисления по следующим соотношениям:
Figure 00000009
Figure 00000010
Недостаток этого фазометра состоит в излишней сложности, так как каждый канал обработки сигнала содержит двенадцать регистров, каждый алгебраический сумматор имеет четыре входа, на каждом из входов имеется устройство умножения на коэффициент 3 или 5 из соотношений (9) и (10). Умножение на коэффициенты, не являющиеся степенями числа 2, также излишне сложно. В частности, для умножения кода на 3 следует к этому коду прибавить этот же самый код со сдвигом на один разряд в сторону старших разрядов. Для умножения на 5 следует к исходному коду прибавить этот же код, сдвинутый на два разряда в сторону старших разрядов. Таким образом, каждый умножитель на коэффициент 3 или 5 содержит в своей структуре устройство сдвига и дополнительный сумматор.
Задачей, на решение которой направлено изобретение, является упрощение фазометра с гетеродинным преобразованием частоты.
Поставленная задача решается тем, что в фазометре с гетеродинным преобразованием частоты, содержащем средство сбора и обработки данных, времязадающее средство и по меньшей мере один канал обработки сигналов, причем каждый этот канал обработки сигналов содержит последовательно соединенные аналого-цифровой преобразователь и четыре регистра, вход аналого-цифрового преобразователя является входом фазометра и входом канала обработки сигналов, времязадающее средство своими выходами подключено к тактовым входам аналого-цифрового преобразователя, четырех регистров и средства сбора и обработки данных, выходы канала обработки сигналов подключены к входам средства сбора и обработки данных, при этом в каждый канал обработки сигналов этого фазометра введены два вычитателя, сумматор и два удвоителя кода, причем входы сумматора подключены к выходу аналого-цифрового преобразователя и к выходу четвертого регистра, входы первого вычитателя подключены к выходам первого и третьего регистров, входы второго вычитателя подключены к выходу сумматора и через первый удвоитель кода к выходу второго регистра, вход второго удвоителя кода подключен к выходу первого вычитателя, выходами канала обработки сигналов являются выход второго вычитателя и выход второго удвоителя кода. При этом каналов обработки может быть более одного.
При этом удвоитель кода может быть выполнен в виде шины со сдвигом разрядов на единицу в сторону старшего разряда.
Схема предлагаемого фазометра с гетеродинным преобразованием частоты на примере фазометра с двумя каналами показана на Фиг.1.
На Фиг.2 показаны эпюры сигналов в предлагаемом фазометре с гетеродинным преобразованием частоты.
Предлагаемый фазометр с гетеродинным преобразованием частоты (Фиг.1) содержит (в двухканальном исполнении):
1 - аналого-цифровой преобразователь (АЦП),
2 - времязадающее средство,
3-6 - регистры,
7 - сумматор,
8-9 - вычитатели,
10-11 - удвоители кода,
12 - средство сбора и обработки данных,
13 - первый канал обработки сигналов,
14 - второй канал обработки сигналов.
Аналого-цифровой преобразователь и четыре регистра последовательно соединены, вход аналого-цифрового преобразователя является входом фазометра и канала обработки сигналов, времязадающее средство своими выходами подключено к тактовым входам аналого-цифрового преобразователя, четырех регистров и средства сбора и обработки данных, входы сумматора подключены к выходу аналого-цифрового преобразователя и к выходу четвертого регистра, входы первого вычитателя подключены к выходам первого и третьего регистров, входы второго вычитателя подключены к выходу сумматора и через первый удвоитель кода к выходу второго регистра, входы средства сбора и обработки данных подключены к выходу второго вычитателя, являющемуся первым выходом канала обработки сигналов, и через второй удвоитель кода к выходу первого вычитателя, являющемуся вторым выходом канала обработки сигналов.
Аналого-цифровой преобразователь может быть выполнен на стандартной микросхеме с таким названием и назначением, как и в прототипе. Времязадающим средством может быть любой достаточно стабильный генератор или таймер, как и в прототипе, или проще, так как в нем достаточно иметь один выход, который задает тактовые импульсы на все элементы, с которыми он соединен.
Средством сбора и обработки данных может быть персональный компьютер.
Остальные элементы этого фазометра с гетеродинным преобразованием частоты могут быть выполнены так же, как в прототипе, на специализированном контроллере.
В предложенном фазометре с гетеродинным преобразованием частоты соблюдение соответствия подключения входов вычитателей 8 и 9 не критично, эти входы могут быть использованы произвольно, поскольку их взаимная замена повлияет лишь на знак их выходных сигналов, поступающих на средство сбора и обработки данных 12, в котором знак сигналов может быть учтен программно.
Все устройство также может быть полностью реализовано на сигнальном процессоре, например на процессоре фирмы Altera [NCO MegaCore Function. User Guide. http://www.altera.com/literature/ug/ug_nco.pdf], использующим АЦП типа ADC6645, имеющим 14 разрядов и работающим на тактовой частоте 100 МГц.
Предлагаемый фазометр с гетеродинным преобразованием частоты (Фиг.1) работает следующим образом.
Рассмотрим работу фазометра с гетеродинным преобразованием частоты в одноканальном исполнении, поскольку при наличии нескольких каналов обработки сигналов все они идентичны и работают одинаково.
Входной сигнал описывается соотношением (1). Аналого-цифровой преобразователь 1 работает так же, как в прототипе, выдавая в ответ на каждый такт времязадающего устройства очередной отсчет значения входного сигнала. Отсчеты u11, u12, u13, u14, u21, u22, u23, u24, u31 и так далее последовательно возникают на выходе аналого-цифрового преобразователя 1.
