RU2546699C2 - Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода - Google Patents

Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода Download PDF

Info

Publication number
RU2546699C2
RU2546699C2 RU2013129182/03A RU2013129182A RU2546699C2 RU 2546699 C2 RU2546699 C2 RU 2546699C2 RU 2013129182/03 A RU2013129182/03 A RU 2013129182/03A RU 2013129182 A RU2013129182 A RU 2013129182A RU 2546699 C2 RU2546699 C2 RU 2546699C2
Authority
RU
Russia
Prior art keywords
mixing
mixture
water
cement
pipeline
Prior art date
Application number
RU2013129182/03A
Other languages
English (en)
Other versions
RU2013129182A (ru
Inventor
Игорь Иванович Шапорин
Original Assignee
Общество с ограниченной ответственностью "Балластные трубопроводы СВАП"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" filed Critical Общество с ограниченной ответственностью "Балластные трубопроводы СВАП"
Priority to RU2013129182/03A priority Critical patent/RU2546699C2/ru
Priority to CA2917067A priority patent/CA2917067C/en
Priority to PCT/RU2014/000456 priority patent/WO2014209171A1/ru
Priority to EA201501155A priority patent/EA030349B1/ru
Publication of RU2013129182A publication Critical patent/RU2013129182A/ru
Application granted granted Critical
Publication of RU2546699C2 publication Critical patent/RU2546699C2/ru
Priority to IL242975A priority patent/IL242975A0/en
Priority to NO20160074A priority patent/NO20160074A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/048Granite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/308Iron oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/12Laying or reclaiming pipes on or under water
    • F16L1/20Accessories therefor, e.g. floats, weights
    • F16L1/24Floats; Weights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/06Coatings characterised by the materials used by cement, concrete, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • F16L9/153Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and concrete with or without reinforcement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00706Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like around pipelines or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Изобретение относится к трубопроводной технике, а именно к материалам, наносимым на наружную поверхность труб в качестве защитного утяжеляющего покрытия. Технический результат - обеспечение плотности защитного бетонного материала в пределах от 2600 до 3400 кг/м3. В способе изготовления защитного утяжеляющего бетонного покрытия трубопровода, включающем смешивание цемента, заполнителя, пластифицирующей добавки и воды, нагнетание полученной смеси в кольцевое пространство, образованное внешней поверхностью трубопровода и установленной на ней с зазором несъемной опалубкой, затвердевание полученного покрытия, на смешивание подают портландцемент из расчета его содержания в смеси от 8,8 мас.% до 20,0 мас.%, воду вводят из расчета отношения воды к цементу от 0,31 до 0,63, в качестве пластифицирующей добавки на смешивание подают пластификатор и пеногаситель в количестве от 1,0 кг/м3 до 3,0 кг/м3, подаваемый на смешивание заполнитель с размером зерен, не превышающим 10 мм, выбирают из баритовой или железосодержащей руды, или габродиабаза, или гранита в смеси или по отдельности, при этом смешивание компонентов осуществляют из расчета получения смеси, имеющей показатель текучести, измеряемый по расплыву конуса, равный от 55 см до 75 см, и показатель содержания воздуха от 1% до 4% от объема. Изобретение развито в зависимых пунктах формулы изобретения. 2 з.п. ф-лы, 2 табл.

