RU2551678C1 - Способ переработки природных и попутных газов - Google Patents

Способ переработки природных и попутных газов Download PDF

Info

Publication number
RU2551678C1
RU2551678C1 RU2013150547/04A RU2013150547A RU2551678C1 RU 2551678 C1 RU2551678 C1 RU 2551678C1 RU 2013150547/04 A RU2013150547/04 A RU 2013150547/04A RU 2013150547 A RU2013150547 A RU 2013150547A RU 2551678 C1 RU2551678 C1 RU 2551678C1
Authority
RU
Russia
Prior art keywords
gas
oxygen
methane
oil
heavy
Prior art date
Application number
RU2013150547/04A
Other languages
English (en)
Other versions
RU2013150547A (ru
Inventor
Валерий Иванович Савченко
Илья Геннадьевич Фокин
Владимир Сергеевич Арутюнов
Игорь Владимирович Седов
Рустам Нухкадиевич Магомедов
Геннадий Петрович Белов
Алексей Витальевич Никитин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН)
Priority to RU2013150547/04A priority Critical patent/RU2551678C1/ru
Priority to PCT/RU2014/000451 priority patent/WO2014209170A1/ru
Publication of RU2013150547A publication Critical patent/RU2013150547A/ru
Application granted granted Critical
Publication of RU2551678C1 publication Critical patent/RU2551678C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к нефтяной и газовой промышленности, в частности к процессам использования и переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана в химические продукты. Способ переработки природных и попутных нефтяных газов с повышенным содержанием тяжелых гомологов метана путем селективного окисления углеводородного газа и последующего карбонилирования получаемых продуктов состоит в том, что углеводородный газ смешивают с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов:кислород 5÷0,2:1 и проводят селективное окисление тяжелых компонентов при атмосферном или близком к атмосферному давлении и температуре 500-800°C, а полученные продукты подвергают обработке в присутствии катализаторов карбонилирования, содержащих соединения металлов VIII группы и фосфиновые (арсиновые) лиганды, при температурах 80-120°C и атмосферном давлении с получением жидких продуктов из ряда альдегиды, карбоновые кислоты, диэтилкетон, поликетоны и обогащенного метаном очищенного от тяжелых компонентов сухого топливного газа. Изобретение может быть использовано для решения проблемы утилизации попутного нефтяного газа, которая стоит перед всеми нефтяными компаниями.

