RU2582877C1 - Адаптивный компенсатор фазы пассивных помех - Google Patents

Адаптивный компенсатор фазы пассивных помех Download PDF

Info

Publication number
RU2582877C1
RU2582877C1 RU2015115992/08A RU2015115992A RU2582877C1 RU 2582877 C1 RU2582877 C1 RU 2582877C1 RU 2015115992/08 A RU2015115992/08 A RU 2015115992/08A RU 2015115992 A RU2015115992 A RU 2015115992A RU 2582877 C1 RU2582877 C1 RU 2582877C1
Authority
RU
Russia
Prior art keywords
additional
unit
block
complex
inputs
Prior art date
Application number
RU2015115992/08A
Other languages
English (en)
Inventor
Дмитрий Иванович Попов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет"
Priority to RU2015115992/08A priority Critical patent/RU2582877C1/ru
Application granted granted Critical
Publication of RU2582877C1 publication Critical patent/RU2582877C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects

Abstract

Изобретение относится к вычислительной технике и может быть использовано в адаптивных устройствах режектирования многочастотных пассивных помех. Достигаемый технический результат - повышение точности адаптивной компенсации текущего значения доплеровской фазы многочастотных пассивных помех. Адаптивный компенсатор фазы пассивных помех содержит блок оценивания фазы, блок задерживания, первый и второй блоки комплексного умножения, блок комплексного сопряжения, блок задержки, синхрогенератор, первый и второй умножители, первый, второй, третий и четвертый функциональные преобразователи, первый и второй блоки памяти, комплексный сумматор, дополнительный вычислитель фазы, дополнительный блок оценивания фазы, первый и второй дополнительные блоки комплексного умножения, дополнительный блок комплексного сопряжения, дополнительный блок задержки и дополнительный блок задерживания. 9 ил.