Description

Изобретение относится к трубопроводной технике, а именно к материалам, наносимым на наружную поверхность труб в качестве защитного утяжеляющего бетонного покрытия. Известен способ приготовления балластного материала для подводного трубопровода, включающий смешивание цемента, заполнителя, воды и пластифицирующей добавки, в котором в качестве заполнителя используют крупный заполнитель из группы: барит, или железосодержащая руда, или их смесь, при этом смешивание осуществляют в две стадии: на первой стадии в смеситель подают от 10 мас. % до 20 мас. % указанного крупного заполнителя от его общего количества, цемент, воду и пластифицирующую добавку и осуществляют смешивание в течение от 10 до 15 сек, а на второй стадии осуществляют подачу оставшегося указанного крупного заполнителя равными порциями с интервалом в от 10 до 15 сек при перемешивании и осуществляют смешивание компонентов до получения гомогенной смеси (RU 2412393, 20.02.2011).
Известен балластный материал, содержащий цемент, баритовую руду, воду и пластификатор. В качестве пластификатора используют поликарбоацетил. При изготовлении балластного материала используют следующий фракционный состав баритовой руды :
крупная фракция от 5 мм до 25 мм - от 8 мас. % до 16 мас. %,
мелкая фракция от 0,16 мм до 5 мм - от 70 мас. % до 84 мас. %,
очень мелкая фракция от 0,01 дм до 160 дм - от 8 мас. % до 14 мас. %
(RU 2399828, 20.09.2010).
Известен также балластный материал, содержащий цемент, заполнитель, пластификатор и воду. В качестве цемента использован сульфатостойкий портландцемент, в качестве пластификатора - поликарбоксилат РСЕ, а в качестве заполнителя - баритовый продукт, баритовая руда и железомарганцевый концентрат. Материал имеет следующее соотношение компонентов:
портландцемент - от 8,2 мас. % до 10,5 мас. %,
вода - от 5,2 мас. % до 6,7 мас. %,
пластификатор - от 0,1 мас. % до 0,15 мас. %,
баритовый продукт - от 18 мас. % до 28 мас. % с плотностью от 3,78 кг/см3 до 3,82 кг/см3 и влажностью от 0,9% до 2,1%,
баритовая руда - от 18 мас. % до 28 мас. % с плотностью от 3,9 кг/см3 до 4,1 кг/см3 и влажностью 2%,
железомарганцевый концентрат - от 25 мас. % до 45 мас. % с плотностью от 4,2 кг/см3 до 4,5 кг/см3 и влажностью 4%.
Отношение воды к портландцементу составляет от 0,35 до 0,5.
Компоненты заполнителя имеют следующий гранулометрический состав:
до 0,16 см - до 5%,
от 0,16 см до 1,0 см - до 25%,
от 1,0 см до 2,5 см - до 35%
от 2,5 см до 5,0 см - остальное
(RU 2437020, 20.12.2011).
Недостатками вышеупомянутых технических решений является недостаточно высокая вязкость раствора и время сохранения подвижности бетонной смеси, что затрудняет качественное заполнение межтрубного пространства конструкции труба-в-трубе и вызывает необходимость пооперационного контроля влажности сырья для исключения разрыва наружной оболочки и расслоения бетонного раствора внутри залитой конструкции.
Наиболее близким к предлагаемому техническому решению является способ изготовления балластного покрытия на трубопроводе, включающий смешивание исходных компонентов, а именно сульфатостойкого портландцемента, баритовой руды, пластифицирующей добавки на основе поликарбоксилатного эфира и воды. Для смешивания берут компоненты в следующем количестве:
сульфатостойкий портландцемент от 12 мас. % до 17 мас. %,
вода от 4 мас. % до 10 мас. %,
пластифицирующая добавка на основе поликарбоксилатного эфира от 0,1 мас. % до 0,25 мас. %,
баритовая руда - остальное.
Причем на смешение подают разные фракции баритовой руды при их следующем содержании (мас. %):
крупная от 3 мм до 25 мм - 18 мас. %,
мелкая от 0,16 мм до 3 мм - от 70 мас. % до 85 мас. %,
очень мелкая от 0,01 мм до -0,16 мм - от 7 мас. % до 16 мас. %.
Воду для бетонной смеси подвергают предварительной обработке, пропуская ее через магнитное поле, в котором поддерживают напряженность величиной от 120000 А/м до 140000 А/м, со скоростью от 0,5 м/с до 3,0 м/с, при этом время обработки воды составляет не менее 2 часов (RU 2453515, 20.06.2012).
Однако известный способ достаточно сложно применить к получению смесей, склонных к самоуплотнению, так как вода, подвергнутая обработке в магнитном поле, имеет относительно малый период эффективного действия, что накладывает существенные ограничения на время транспортировки раствора, а также поведение подобных бетонных смесей при приложении внешних сил (например, подача смеси бетонным насосом) подвержено резким изменениям.
Технической задачей, решаемой предлагаемым изобретением, является создание способа изготовления защитного утяжеляющего бетонного покрытия трубопровода с высокой заданной плотностью, имеющего после затвердевания и выдержки высокую прочность на сжатие, что в свою очередь позволяет получить технический результат, а именно уменьшить наружный диаметр труб с защитным балластным покрытием для подводной, подземной и наземной прокладки.