Description

Изобретение относится к нефтяной и газовой промышленности, в частности к процессам использования и переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана в химические продукты. Эти газы являются ценным углеводородным сырьем, однако во многих случаях не находят практического применения и сжигаются на факелах. Попутный нефтяной газ сложно транспортировать и трудно использовать без дополнительной переработки или очистки от содержащихся в нем тяжелых C3+ гомологов метана. Проблема утилизации попутного нефтяного газа стоит перед всеми нефтяными компаниями. Для нефтяников транспортировка попутного нефтяного газа потенциальным потребителям, особенно из малодебитных месторождений, также как и его переработка, нерентабельна, так как затраты, как правило, превышают возможную отдачу.
Известны способы переработки попутных нефтяных и природных «жирных» газов с использованием физических методов разделения-абсорбции, компримирования и сепарации, дистилляции и др. Так, известен способ выделения углеводородов C3+ из попутных нефтяных газов путем противоточной абсорбции абсорбентом с последующей десорбцией абсорбированной фракции C3+ и возвратом регенерированного после десорбции абсорбента в абсорбер, характеризующийся тем, что используют попутные нефтяные газы с давлением 8-20 атм и абсорбцию проводят при температуре 8-40°C, при этом выходящий из абсорбера насыщенный абсорбент нагревают до 280-350°C и подают на десорбцию, которую проводят при давлении 15-19 атм, а в качестве абсорбента используют тяжелые компоненты исходных попутных газов (Патент РФ 2338734 (2007)). Недостатками указанного способа являются сложность процесса, высокая стоимость оборудования и необходимость дополнительных затрат энергии на регенерацию абсорбента.
Известен способ переработки попутного нефтяного газа, включающий компримирование исходного нефтяного попутного газа, его охлаждение и сепарацию с получением сухого газа и газового конденсата, в котором осуществляют двухступенчатую сепарацию, газовый конденсат подвергают дистилляции в ректификационной колонне с получением пропан-бутановой фракции и стабильного газового конденсата, а пропан-бутановую фракцию охлаждают и конденсируют (Патент РФ 2340841 (2007)). Недостатком указанного способа является большой дополнительный расход энергии на компримирование газа.
Известны также способы переработки попутных нефтяных и природных «жирных» газов, включающие дополнительную операцию химической переработки «тяжелых» компонентов углеводородных газов. Так, в процессах с использованием углеводородного сырья, содержащего высшие углеводороды, компанией Хальдор-Топсе осуществляется предварительный реформинг углеводородного сырья при температурах около 450-550°C. В процессе предреформинга с водяным паром за счет паровой конверсии C3+-углеводородов в этих условиях осуществляется «очистка» метанового газа от указанных соединений и обеспечивается последующий паровая конверсия метана без осмоления и закоксовывания катализаторов получения синтез-газа (Патент РФ 2263627 C2 (Хальдор Топсе) (2000)). Недостатками указанного способа являются существенное удорожание и усложнение оборудования за счет введения дополнительной стадии предреформинга и дополнительный расход энергии на проведение этой стадии.
Известен также способ и установка для совместной переработки сжиженных углеводородных газов (СУГ) и промысловой подготовки продукции нефтяных или газоконденсатных месторождений с получением продуктов, транспортируемых совместно с товарной нефтью и товарным газом, а именно технологии переработки сжиженных углеводородных газов (СУГ) в смесь ароматических углеводородов (ароматический концентрат). Способ включает промысловую подготовку попутного нефтяного газа (ПНГ) или «сырого газа» с получением товарного осушенного газа и газового конденсата, подачу конденсата на стадию стабилизации с выделением из упомянутого газового конденсата сжиженных углеводородных газов (СУГ), реакционное превращение СУГ в смесь ароматических углеводородов на стадии платформинга, разделение продуктов реакции платформинга на водород, углеводородный газ и жидкие продукты реакции, после чего из жидких продуктов реакции выделяют ароматические углеводороды, которые подают в магистральный нефтепровод в составе товарной нефти (Патент РФ 2435827 (2010)). Недостатками указанного способа являются сложная технологическая схема процесса, удорожание и усложнение оборудования за счет стадии предриформинга и высокий расход энергии на осуществление процесса.
Известны способы совместного использования низших олефинов, СО и водорода. В первую очередь, это промышленное гидроформилирование - способ получения высших жирных спиртов из димеров и тримеров пропилена и бутенов [J. Hagen. Industrial Catalysis. Wiley-VCH: Weinheim 2006]. Также на различных уровнях внедрения и разработки находятся процессы получения метилпропионата, диэтилкетона и других олигокетонов.
Известен способ карбонилирования этилена с использованием палладиевых катализаторов в непрерывном режиме [Continuous process for the carbonylation of ethylene. US 20120277474 А1]. Смесь, содержащую этилен и СО, при температуре 120°C пропускают над катализатором, содержащим соединение Pd или Co (Pd(OAc)2, Co(NO3)2 и др.), фосфиновый или арсиновый лиганд. Для увеличения выхода целевых продуктов возможно добавление в исходную газовую смесь этилена до оптимальных соотношений этилен/CO=25-50/1. Основными получаемыми продуктами являются метилпропионат (до 95%) и диэтилкетон в зависимости от состава катализатора и условий реакции. Реакция проводится в непрерывном режиме с рециклом газовой смеси. Рецикл газовой смеси составляет более 60%.
Наиболее близким к заявляемому является способ подготовки попутных нефтяных и сырых природных газов (способ-прототип) для использования в поршневых двигателях внутреннего сгорания (RU 2385897, C10L 3/10, F02M 31/00, 10.04.2010), который состоит в том, что подготавливаемый газ в смеси с кислородсодержащим газом, например с воздухом, подвергают термообработке при температуре 450-1100°C в течение 0,01-50 с при содержании свободного кислорода в смеси 0,5-5%. Термообработка может быть проведена также и в присутствии катализаторов окислительной конденсации метана, паровой, углекислотной конверсии метана, окислительного дегидрирования низших алканов или их комбинации. В качестве промоторов реакции могут выступать оксиды азота, пероксид водорода, соединения галогенов, непредельные или кислородсодержащие углеводороды или снижающие вероятность сажеобразования (пары воды). В результате при указанных условиях практически не наблюдается конверсия более легких углеводородов C1-C4, в то время как конверсия углеводородов C5+, имеющих очень низкие метановые числа, превышает 95%. Основными продуктами превращения C5+-углеводородов при такой термообработке попутных нефтяных газов являются (в порядке убывания выхода) этилен, метан, этан и монооксид углерода. Таким образом, обеспечивается селективная конверсия соединений, имеющих низкую детонационную стойкость и повышающих вероятность смоло- и сажеобразования, и происходит увеличение метанового числа поучаемого газа. Недостатком способа является то, что образующиеся ценные компоненты, в основном этилен, пропилен, водород и СО, сжигаются при выработке энергии. Кроме того, для собственного энергопотребления промыслов может быть использована лишь небольшая часть добываемого попутного газа (менее 20%).