Description

Изобретение относится к вычислительной технике и предназначено для адаптивной компенсации доплеровских сдвигов фазы пассивных помех; может быть использовано в адаптивных устройствах режектирования многочастотных пассивных помех.
Известен фильтр с адаптивной компенсацией доплеровской фазы пассивных помех, содержащий блоки задержки, блок комплексного сопряжения, блоки комплексного умножения, блок оценивания фазы и функциональные преобразователи [1]. Однако это устройство имеет низкую точность измерения и компенсации текущего значения доплеровской фазы пассивных помех.
Известен также измеритель доплеровской фазы пассивных помех [2], содержащий блок оценивания фазы, блок комплексного умножения, блок задержки, блок усреднения и вычислитель фазы. Однако данное устройство обладает низкой точностью измерения текущего значения доплеровской фазы пассивных помех.
Наиболее близким к изобретению является выбранное в качестве прототипа устройство с адаптивной компенсацией доплеровской фазы пассивных помех [3], содержащее блок оценивания фазы, блок задерживания, первый и второй блоки комплексного умножения, блок комплексного сопряжения и блок задержки, при этом входы блока оценивания фазы через блок задерживания соединены с первыми входами первого блока комплексного умножения, вторые входы которого соединены с выходами блока комплексного сопряжения, выходы второго блока комплексного умножения соединены с объединенными входами блока комплексного сопряжения и блока задержки, выходы блока задержки соединены с первыми входами второго блока комплексного умножения. Однако данное устройство имеет низкую точность компенсации текущего значения доплеровской фазы пассивных помех.
Задачей, решаемой в изобретении, является повышение точности адаптивной компенсации текущего значения доплеровской фазы многочастотных пассивных помех за счет применения совместной обработки частотных компонент многочастотных пассивных помех.
Для решения поставленной задачи в адаптивный компенсатор фазы пассивных помех, содержащий блок оценивания фазы, блок задерживания, первый и второй блоки комплексного умножения, блок комплексного сопряжения, блок задержки и синхрогенератор, введены первый и второй умножители, первый, второй, третий и четвертый функциональные преобразователи, первый и второй блоки памяти, комплексный сумматор, дополнительный вычислитель фазы, дополнительный блок оценивания фазы, первый и второй дополнительные блоки комплексного умножения, дополнительный блок комплексного сопряжения, дополнительный блок задержки и дополнительный блок задерживания.
Дополнительные блоки, введенные в предлагаемое устройство, являются известными. Так, соединенные вместе в блоке оценивания фазы блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения и вычислитель фазы позволяют выделить доплеровский набег фазы за интервал между соседними отсчетами пассивной помехи. Однако неизвестно совместное применение первого и второго умножителей, первого, второго, третьего и четвертого функциональных преобразователей, первого и второго блоков памяти, комплексного сумматора, дополнительного вычислителя фазы, дополнительного блока оценивания фазы, дополнительных блоков комплексного умножения, дополнительного блока задержки и дополнительного блока задерживания. Новыми являются связи первого умножителя с блоком оценивания фазы, первым функциональным преобразователем и первым блоком памяти, дополнительного блока оценивания фазы с третьим функциональным преобразователем, первого и третьего функциональных преобразователей с комплексным сумматором, комплексного сумматора с дополнительным вычислителем фазы, дополнительного вычислителя фазы со вторым умножителем и четвертым функциональным преобразователем, второго и четвертого функциональных преобразователей соответственно со вторым блоком комплексного умножения и первым дополнительным блоком комплексного умножения, что обеспечивает повышение точности измерения и компенсации текущего значения доплеровской фазы многочастотных пассивных помех. Связи между синхрогенератором и всеми блоками адаптивного компенсатора фазы пассивных помех обеспечивают согласованную обработку компонент многочастотных пассивных помех.
Сравнение с техническими характеристиками, известными из опубликованных источников информации, показывает, что заявляемое решение обладает новизной и имеет изобретательский уровень.
Заявляемое решение носит технический характер, осуществимо, воспроизводимо и, следовательно, является промышленно применимым.