Четыре регистра 3, 4, 5 и 6 работают так же, как в прототипе, то есть с каждым тактовым импульсом от времязадающего средства 2 их входные коды запоминаются и появляются на их выходах. В результате после первых четырех тактов преобразования в этих регистрах 3-6 хранятся четыре последних отсчета входных сигналов, получаемых на выходе аналого-цифрового преобразователя 1. В момент появления на выходе аналого-цифрового преобразователя 1 пятого отсчета все эти пять отсчетов одновременно поступают на входы сумматора 7, вычитателя 8 и через удвоитель кода 10 - на отрицательный вход вычитателя 9. На положительный вход этого вычитателя поступает код с выхода сумматора 7. Далее полученные коды с выхода обоих вычитателей поступают на средство сбора и обработки данных 12, причем с выхода вычитателя 8 код поступает через удвоитель кода 11.
В предлагаемом устройстве для вычисления значений когерентной и квадратурной компонент сигнала разностной частоты используются соотношения, отличающиеся от соотношений (7) и (8).
С учетом сказанного выше справедливы следующие соотношения:
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Таким образом, пять отсчетов входного сигнала u11, u12, u13, u14, u21 достаточно, чтобы получить оценки когерентной и квадратурной компонент входного сигнала, привязанных к одному и тому же времени - к моменту поступления серединного отсчета, то есть ко времени t13.
Сигналы, показанные на Фиг.2, поясняют соотношения (11)-(14).
Для вычисления когерентной компоненты используется сумма двух крайних отсчетов интервала, из которой вычтен удвоенный отсчет в середине интервала. При этом систематические компоненты погрешности аналого-цифрового преобразователя 1 компенсируются, что нетрудно видеть, если в (11) подставить q(t11)=q(t13)=q(t21).
Для вычисления квадратурной компоненты используется удвоенная разность второго и четвертого отсчетов. При этом систематические компоненты погрешности аналого-цифрового преобразователя 1 также компенсируются, что нетрудно видеть, если в (12) подставить q(t12)=q(t14).
Каждый канал обработки сигналов вычисляет когерентную и квадратурную компоненты сигнала разностной частоты в соответствии с соотношениями (11) и (12). Для этого требуется лишь 4 регистра сдвига 3-6, поскольку на их выходах будут получаться четыре последних отсчета, не считая самого последнего, который может быть взят непосредственно с выхода аналого-цифрового преобразователя 1.
Далее последовательности {Ei, Fi} используются средством сбора и обработки данных 12 как когерентная и квадратурная компоненты аналитического сигнала, то есть проекции вектора на оси X и Y. По этим проекциям средство сбора и обработки данных 12 вычисляет фазу сигнала:
Figure 00000015
Здесь atan2(X,Y) - стандартная функция, равная arctg(Y/X) для | Y | < | X |
Figure 00000016
и arcctg(X/Y) для | Y | > | X |
Figure 00000017
. Эта функция определена на всем множестве {Ei, Fi}. Это соотношение позволяет устранить влияние амплитудной модуляции на результат вычисления фазы.
Таким образом, задача вычисления фазы решена, результат находится в средстве сбора и обработки данных 12.
Предлагаемый фазометр с гетеродинным преобразованием частоты проще прототипа, поскольку на один канал обработки сигналов требуется четыре регистра 3-6, а не восемь, как в прототипе. Также упрощение состоит в том, что вместо двух алгебраических сумматоров, каждый из которых в прототипе имеет четыре входа с коэффициентами плюс три, синус три, плюс пять и минус пять, отличающимися от целой степени двойки, в предлагаемом фазометре с гетеродинным преобразованием частоты применяется два простых вычитателя 8 и 9 с двумя входами и один сумматор 7. Оба вычитателя 8 и 9 и сумматор 7 имеют лишь по два входа. При этом удвоители кода 10 и 11 представляют собой простой сдвиг шины сигналов на один разряд в сторону старших разрядов. Сумматор 7, осуществляющий сложения двух двоичных кодов, и вычитатели 8 и 9, осуществляющие вычитание двух двоичных кодов, могут быть реализованы на простых логических элементах без памяти. Такой сумматор 7 и вычитатели 8 и 9 не требуют синхронизации от времязадающего средства 2, поскольку выходной сигнал на них появляется в момент появления входного сигнала и изменяется в момент изменения входного сигнала с незначительной задержкой, определяемой временем срабатывания простых логических элементов внутри них, не содержащих регистров (или триггеров). Изменение выходных кодов на них является простым следствием изменения входных кодов.
Таким образом, упрощение фазометра достигается за счет уменьшения количества регистров, требуемых в одном канале обработки сигналов, вместо восьми - четыре, за счет исключения алгебраических сумматоров с четырьмя входами, вместо которых достаточно использовать два вычитателя на два входа и сумматор на два входа. Также упрощение достигается за счет отсутствия необходимости умножения кода на 3 и на 5, вместо этого коды умножаются только на 2, что достигается простым сдвигом двоичного кода на один разряд в сторону старшего разряда. Также упрощенный сумматор 7 и вычитатели 8 и 9 могут работать без использования тактового сигнала, что также является упрощением. Эти сумматоры не содержат регистров внутри себя, что отличает их от прототипа и от ближайшего аналога. Также упрощаются умножители на коэффициенты, которые в прототипе содержались в алгебраических сумматорах. В предлагаемом фазометре с гетеродинным преобразователем не требуется умножения числа на код, отличающийся от 2. Умножение на 2 достигается простым сдвигом двоичного кода на один разряд влево, поэтому умножители на 2 чрезвычайно просты, это просто шина со сдвигом в сторону старших разрядов на один разряд.
Предлагаемый фазометр также может содержать более одного канала обработки сигналов.
Таким образом, предлагаемый фазометр с гетеродинным преобразованием частоты решает задачу упрощения.