Задачей изобретения является обеспечение технического результата, направленного на создание простого и экономичного способа переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана, в том числе газов второй и третьей ступеней сепарации нефти, имеющих давление, близкое к атмосферному, с получением очищенного «сухого» газа и ряда ценных жидких продуктов.
Поставленная задача достигается заявляемым способом переработки природных и попутных нефтяных газов с повышенным содержанием тяжелых гомологов метана путем селективного окисления углеводородного газа и последующего карбонилирования получаемых продуктов, в котором углеводородный газ смешивают с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов:кислород 5÷0,2:1 и проводят селективное окисление тяжелых компонентов при атмосферном или близком к атмосферному давлении и температуре 500-800°C, а полученные продукты подвергают обработке в присутствии катализаторов карбонилирования, содержащих соединения металлов VIII группы и фосфиновые (арсиновые) лиганды при температурах 80-120°C и атмосферном давлении, с получением жидких продуктов из ряда альдегиды, карбоновые кислоты, диэтилкетон, поликетоны и обогащенного метаном очищенного от тяжелых компонентов сухого топливного газа.
Сущность изобретения заключается в следующем. Селективное парциальное окисление тяжелых компонентов углеводородного газа, содержащего метан и его более тяжелые гомологи, кислородом или кислородсодержащим газом проводят при атмосферном или близком к атмосферному давлении, мольном соотношении углерод тяжелых компонентов:кислород - 5÷0,2:1, температуре 500-800°C и времени реакции 0,1-10 с. В этих условиях скорость окисления метана еще незначительна, а окислительному крекингу подвергаются только углеводороды C3+ с получением, главным образом, C2H4, C2H6, C3H6, H2 и CO. Полученную реакционную смесь, содержащую указанные продукты, непрореагировавший метан и дополнительное количество метана, образовавшегося при окислительном крекинге тяжелых компонентов газа, далее подвергают дополнительной обработке в присутствии катализаторов карбонилирования с получением жидких продуктов из ряда альдегиды, карбоновые кислоты, диэтилкетон, поликетоны и обогащенный метаном очищенный от тяжелых компонентов топливный газ для энергоустановок. Карбонилирование проводят известными приемами в паровой или жидкой фазе с предварительным выделением этилена или без такого выделения.
Благодаря проведению селективного парциального окисления в относительно мягких условиях при температуре 500-800°C и атмосферном давлении обеспечивается избирательное превращение только углеводородов C3+, тогда как метан в этих условиях практически не окисляется, и даже, наоборот, является одним из основных продуктов окислительного крекинга углеводородов C3+ наряду с этиленом, водородом и CO. Эти продукты совместно с непрореагировавшим метаном дополнительно обрабатывают с участием известных катализаторов карбонилирования, при этом СО взаимодействует со спиртами с получением карбоновых кислот и их эфиров, которые конденсируют с получением водного раствора этих соединений, а в виде газофазного продукта получают очищенный от примесей тяжелых компонентов углеводородный газ с более высоким метановым числом по сравнению с исходным углеводородным газом, который может использоваться как топливо для энергоустановок. Водный раствор карбоновых кислот и их эфиров может быть дополнительно фракционирован известными приемами с получением отдельных целевых компонентов либо напрямую использован при нефтедобыче.
Заявляемое изобретение характеризуется следующими примерами осуществления предложенного способа.
Пример 1. Смесь углеводородных газов состава: CH4 - 95%, C3H8 - 5% при давлении 1 бар и расходе 17,44 л/час нагревают до температуры 750°C и подвергают окислительному крекингу с участием кислорода, который подают в количестве 0,562 л/час (соотношение углерод тяжелых компонентов:кислород - 2,3:1). В результате парциального окисления получают газовую смесь с выходом 18 л/час, содержащую 42 мг (2,62%) водорода, 441 мг (1,96%) мооксида углерода, 580 мг (2,58%) этилена, 296 мг (0,88%) пропилена, 344 мг (2,38%) воды. Дальнейшее карбонилирование проводят после охлаждения смеси до 120°C в условиях, описанных в Continuous process for the carbonylation of ethylene. US 20120277474 А1.
Пример 2. Углеводородный газ с содержанием н-бутана 4,6% при давлении 1 бар и расходе 14,041 л/час нагревают до температуры 750°C и подвергают окислительному крекингу с участием кислорода, который подают в количестве 0,359 л/час (соотношение углерод тяжелых компонентов:кислород - 3,6:1). В результате парциального окисления получают газовую смесь с выходом 15,70 л/час, содержащую 21 мг (1,50%) водорода, 344 мг (1,75%) мооксида углерода, 705 мг (3,6%) этилена, 230 мг (0,78%) пропилена, 296 мг (2,35%) воды. Карбонилирование проводят в условиях примера 1.
Пример 3. Углеводородный газ с содержанием н-пентана 5% и метана 95% при давлении 1 бар и расходе 12,02 л/час нагревают до температуры 750°C и подвергают окислительному крекингу с участием кислорода, который подают в количестве 0,58 л/час (соотношение углерод тяжелых компонентов:кислород - 2,6:1). В результате парциального окисления получают газовую смесь с выходом 13,73 л/час, содержащую 37 мг (3,04%) водорода, 616 мг (3,59%) мооксида углерода, 799 мг (4,65%) этилена, 279 мг (1,08%) пропилена, 468 мг (4,24%) воды. Карбонилирование проводят в условиях примера 1.
Пример 4. Смесь углеводородных газов состава: CH4 - 89,9%, C3H8 - 5,0%, н-C5H12 - 5,1% при давлении 1 бар и расходе 12,005 л/час нагревают до температуры 750°C и подвергают окислительному крекингу с участием кислорода, который подают в количестве 0,595 л/час (соотношение углерод тяжелых компонентов:кислород - 4,1:1). В результате парциального окисления получают газовую смесь с выходом 14,62 л/час, содержащую 37 мг (2,86%) водорода, 583 мг (3,19%) мооксида углерода, 1194 мг (6,54%) этилена, 411 мг (1,50%) пропилена, 556 мг (4,74%) воды. Карбонилирование проводят в условиях примера 1.
Пример 5. Смесь углеводородных газов состава: CH4 - 90,0%, C3H8 - 5,0%, н-C5H12 - 5,0% при давлении 1 бар и расходе 11,66 л/час нагревают до температуры 750°C и подвергают окислительному крекингу с участием кислорода, который подают в количестве 0,942 л/час (соотношение углерод тяжелых компонентов:кислород - 2,5:1). В результате парциального окисления получают газовую смесь с выходом 13,61 л/час, содержащую 51 мг (4,17%) водорода, 1043 мг (6,13%) мооксида углерода, 1158 мг (6,81%) этилена, 432 мг (1,69%) пропилена, 791 мг (7,23%) воды. Карбонилирование проводят в условиях примера 1.