На фиг. 1 представлена структурная электрическая схема адаптивного компенсатора фазы пассивных помех; на фиг. 2 - блока оценивания фазы; на фиг. 3 - блока задерживания и блока задержки; на фиг. 4 - блока комплексного сопряжения; на фиг. 5 - блока комплексного умножения; на фиг. 6 - блока усреднения; на фиг. 7 - вычислителя фазы; на фиг. 8 - блока присвоения знака; на фиг. 9 - комплексного сумматора.
Адаптивный компенсатор фазы пассивных помех (фиг. 1) содержит блок 1 оценивания фазы, блок 2 задерживания, первый блок 3 комплексного умножения, второй блок 4 комплексного умножения, блок 5 комплексного сопряжения, блок 6 задержки, синхрогенератор 7, первый умножитель 8, первый функциональный преобразователь 9, второй умножитель 10, второй функциональный преобразователь 11, первый блок памяти 12, комплексный сумматор 13, дополнительный вычислитель фазы 14, второй блок памяти 15, дополнительный блок оценивания фазы 16, третий 17 и четвертый 18 функциональные преобразователи, первый дополнительный блок 19 комплексного умножения, дополнительный блок 20 комплексного сопряжения, дополнительный блок 21 задержки, дополнительный блок 22 задерживания и второй дополнительный блок 23 комплексного умножения, при этом входы блока 1 оценивания фазы через блок 2 задерживания соединены с первыми входами первого блока 3 комплексного умножения, вторые входы которого соединены с выходами блока 5 комплексного сопряжения, выходы второго блока 4 комплексного умножения соединены с объединенными входами блока 5 комплексного сопряжения и блока 6 задержки, выходы блока 6 задержки соединены с первыми входами второго блока 4 комплексного умножения, выход блока 1 оценивания фазы соединен с первым входом первого умножителя 8, второй вход которого соединен с выходом первого блока 12 памяти, выход первого умножителя 8 соединен с входом первого функционального преобразователя 9, выходы которого соединены с первыми входами комплексного сумматора 13, выходы комплексного сумматора 13 соединены с входами дополнительного вычислителя фазы 14, выход которого соединен с объединенными первым входом второго умножителя 10 и входом четвертого функционального преобразователя 18, второй вход второго умножителя 10 соединен с выходом второго блока 15 памяти, выход второго умножителя 10 соединен с входом второго функционального преобразователя 11, выходы которого соединены со вторыми входами второго блока 4 комплексного умножения, выход дополнительного блока 16 оценивания фазы соединен с входом третьего функционального преобразователя 17, выходы которого соединены со вторыми входами комплексного сумматора 13, выходы первого дополнительного блока 19 комплексного умножения соединены с объединенными входами дополнительного блока 20 комплексного сопряжения и дополнительного блока 21 задержки, выходы дополнительного блока 21 задержки соединены с первыми входами первого дополнительного блока 19 комплексного умножения, вторые входы которого соединены с выходами четвертого функционального преобразователя 18, входы дополнительного блока 16 оценивания фазы через дополнительный блок 22 задерживания соединены с первыми входами второго дополнительного блока 23 комплексного умножения, вторые входы которого соединены с выходами дополнительного блока 20 комплексного сопряжения, выход синхрогенератора соединен с синхровходами блока 1 оценивания фазы, блока 2 задерживания, первого 3 и второго 4 блоков комплексного умножения, блока 5 комплексного сопряжения, блока 6 задержки, первого 8 и второго 10 умножителей, первого 9, второго 11, третьего 17 и четвертого 18 функциональных преобразователей, первого 12 и второго 15 блоков памяти, комплексного сумматора 13, дополнительного вычислителя фазы 14, дополнительного блока 16 оценивания фазы, первого 19 и второго 23 дополнительных блоков комплексного умножения, дополнительного блока 20 комплексного сопряжения, дополнительного блока 21 задержки и дополнительного блока 22 задерживания, причем первыми и вторыми входами адаптивного компенсатора фазы пассивных помех являются соответственно входы блока 1 оценивания фазы и дополнительного блока 16 оценивания фазы, а первыми и вторыми выходами - соответственно выходы первого блока 3 комплексного умножения и второго дополнительного блока 23 комплексного умножения.
Блок 1 оценивания фазы и дополнительный блок 16 оценивания фазы (фиг. 2) содержат последовательно соединенные блок 24 задержки, блок 25 комплексного сопряжения, блок 26 комплексного умножения, блок 27 усреднения и вычислитель фазы 28, вторые входы блока 26 комплексного умножения объединены с входами блока 24 задержки и являются входами блоков оценивания фазы, выходами которых являются выходы вычислителя фазы 28.