Claims (2)

1. Фазометр с гетеродинным преобразованием частоты, содержащий средство сбора и обработки данных, времязадающее средство и по меньшей мере один канал обработки сигналов, причем каждый этот канал обработки сигналов содержит последовательно соединенные аналого-цифровой преобразователь и четыре регистра, при этом вход аналого-цифрового преобразователя является входом фазометра и входом канала обработки сигналов, времязадающее средство своими выходами подключено к тактовым входам аналого-цифрового преобразователя, четырех регистров и средства сбора и обработки данных, выходы канала обработки сигналов подключены к входам средства сбора и обработки данных, отличающийся тем, что в каждый канал обработки сигналов этого фазометра введены два вычитателя, сумматор и два удвоителя кода, причем входы сумматора подключены к выходу аналого-цифрового преобразователя и к выходу четвертого регистра, входы первого вычитателя подключены к выходам первого и третьего регистров, входы второго вычитателя подключены к выходу сумматора и через первый удвоитель кода к выходу второго регистра, вход второго удвоителя кода подключен к выходу первого вычитателя, выходами канала обработки сигналов являются выход второго вычитателя и выход второго удвоителя кода.
2. Фазометр с гетеродинным преобразованием частоты по п.1, отличающийся тем, что каждый удвоитель кода выполнен в виде шины со сдвигом разрядов на единицу в сторону старшего разряда.
RU2013147228/28A 2013-10-22 2013-10-22 Фазометр с гетеродинным преобразованием частоты RU2551837C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013147228/28A RU2551837C2 (ru) 2013-10-22 2013-10-22 Фазометр с гетеродинным преобразованием частоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013147228/28A RU2551837C2 (ru) 2013-10-22 2013-10-22 Фазометр с гетеродинным преобразованием частоты