Claims (1)

  1. Способ переработки природных и попутных нефтяных газов с повышенным содержанием тяжелых гомологов метана путем селективного окисления углеводородного газа и последующего карбонилирования получаемых продуктов, отличающийся тем, что углеводородный газ смешивают с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов:кислород 5÷0,2:1 и проводят селективное окисление тяжелых компонентов при атмосферном или близком к атмосферному давлении и температуре 500-800°C, а полученные продукты подвергают обработке в присутствии катализаторов карбонилирования, содержащих соединения металлов VIII группы и фосфиновые (арсиновые) лиганды, при температурах 80-120°C и атмосферном давлении с получением жидких продуктов из ряда альдегиды, карбоновые кислоты, диэтилкетон, поликетоны и обогащенного метаном очищенного от тяжелых компонентов сухого топливного газа.
RU2013150547/04A 2013-06-26 2013-11-14 Способ переработки природных и попутных газов RU2551678C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2013150547/04A RU2551678C1 (ru) 2013-11-14 2013-11-14 Способ переработки природных и попутных газов
PCT/RU2014/000451 WO2014209170A1 (ru) 2013-06-26 2014-06-24 Способ переработки природных и попутных газов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013150547/04A RU2551678C1 (ru) 2013-11-14 2013-11-14 Способ переработки природных и попутных газов