Блок 2 задерживания и дополнительный блок 22 задерживания (фиг. 3) содержат две цифровые линии задерживания 29 на временнóй интервал tз, входом блоков задерживания являются входы цифровых линий задерживания 29, выходы которых являются выходами блоков задерживания.
Блоки 6 и 24 задержки и дополнительный блок 21 задержки выполняются аналогично блокам 2 и 22 задерживания (фиг. 3) и содержат две цифровые линии задержки 29 на временной интервал T, входом блоков задержки являются входы цифровых линий задержки 29, выходы которых являются выходами блоков задержки.
Блоки 5 и 25 комплексного сопряжения и дополнительный блок 20 комплексного сопряжения (фиг. 4) содержат инвертор 30, первый вход блоков комплексного сопряжения является его первым выходом, вторым входом является вход инвертора 30, выход которого является вторым выходом блоков комплексного сопряжения.
Блоки 3 и 4 комплексного умножения и дополнительные блоки 19 и 23 комплексного умножения (фиг. 5) содержат два канала (I, II), каждый из которых включает первый перемножитель 31, последовательно включенные второй перемножитель 32 и сумматор 33, выход первого перемножителя 31 одного канала соединен со вторым входом сумматора 33 другого канала, а первыми и вторыми входами блока комплексного умножения соответственно являются объединенные между собой первые входы первого и второго перемножителей 31 и 32 каждого из каналов, объединенные вторые входы вторых перемножителей 32 и объединенные вторые входы первых перемножителей 31, а выходами блока комплексного умножения являются выходы сумматоров 33 каждого из каналов.
Блок 27 усреднения (фиг. 6) содержит два канала (I, II), каждый из которых состоит из n последовательно включенных цифровых элементов 34 задержки на интервал временнóй дискретизации tд и n-1 последовательно включенных сумматоров 35, входами блока усреднения являются объединенные входы первого элемента задержки 34 и первого сумматора 35 каждого канала (I, II), выход k-го (k=1…n) элемента задержки 34, кроме (n/2)-го, соединен со вторым входом k-го (k=1…n-1) сумматора 35 каждого канала (I, II), выходами блока усреднения служат выходы (n-1)-x сумматоров.
Вычислитель фазы 28 и дополнительный вычислитель фазы 14 (фиг. 7) состоят из последовательно включенных делителя 36, функционального преобразователя 37, модульного блока 38, сумматора 39, блока 40 присвоения знака и первого ключа 41, выход функционального преобразователя 37 соединен с входом второго ключа 42, второй вход сумматора 39 соединен с выходом блока 44 памяти, управляющие входы первого и второго ключей 41 и 42 соединены с входом делителя 36, соответствующим входу действительной части комплексного числа, второй вход блока 40 присвоения знака соединен с входом делителя 36, соответствующим входу мнимой части комплексного числа, выходы первого и второго ключей 41 и 42 соединены с входами сумматора 43, выход которого является выходом вычислителя фазы, входами вычислителя фазы являются входы делителя 36.
Блок 40 присвоения знака (фиг. 8) содержит блоки 45 и 48 умножения, блок 46 памяти и ограничитель 47, причем второй вход блока присвоения знака является первым входом блока 45 умножения, второй вход которого соединен с выходом блока 46 памяти, выход блока 45 умножения соединен с входом ограничителя 47, выход которого соединен с первым входом блока 48 умножения, второй вход которого является первым входом блока присвоения знака, выходом блока присвоения знака служит выход блока 48 умножения.
Комплексный сумматор 13 (фиг. 9) содержит два сумматора 49, первые входы которых являются первыми входами комплексного сумматора, а вторые входы - вторыми входами комплексного сумматора, выходы сумматоров 49 являются выходами комплексного сумматора.
Адаптивный компенсатор фазы пассивных помех работает следующим образом.
Два частотных компонента многочастотной пассивной помехи, значительно превышающих сигнал от цели, раздельно поступают на входы приемников каждого частотного канала, в которых усиливаются, в квадратурных фазовых детекторах переносятся на видеочастоту, а затем подвергаются аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны). На первые и вторые входы адаптивного компенсатора фазы пассивных помех в каждом элементе разрешения по дальности каждого периода повторения поступают цифровые отсчеты комплексных огибающих соответствующих частотных компонент пассивной помехи
Figure 00000001
где
Figure 00000002
,
Figure 00000003
- цифровые коды действительной и мнимой частей отсчетов
Figure 00000004