Publications (2)

Publication Number Publication Date
RU2013147228A RU2013147228A (ru) 2015-04-27
RU2551837C2 true RU2551837C2 (ru) 2015-05-27

Family

ID=53283087

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013147228/28A RU2551837C2 (ru) 2013-10-22 2013-10-22 Фазометр с гетеродинным преобразованием частоты

Country Status (1)

Country Link
RU (1) RU2551837C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU127710A1 (ru) * 1959-04-25 1959-11-30 В.Л. Власов Двухканальный гетеродинный фазометр
SU1018038A1 (ru) * 1980-09-29 1983-05-15 Savv Kim R Гетеродинный фазометр
US4901244A (en) * 1985-01-25 1990-02-13 Szeto Lai Wan M Apparatus for, and method of, analyzing signals
DE4124005A1 (de) * 1991-07-19 1993-01-21 Fraunhofer Ges Forschung Elektronische schaltung zur messung der phasen- und frequenzdifferenz zweier periodischer signale
RU2099721C1 (ru) * 1996-08-26 1997-12-20 Красноярский государственный технический университет Способ измерения фазового сдвига и устройство для его осуществления
RU2225012C2 (ru) * 2002-04-19 2004-02-27 Институт лазерной физики СО РАН Фазометр с гетеродинным преобразованием частоты

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU127710A1 (ru) * 1959-04-25 1959-11-30 В.Л. Власов Двухканальный гетеродинный фазометр
SU1018038A1 (ru) * 1980-09-29 1983-05-15 Savv Kim R Гетеродинный фазометр
US4901244A (en) * 1985-01-25 1990-02-13 Szeto Lai Wan M Apparatus for, and method of, analyzing signals
DE4124005A1 (de) * 1991-07-19 1993-01-21 Fraunhofer Ges Forschung Elektronische schaltung zur messung der phasen- und frequenzdifferenz zweier periodischer signale
RU2099721C1 (ru) * 1996-08-26 1997-12-20 Красноярский государственный технический университет Способ измерения фазового сдвига и устройство для его осуществления
RU2225012C2 (ru) * 2002-04-19 2004-02-27 Институт лазерной физики СО РАН Фазометр с гетеродинным преобразованием частоты

Also Published As

Publication number Publication date
RU2013147228A (ru) 2015-04-27

Similar Documents

Publication Publication Date Title
CN102288821B (zh) 三相电路相位差的测量方法、测量装置
Sapozhnikov et al. Advantages of using the probabilistic form of information representation in information-control systems
CN102723921B (zh) 基于现场可编程门阵列的数字锁相放大实现方法及系统
CN105102992A (zh) 确定delta-sigma调制信号的均方根的方法和装置
CN107395123A (zh) 一种基于gps秒脉冲的2的幂次方倍频方法
US3696235A (en) Digital filter using weighting
RU2551837C2 (ru) Фазометр с гетеродинным преобразованием частоты
US11394370B2 (en) Method and system for ultra-narrowband filtering with signal processing using a concept called prism
JPS5819068B2 (ja) デンシシキデンリヨクリヨウケイ
RU2470312C2 (ru) Фазометр с гетеродинным преобразованием частоты
RU2497136C1 (ru) Фазометр с гетеродинным преобразованием частоты
RU2225012C2 (ru) Фазометр с гетеродинным преобразованием частоты
CN100378463C (zh) 一种检波装置和方法
RU2582625C1 (ru) Фазометр
RU158719U1 (ru) Устройство адаптивной компенсации фазы пассивных помех
RU2388001C1 (ru) Измеритель разности фаз радиосигналов
RU2591742C1 (ru) Способ измерения частоты гармонического сигнала и устройство для его осуществления
SU741186A1 (ru) Измеритель сдвига фаз
RU2404438C1 (ru) Устройство для анализа сигналов в реальном масштабе времени
SU935822A1 (ru) Цифровое устройство дл оптимального измерени фазы сигнала
SU746537A1 (ru) Устройство дл цифровой обработки сигналов
SU492826A1 (ru) Двухканальный цифровой след щий фазометр
SU813290A1 (ru) Устройство дл измерени центральнойчАСТОТы СпЕКТРА СигНАлА
RU2160926C1 (ru) Анализатор спектра по функциям уолша
SU980014A1 (ru) Способ измерени фазы сигнала и устройство дл его осуществлени

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151023

NF4A Reinstatement of patent

Effective date: 20170209