Заявленный технический результат достигается заявленным способом изготовления защитного утяжеляющего бетонного покрытия трубопровода, который включает смешивание цемента, заполнителя, пластифицирующей добавки и воды. Полученную смесь нагнетают в кольцевое пространство, образованное внешней поверхностью трубопровода и установленной на ней с зазором несъемной опалубкой. Полученное покрытие оставляют для затвердевания. Согласно предлагаемому способу на смешивание подают портландцемент из расчета его содержания в смеси от 8,8 мас. % до 20,0 мас. %, воду вводят из расчета отношения воды к цементу, равного от 0,31 до 0,63. В качестве пластифицирующей добавки на смешивание подают пластификатор с пеногасителем. Количество используемой пластифицирующей добавки в смеси составляет от 1 кг/м3 до 3 кг/м3. Подаваемый на смешивание заполнитель должен содержать размер зерен, не превышающий 10 мм. Заполнитель выбирают из баритовой или железосодержащей руды, или габродиабаза, или гранита. При этом смешивание компонентов вместе или по отдельности осуществляют из расчета получения смеси, имеющей показатель текучести, измеряемый по расплыву конуса, равный от 55 см до 75 см, и показатель содержания воздуха от 1% до 4% от объема смеси. Заполнитель, подаваемый на смешение, имеет следующий гранулометрический состав:
до 0,16 мм - до 8%,
от 0,16 мм до 1,25 мм - до 35%,
от 1,25 мм до 2,5 мм - до 37%,
от 2,5 мм до 10,0 мм - остальное.
Предпочтительно пластифицирующая добавка дополнительно содержит лигносульфонаты, меламинсульфонаты и нафталинсульфонаты как каждый отдельно, так и в смеси.
Количество пластификтора должно составлять до 1% по сухому веществу от массы цемента.
Для получения смеси необходимой подвижности и достаточной вязкости, а также для исключения ее расслоения количество пластификатора подобрано таким образом, чтобы полученный материал, с одной стороны, был достаточно текучим, а именно расплыв конуса должен составлять от 55 см до 75 см, а с другой стороны, содержание воздуха должно находиться в пределах от 1% до 4% от объема. Таким образом, в предлагаемом способе подаваемая на смешение пластифицирующая добавка, состоящая из пластификатора и пеногасителя в количестве от 1,0 кг/м3 до 3,0 кг/м3 смеси одновременно позволяет получить пластичную бетонную массу, которая заполнит все пространство между трубами и в то же время после застывания бетонное покрытие будет иметь высокую плотность. При этом в пластифицирующей добавке содержание пеногасителя не должно превышать 50%. Повышение содержания пеногасителя приводит к резкому снижению текучести бетонной смеси и появлению пустот в бетонном покрытии, что снижет характеристики прочности на сжатие бетонного покрытия. Малое содержание пеногасителя менее 1% приводит к повышению содержания воздуха в бетонной смеси и в результате снижаются показатели по плотности бетонного покрытия.
Отношение воды к цементу, выбранное в пределах от 0,31 до 0,63, необходимо для достижения требуемой подвижности и прочности бетонного материала. Использование воды в меньшем количестве приводит к снижению подвижности бетона и появлению воздушных пустот после застывания, а увеличение воды приводит к расслоению и потере прочности на сжатие бетонного покрытия.
В дальнейшем приведен пример осуществления заявленного способа изготовления защитного утяжеляющего бетонного покрытия трубопровода на примере использования в качестве заполнителя баритовой руды, что не ограничивает объем настоящего изобретения.
Пример осуществления способа
Вначале осуществляют подготовку исходных компонентов смеси. Процесс подготовки компонентов бетонной смеси включает измельчение инертного заполнителя, например баритовой руды, до размеров, не превышающих 10 мм. Использование более крупных фракций заполнителя приводят к снижению плотности получаемого покрытия. При необходимости баритовую руду подогревают до 5°C (максимально), особо следя за расплавлением слипшихся (смерзшихся) кусков породы для предотвращения расслоения балластной смеси при транспортировке. Затем измеряют влажность баритовой руды. По результатам измерения влажности уточняют количество баритовой руды в составе балластного материала по формуле:
m1=m2/(l-W/100),
где m1 - масса баритовой руды с учетом влажности,
m2 - масса баритовой руды в номинальном рецепте,
W - влажность, выраженная в процентах.