; j и k - текущие номера соответственно периода повторения и элемента разрешения по дальности, причем
Figure 00000005
; l - номер частотного компонента, причем l=1, 2; φ0l - начальная фаза l-го частотного компонента; φl - доплеровский сдвиг фазы 1-го частотного компонента помехи, равный
Figure 00000006
где fдl=2vrfн1/с - доплеровская частота помехи; Т - период повторения зондирующих импульсов; vr - радиальная скорость источника мешающих отражений (пассивной помехи); fнl - несущая частота l-го частотного компонента, причем fн2=rfн1, r<1; с - скорость распространения радиоволн.
В адаптивном компенсаторе фазы пассивных помех (фиг. 1) отсчеты
Figure 00000007
и
Figure 00000008
поступают соответственно на входы блока 1 оценивания фазы и дополнительного блока 16 оценивания фазы (фиг. 2), где в блоках 24 задержки (фиг. 3) задерживаются на период повторения Т. После этого в блоках 25 комплексного сопряжения (фиг. 4) путем инвертирования с помощью инвертора 30 знаков мнимых проекций осуществляется комплексное сопряжение задержанных отсчетов
Figure 00000009
. Далее в блоках 26 комплексного умножения (фиг. 5) в каждом элементе разрешения по дальности реализуется попарное умножение отсчетов в соответствии с алгоритмом
Figure 00000010
С выходов блоков 26 комплексного умножения полученные произведения
Figure 00000011
поступают в блоки 27 усреднения (фиг. 6), осуществляющие с помощью элементов 34 задержки и сумматоров 35 скользящее вдоль дальности в каждом периоде повторения суммирование величин
Figure 00000012
с n+1 смежных элементов разрешения по дальности временного строба, кроме элемента с номером n/2+1, для чего выходные величины элемента 34 задержки с номером n/2 поступают только на последующий элемент 34 задержки (фиг. 6). При этом на выходах блоков 27 усреднения образуются величины
Figure 00000013
аргументами которых являются межпериодные доплеровские сдвиги фазы помехи
Figure 00000014
в j-м периоде повторения l-го частотного компонента (l=1, 2).
Величины
Figure 00000015
и
Figure 00000016
в блоках 1 и 16 поступают на соответствующие входы вычислителей фазы 28 (фиг. 7), где на основе блоков 36 деления и арктангенсных функциональных преобразователей 37 вычисляются оценки
Figure 00000017
Последующие преобразования оценок
Figure 00000018
зависят от знака величины
Figure 00000019
. При
Figure 00000020
открыт второй ключ 42, и оценка
Figure 00000021
через сумматор 43 непосредственно поступает на выход вычислителя фазы 28. При
Figure 00000022
открыт первый ключ 41, а второй ключ 42 закрыт. При этом в модульном блоке 38 образуется
Figure 00000023
, вычитаемый в сумматоре 39 из величины %, поступающей от блока 44 памяти. Полученной разности
Figure 00000024
в блоке 40 присваивается знак величины
Figure 00000025
.
Блок 40 присвоения знака (фиг. 8) работает следующим образом. На второй вход блока 40 присвоения знака поступает величина
Figure 00000026
, где в блоке 45 умножения производится ее умножение на постоянный множитель из блока 46 памяти с целью масштабирования и дальнейшего ограничения в ограничителе 47 по уровню ±1. Таким образом, после ограничения величина на выходе ограничителя 47 имеет смысл знака величины
Figure 00000027
, который, поступая на первый вход блока 48 умножения, присваивается разности
Figure 00000028
, поступающей с выхода сумматора 39 на первый вход блока 40 присвоения знака, т.е. на второй вход блока 48 умножения.
Рассмотренные операции позволяют в вычислителе фазы 28 сначала найти оценку доплеровского сдвига фазы помехи, находящуюся в интервале
Figure 00000029
, а затем при помощи последующих логических преобразований в блоках 38, 39 и 40 расширить пределы ее однозначного измерения до интервала
Figure 00000030
в соответствии с алгоритмом
Figure 00000031
Первый умножитель 8 (фиг. 1) осуществляет умножение найденной в блоке 1 оценивания фазы l-го частотного канала оценки
Figure 00000032
на коэффициент r, хранящийся в первом блоке 12 памяти, что приводит к получению пересчитанной по отношению ко 2-му частотному каналу оценки
Figure 00000033
Данная пересчитанная оценка
Figure 00000034
и найденная в дополнительном блоке 16 оценивания фазы 2-го частотного канала оценка
Figure 00000035
подвергаются межканальному усреднению. Так как непосредственное усреднение оценок
Figure 00000036
и
Figure 00000037
вследствие цикличности фазовых сдвигов приводит к существенным ошибкам, то усреднению подлежат тригонометрические функции этих оценок. Для этого в первом 9 и третьем 17 косинусно-синусных функциональных преобразователях определяются соответственно величины