Publications (2)

Publication Number Publication Date
RU2013150547A RU2013150547A (ru) 2015-05-20
RU2551678C1 true RU2551678C1 (ru) 2015-05-27

Family

ID=53283831

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013150547/04A RU2551678C1 (ru) 2013-06-26 2013-11-14 Способ переработки природных и попутных газов

Country Status (1)

Country Link
RU (1) RU2551678C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688932C1 (ru) * 2017-12-27 2019-05-23 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Способ переработки нефтезаводских газов

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2275352C2 (ru) * 2001-02-08 2006-04-27 Асетекс Хими Способ непрерывного производства уксусной кислоты и/или метилацетата
RU2448082C2 (ru) * 2006-05-11 2012-04-20 Гэс Текнолоджиз ЭлЭлСи Способ прямого окисления газообразных алканов

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2275352C2 (ru) * 2001-02-08 2006-04-27 Асетекс Хими Способ непрерывного производства уксусной кислоты и/или метилацетата
RU2448082C2 (ru) * 2006-05-11 2012-04-20 Гэс Текнолоджиз ЭлЭлСи Способ прямого окисления газообразных алканов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688932C1 (ru) * 2017-12-27 2019-05-23 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Способ переработки нефтезаводских газов

Also Published As

Publication number Publication date
RU2013150547A (ru) 2015-05-20

Similar Documents

Publication Publication Date Title
CN102746083B (zh) 一种低碳烯烃气体的分离工艺
JP6882169B2 (ja) 触媒急速熱分解プロセスによってバイオマスを低硫黄、低窒素、及び低オレフィン含有量のbtxに転換するためのプロセス
JPH06219969A (ja) 流出物中の水を阻害するための手段を備える、c2+パラフィン系仕込原料の接触脱水素方法および装置
JP2014510025A (ja) 混合アルコールを生産する混合ブテンの水和のプロセス
US20140031583A1 (en) Olefin conditioning in a fast catalytic pyrolysis recycle process
WO2014064172A2 (en) Process for recovery light molecules from olefinic feedstream
EP2940103B1 (en) A method for obtaining biofuels using ethanol, or mixtures of alcohol as biofuel or biocomponent
KR20110089320A (ko) MTO (Methanol To Olefins) 공정용 흡수제 탈메탄화기
EP2729433B1 (en) Process for producing olefins with heat transfer from steam cracking to alcohol dehydration process.
CN102675024B (zh) 一种甲醇转化制取低碳烯烃气体的分离工艺
RU2538970C1 (ru) Способ переработки попутных и природных газов
CN101990517B (zh) 制备合成气的方法ii
CN102675025B (zh) 甲醇转化制取低碳烯烃气体的分离方法
CN102675019B (zh) 甲醇转化制取低碳烯烃气体的分离工艺
RU2551678C1 (ru) Способ переработки природных и попутных газов
WO2014144099A1 (en) Ether blends via reactive distillation
JP5972975B2 (ja) 改良されたoxoプロセス及び廃油から合成ガスを製造する方法
JP2005533122A (ja) 炭素数4〜8のオレフィンを含有する原料流からプロピレンを製造する方法
US8258195B2 (en) Acetylene enhanced conversion of syngas to Fischer-Tropsch hydrocarbon products
EP3443052A1 (en) Separation of off gases from c3 hydrocarbons in propane dehydrogenation process
RU2688932C1 (ru) Способ переработки нефтезаводских газов
WO2014209170A1 (ru) Способ переработки природных и попутных газов
RU2458966C1 (ru) Способ переработки органического сырья (варианты)
TW201741275A (zh) 方法
RU2703135C1 (ru) Газохимический комплекс