Баритовую руду просеивают через бурат для выделения примесей крупной фракции. Затем баритовую руду и портландцемент в количестве его содержания в смеси от 8,8% до 20,0% через систему транспортеров подают на весы, где компоненты взвешивают согласно уточненному составу. Гранулометрический состав заполнителя приведен в Таблице 1, выбор соотношений обусловлен получением балластного покрытия с заданной плотностью.
Для обеспечения текучести бетонной смеси при заливке в нее добавляют пластифицирующую добавку в количестве от 1,0 кг/м3 до 3,0 кг/м3. Пластифицирующая добавка представляет собой смесь из пластификатора и пеногасителя. Причем количество пеногасителя в пластифицирующей добавке должно быть не более 50%. В качестве пеногасителя можно использовать трибутилфосфат или силиконовый безводный самодиспергирующийся пеногаситель марки Пента-4604. В качестве пластификатора могут выступать любые известные пластификаторы на основе поликарбоксилатного или полиакрилатного эфира. Пластифицирующая добавка может дополнительно содержать лигносульфонаты, меламинсульфонаты и нафталинсульфонаты. Указанные выше компоненты могут быть использованы как по отдельности, так в любом сочетании, что не влияет на получение заявленного технического результата. Количество пластификатора должно быть не более 1% по сухому веществу от массы цемента.
В полученную смесь добавляют воду из расчета отношения воды к цементу, равного от 0,31 до 0,63, и тщательно перемешивают. Перемешивание продолжают до получения однородной гомогенной смеси с расплывом по конусу от 55 см до 75 см.
Полученная бетонная смесь нагнетается бетонным насосом в пространство между проводящей трубой и установленной на ней несъемной опалубкой. При этом собранная трубная конструкция располагается на стенде, установленном под определенным углом. Нагнетание раствора производится через специальные съемные заглушки на конце трубы. При этом заливаемая конструкция располагается наклонно (один конец ниже другого) и заливка производится с конца, расположенного ниже. Закачка бетонной смеси осуществляется бетонным насосом до полного заполнения конструкции - до выхода смеси из патрубка крышки конструкции, расположенной выше. После завершения процедуры заполнения конструкции она находится на стенде в течение времени выдержки до набора прочности не менее 5 МПа, после чего складируется до набора транспортной прочности не менее 22 МПа.
В зависимости от технологических потребностей при заливке конструкции трубы могут быть использованы различные виды наружной несъемной опалубки, например, стальная спиралевидная опалубка может выполняться замками наружу и вовнутрь конструкции и может быть покрашена либо покрыта различными полимерными материалами, что позволяет получать различные характеристики изделий.
Для усиления конструкции в пространстве между трубой и несъемной опалубкой возможно расположение арматуры (стальной или полимерной) в виде прутков или сетки, соединенной сваркой или увязанной, а также для усиления прочности бетона возможно применение фибры (стальной или полимерной).
Заявленный способ позволяет с высокой точностью обеспечить заданную плотность защитного бетонного утяжеляющего покрытия трубопровода в пределах от 2600 до 3400 кг/м3.
Определение средней плотности смесей выполнено в соответствии с ГОСТ 12730.1-78. Прочность бетона на сжатие определялись в соответствии с ГОСТ 10180-90.
Для получения покрытия с различными характеристиками по плотности и прочности можно использовать в качестве заполнителей не только барит, но и железосодержащие руды, габродиабаз, гранит. Указанные заполнители можно использовать как в отдельности друг от друга, так и в различных сочетаниях. Примеры составов, используемых в защищаемом способе, и полученные показатели плотности и прочности на сжатие полученного покрытия приведены в Таблице 2.
При использовании в составе сочетание различных заполнителей фракционный ряд дробится (подготавливается) по каждому компоненту отдельно. При этом мелкая и крупная фракции заполнителя состоят из одного и того же компонента и в соотношениях, приведенных в Таблице 1.
Заявленные количества подаваемых исходных компонентов и, главное, характеристики получаемой смеси были определены в ходе многочисленных натурных экспериментов, результаты которых приведены в Таблице 1 и Таблице 2. В Таблице 1 приведен гранулометрический состав заполнителей. Наличие мелкой фракции заполнителя позволяет создать условия, снижающие расслоение защитного утяжеляющего бетонного материала в процессе заливки.
В Таблице 2 приведены примеры различных составов защитного утяжеляющего покрытия трубопровода с использованием компонентов различной плотности и приведены показатели прочности на сжатие полученного балластного материала для каждого состава, а также приведены данные по покрытию, полученному в соответствии с прототипом.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007