Figure 00000038
Межканальное усреднение осуществляется в комплексном сумматоре 13 (фиг. 9) путем раздельного суммирования действительных и мнимых проекций входных величин, приводящего к вычислению выходной величины
Figure 00000039
В дополнительном вычислителе фазы 14 (фиг. 7) определяется усредненная оценка для 2-го частотного канала:
Figure 00000040
Во втором умножителе 10 данная оценка умножается на хранящийся во втором блоке 15 памяти коэффициент 1/r, что приводит к получению усредненной оценки для 1-го частотного канала:
Figure 00000041
Во втором 11 и четвертом 18 косинусно-синусных функциональных преобразователях определяются соответственно величины
Figure 00000042
Второй блок 4 комплексного умножения совместно с блоком 6 задержки и первый дополнительный блок 19 комплексного умножения совместно с дополнительным блоком 21 задержки в каждом элементе разрешения по дальности осуществляют рекуррентное накопление оценок межпериодного доплеровского сдвига фазы помехи соответственно для 1-го и 2-го частотных каналов:
Figure 00000043
Figure 00000044
Ввиду однородности помехи по доплеровской скорости в пределах каждого элемента разрешения по дальности и равноточности оценок
Figure 00000045
и
Figure 00000046
Figure 00000047
что соответствует с точностью до начальной фазы текущей фазе помехи.
В блоке 5 комплексного сопряжения и в дополнительном блоке 20 комплексного сопряжения с помощью инвертора 30 знаков мнимых проекций происходит инвертирование знака текущей фазы, приводя к величинам
Figure 00000048
что позволяет в первом блоке 3 комплексного умножения и втором дополнительном блоке 23 комплексного умножения путем двумерного поворота поступающих в каждом частотном канале отсчетов
Figure 00000049
и
Figure 00000050
в соответствии с выражениями
Figure 00000051
,
скомпенсировать доплеровские сдвиги фазы помехи.
Задерживание исходных отсчетов
Figure 00000052
и
Figure 00000053
на временной интервал tз=ntд/2+tв (где fд - интервал временной дискретизации, tв - интервал задерживания при вычислениях), реализуемое в блоке 2 задерживания и в дополнительном блоке 22 задерживания, обеспечивает временное совмещение компенсации с исключенным из обучающей выборки средним элементом с номером n/2+1 в стробе скользящего суммирования, реализуемого блоком 27 усреднения. Тогда в случае сигнала, соизмеримого по величине с помехой, или разрывной помехи при последующем режектировании отсчетов помехи с элемента разрешения, содержащего сигнал, исключается возможность ослабления или подавления сигнала за счет его влияния на используемые оценки.
Синхронизация адаптивного компенсатора фазы пассивных помех осуществляется подачей на все блоки заявляемого устройства последовательности синхронизирующих импульсов, вырабатываемых синхронизатором 7 (фиг. 1) с периодом повторения, равным интервалу временной дискретизации tд, выбираемому из условия требуемой разрешающей способности по дальности.
Достижение технического результата объясняется следующим образом. Погрешность усредненной оценки
Figure 00000054
в предложенном адаптивном компенсаторе фазы пассивных помех характеризуется дисперсией
Figure 00000055
где r1=1, r2=r;
Figure 00000056
- коэффициент межпериодной корреляции помехи в l-м частотном канале (l=1, 2);
Figure 00000057
- нормированная ширина спектра помехи в l-м частотном канале (l=1, 2). Дисперсия оценки
Figure 00000058
для известного устройства (прототипа)
Figure 00000059
Как видим, дисперсия усредненной оценки
Figure 00000060
в предложенном адаптивном компенсаторе фазы пассивных помех меньше дисперсии в известном устройстве, что соответствует повышению точности измерения и компенсации доплеровской фазы помехи, зависящей от номера частотного канала. Расчеты показывают, что при r=0,95 и βп=ΔfпT=0,1 для l-го частотного канала (l=1) точность измерения и компенсации повышается в 2 раза, а для 2-го частотного канала (l=2) - в 2,2 раза.
Таким образом, адаптивный компенсатор фазы пассивных помех позволяет повысить точность измерения и компенсации текущего значения доплеровского сдвига фазы многочаститных пассивных помех.
Библиография
1. А.С. 934816 (СССР), МПК G01S 7/36, G01S 13/52. Режекторный фильтр / Д.И. Попов. - Опубл. 27.11.1998. - Изобретения. - 1998. - №33. - С. 407-408.
2. А.С. 1136620 (СССР), МПК G01S 7/292. Измеритель параметров пассивных помех / Д.И. Попов, В.В. Гладких. - Опубл. 27.11.1998. - Изобретения. - 1998. - №33. - С. 405.
3. А.С. 1098399 (СССР), МПК G01S 7/36. Устройство адаптивной режекции пассивных помех / Д.И. Попов. - Опубл. 20.12.1998. - Изобретения. - №35. - С. 377-378.

Claims (1)

  1. Адаптивный компенсатор фазы пассивных помех, содержащий блок оценивания фазы, блок задерживания, первый блок комплексного умножения, второй блок комплексного умножения, блок комплексного сопряжения, блок задержки и синхрогенератор, при этом входы блока оценивания фазы через блок задерживания соединены с первыми входами первого блока комплексного умножения, вторые входы которого соединены с выходами блока комплексного сопряжения, выходы второго блока комплексного умножения соединены с объединенными входами блока комплексного сопряжения и блока задержки, выходы блока задержки соединены с первыми входами второго блока комплексного умножения, выход синхрогенератора соединен с синхровходами блока оценивания фазы, блока задерживания, первого и второго блоков комплексного умножения, блока комплексного сопряжения и блока задержки, отличающийся тем, что введены первый умножитель, первый функциональный преобразователь, второй умножитель, второй функциональный преобразователь, первый блок памяти, комплексный сумматор, дополнительный вычислитель фазы, второй блок памяти, дополнительный блок оценивания фазы, третий и четвертый функциональные преобразователи, первый дополнительный блок комплексного умножения, дополнительный блок комплексного сопряжения, дополнительный блок задержки, дополнительный блок задерживания и второй дополнительный блок комплексного умножения, при этом выход блока оценивания фазы соединен с первым входом первого умножителя, второй вход которого соединен с выходом первого блока памяти, выход первого умножителя соединен с входом первого функционального преобразователя, выходы которого соединены с первыми входами комплексного сумматора, выходы комплексного сумматора соединены с входами дополнительного вычислителя фазы, выход которого соединен с объединенными первым входом второго умножителя и входом четвертого функционального преобразователя, второй вход второго умножителя соединен с выходом второго блока памяти, выход второго умножителя соединен с входом второго функционального преобразователя, выходы которого соединены со вторыми входами второго блока комплексного умножения, выход дополнительного блока оценивания фазы соединен с входом третьего функционального преобразователя, выходы которого соединены со вторыми входами комплексного сумматора, выходы первого дополнительного блока комплексного умножения соединены с объединенными входами дополнительного блока комплексного сопряжения и дополнительного блока задержки, выходы дополнительного блока задержки соединены с первыми входами первого дополнительного блока комплексного умножения, вторые входы которого соединены с выходами четвертого функционального преобразователя, входы дополнительного блока оценивания фазы через дополнительный блок задерживания соединены с первыми входами второго дополнительного блока комплексного умножения, вторые входы которого соединены с выходами дополнительного блока комплексного сопряжения, выход синхрогенератора соединен с синхровходами первого и второго умножителей, первого, второго, третьего и четвертого функциональных преобразователей, первого и второго блоков памяти, комплексного сумматора, дополнительного вычислителя фазы, дополнительного блока оценивания фазы, первого и второго дополнительных блоков комплексного умножения, дополнительного блока комплексного сопряжения, дополнительного блока задержки и дополнительного блока задерживания, причем первыми и вторыми входами адаптивного компенсатора фазы пассивных помех являются соответственно входы блока оценивания фазы и дополнительного блока оценивания фазы, а первыми и вторыми выходами - соответственно выходы первого блока комплексного умножения и второго дополнительного блока комплексного умножения.
RU2015115992/08A 2015-04-27 2015-04-27 Адаптивный компенсатор фазы пассивных помех RU2582877C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015115992/08A RU2582877C1 (ru) 2015-04-27 2015-04-27 Адаптивный компенсатор фазы пассивных помех