Claims (3)

1. Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода, включающий смешивание цемента, заполнителя, пластифицирующего компонента и воды, нагнетание полученной смеси в пространство, образованное внешней поверхностью трубопровода и установленной на ней с зазором несъемной опалубки, затвердевание полученного покрытия, отличающийся тем, что на смешивание подают портландцемент из расчета его содержания в смеси от 8,8 мас. % до 20,0 мас. %, воду вводят из расчета отношения воды к цементу, равного от 0,31 до 0,63, в качестве пластифицирующей добавки используют добавку на основе поликарбоксилатного или полиакрилатного эфира в количестве от 1 кг/м3 до 3 кг/м3 смеси, на смешивание подают пластификатор с пеногасителем, подаваемый на смешивание заполнитель с размером зерен, не превышающим 10 мм, выбирают из баритовой или железосодержащей руды, или габродиабаза, или гранита, при этом смешивание компонентов вместе или по отдельности осуществляют из расчета получения смеси, имеющей показатель текучести, измеряемый по расплыву конуса, равный от 55 см до 75 см, и показатель содержания воздуха от 1% об до 4% об., а подаваемый на смешивание заполнитель имеет следующий гранулометрический состав:
до 0,16 мм - до 8%,
от 0,16 мм до 1,25 мм - до 35%,
от 1,25 мм до 2,5 мм - до 37%,
от 2,5 мм до 10,0 мм - остальное.
2. Способ по п. 1, отличающийся тем, что пластифицирующая добавка дополнительно содержит лигносульфонаты, меламинсульфонаты и нафталинсульфонаты как каждый отдельно, так и в смеси.
3. Способ по п. 1, отличающийся тем, что пластификатор используют в количестве до 1% по сухому веществу от массы цемента.
RU2013129182/03A 2013-06-27 2013-06-27 Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода RU2546699C2 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2013129182/03A RU2546699C2 (ru) 2013-06-27 2013-06-27 Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода
CA2917067A CA2917067C (en) 2013-06-27 2014-06-26 Method for manufacturing a protective concrete weight coating for pipelines
PCT/RU2014/000456 WO2014209171A1 (ru) 2013-06-27 2014-06-26 Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода
EA201501155A EA030349B1 (ru) 2013-06-27 2014-06-26 Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода
IL242975A IL242975A0 (en) 2013-06-27 2015-12-20 A method for producing concrete coating for pipes
NO20160074A NO20160074A1 (en) 2013-06-27 2016-01-14 Method for manufacturing a protective concrete weight coating for pipelines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013129182/03A RU2546699C2 (ru) 2013-06-27 2013-06-27 Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода

Publications (2)

Publication Number Publication Date
RU2013129182A RU2013129182A (ru) 2015-01-10
RU2546699C2 true RU2546699C2 (ru) 2015-04-10

Family

ID=52142363

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013129182/03A RU2546699C2 (ru) 2013-06-27 2013-06-27 Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода

Country Status (6)

Country Link
CA (1) CA2917067C (ru)
EA (1) EA030349B1 (ru)
IL (1) IL242975A0 (ru)
NO (1) NO20160074A1 (ru)
RU (1) RU2546699C2 (ru)
WO (1) WO2014209171A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647257C2 (ru) * 2016-06-17 2018-03-15 Общество с ограниченной ответственностью "СВАП ИНЖИНИРИНГ" Способ производства обетонированной трубы с кабель-каналом
RU2657381C2 (ru) * 2016-11-17 2018-06-13 Общество с ограниченной ответственностью "СВАП ИНЖИНИРИНГ" Способ производства обетонированной трубы с кабель-каналом