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015115992/08A RU2582877C1 (ru) 2015-04-27 2015-04-27 Адаптивный компенсатор фазы пассивных помех

Publications (1)

Publication Number Publication Date
RU2582877C1 true RU2582877C1 (ru) 2016-04-27

Family

ID=55794725

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015115992/08A RU2582877C1 (ru) 2015-04-27 2015-04-27 Адаптивный компенсатор фазы пассивных помех

Country Status (1)

Country Link
RU (1) RU2582877C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU181309U1 (ru) * 2018-01-30 2018-07-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Адаптивный режектор пассивных помех
RU182620U1 (ru) * 2018-01-30 2018-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Адаптивный компенсатор пассивных помех
RU182622U1 (ru) * 2018-01-30 2018-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Адаптивный подавитель пассивных помех
RU182621U1 (ru) * 2018-01-30 2018-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Адаптивный фильтр режекции помех
RU2680824C1 (ru) * 2017-12-11 2019-02-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Вычислитель для режекции помех

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395776A (en) * 1979-09-27 1983-07-26 Toyo Communication Equipment Co., Ltd. Transmitter having a phase synchronizing system
RU2064190C1 (ru) * 1993-06-15 1996-07-20 Рязанская государственная радиотехническая академия Устройство подавления многокомпонентных помех
SU1098399A1 (ru) * 1981-06-12 1998-12-20 Рязанский Радиотехнический Институт Устройство адаптивной режекции пассивных помех
RU2190297C2 (ru) * 2000-07-19 2002-09-27 Государственное унитарное предприятие Воронежский научно-исследовательский институт связи Устройство подавления широкополосных помех

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395776A (en) * 1979-09-27 1983-07-26 Toyo Communication Equipment Co., Ltd. Transmitter having a phase synchronizing system
SU1098399A1 (ru) * 1981-06-12 1998-12-20 Рязанский Радиотехнический Институт Устройство адаптивной режекции пассивных помех
RU2064190C1 (ru) * 1993-06-15 1996-07-20 Рязанская государственная радиотехническая академия Устройство подавления многокомпонентных помех
RU2190297C2 (ru) * 2000-07-19 2002-09-27 Государственное унитарное предприятие Воронежский научно-исследовательский институт связи Устройство подавления широкополосных помех

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680824C1 (ru) * 2017-12-11 2019-02-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Вычислитель для режекции помех
RU181309U1 (ru) * 2018-01-30 2018-07-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Адаптивный режектор пассивных помех
RU182620U1 (ru) * 2018-01-30 2018-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Адаптивный компенсатор пассивных помех
RU182622U1 (ru) * 2018-01-30 2018-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Адаптивный подавитель пассивных помех
RU182621U1 (ru) * 2018-01-30 2018-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Адаптивный фильтр режекции помех

Similar Documents

Publication Publication Date Title
RU2582877C1 (ru) Адаптивный компенсатор фазы пассивных помех
RU157108U1 (ru) Устройство компенсации фазы пассивных помех
RU2628904C1 (ru) Вычислитель для режектирования помех
RU2642418C1 (ru) Фильтр режектирования помех
RU2634190C1 (ru) Вычислитель для подавления помех
RU2674468C1 (ru) Фильтр режектирования помех
RU170068U1 (ru) Адаптивное устройство для подавления помех
RU2507536C1 (ru) Обнаружитель-измеритель когерентно-импульсных сигналов
RU161949U1 (ru) Вычислитель для автокомпенсации сдвигов фазы помех
RU173289U1 (ru) Вычислительное устройство подавления помех
RU2583537C1 (ru) Автокомпенсатор доплеровской фазы пассивных помех
RU2559750C1 (ru) Вычислитель доплеровской фазы пассивных помех
RU2560130C1 (ru) Устройство обнаружения-измерения радиоимпульсных сигналов
RU158719U1 (ru) Устройство адаптивной компенсации фазы пассивных помех
RU2550315C1 (ru) Доплеровский фазометр пассивных помех
RU2634191C1 (ru) Вычислитель для режекции помех
RU2624795C1 (ru) Автокомпенсатор доплеровских сдвигов фазы помех
RU2569331C1 (ru) Измеритель доплеровской фазы пассивных помех
RU155598U1 (ru) Устройство измерения фазы пассивных помех
RU155556U1 (ru) Устройство вычисления фазы пассивных помех
RU2513656C2 (ru) Фазометр когерентно-импульсных сигналов
RU155674U1 (ru) Фазометр многочастотных пассивных помех
RU2679972C1 (ru) Вычислитель для подавления помех
RU172503U1 (ru) Вычислитель-режектор пассивных помех
RU2628907C1 (ru) Вычислитель для компенсации помех

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170428