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2288393A (en) * 1994-04-07 1995-10-18 Orr Adams Francis Alfred Cementitious coatings
WO2000020183A1 (fr) * 1998-10-05 2000-04-13 Lafarge Aluminates Tube interieurement recouvert d'une composition cimenteuse et son procede de fabrication
RU2399828C2 (ru) * 2008-07-07 2010-09-20 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Балластный материал
RU2412393C1 (ru) * 2009-11-11 2011-02-20 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Способ приготовления балластного материала для подводного трубопровода
RU2437020C1 (ru) * 2010-12-08 2011-12-20 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Балластный материал для подводных магистральных трубопроводов
RU2453515C1 (ru) * 2010-12-03 2012-06-20 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Способ приготовления бетонной смеси для изготовления балластной трубы и устройство для предварительной подготовки воды затворения бетонной смеси

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2288393A (en) * 1994-04-07 1995-10-18 Orr Adams Francis Alfred Cementitious coatings
WO2000020183A1 (fr) * 1998-10-05 2000-04-13 Lafarge Aluminates Tube interieurement recouvert d'une composition cimenteuse et son procede de fabrication
RU2399828C2 (ru) * 2008-07-07 2010-09-20 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Балластный материал
RU2412393C1 (ru) * 2009-11-11 2011-02-20 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Способ приготовления балластного материала для подводного трубопровода
RU2453515C1 (ru) * 2010-12-03 2012-06-20 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Способ приготовления бетонной смеси для изготовления балластной трубы и устройство для предварительной подготовки воды затворения бетонной смеси
RU2437020C1 (ru) * 2010-12-08 2011-12-20 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Балластный материал для подводных магистральных трубопроводов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647257C2 (ru) * 2016-06-17 2018-03-15 Общество с ограниченной ответственностью "СВАП ИНЖИНИРИНГ" Способ производства обетонированной трубы с кабель-каналом
RU2657381C2 (ru) * 2016-11-17 2018-06-13 Общество с ограниченной ответственностью "СВАП ИНЖИНИРИНГ" Способ производства обетонированной трубы с кабель-каналом

Also Published As

Publication number Publication date
EA030349B1 (ru) 2018-07-31
CA2917067A1 (en) 2014-12-31
NO20160074A1 (en) 2016-01-14
RU2013129182A (ru) 2015-01-10
EA201501155A1 (ru) 2016-05-31
IL242975A0 (en) 2016-02-29
CA2917067C (en) 2018-04-24
WO2014209171A1 (ru) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5833859B2 (ja) 気泡モルタル混練物および中詰め工法
JP2011132041A (ja) セメントグラウト用混和剤
RU2546699C2 (ru) Способ изготовления защитного утяжеляющего бетонного покрытия трубопровода
JP2011136864A (ja) ポーラスコンクリート用混和剤及びポーラスコンクリート
JP6423766B2 (ja) 高流動コンクリート、及び、それを用いた覆工コンクリートの打設方法
US7678191B2 (en) Fast-setting pourable mortars with high fluidity
CN108529934B (zh) 一种自密实混凝土及其制备方法
RU2453515C1 (ru) Способ приготовления бетонной смеси для изготовления балластной трубы и устройство для предварительной подготовки воды затворения бетонной смеси
JP6203546B2 (ja) ポリマーセメントモルタル、及びポリマーセメントモルタルを用いた工法
JP3550341B2 (ja) 可塑性注入材
JP6165447B2 (ja) ブリーディングが低減したコンクリートの製造方法
US20170183263A1 (en) Method for manufacturing a protective concrete weight coating for pipelines
KR101614119B1 (ko) 보통콘크리트에 공기 혼입과 소산 및 조강혼합재료 첨가를 통한 속경성 콘크리트를 제조하는 속경성 콘크리트 제조장치 및 이의 제조방법
JP6591784B2 (ja) コンクリート床状構造物の施工方法
JP2016190415A (ja) 重量コンクリート構造物の製造方法及び重量コンクリート構造物
Sorokina Investigation of the mobility of a concrete mixture as a fundamental factor in the formation of mixtures for 3D-printing
JP6231818B2 (ja) モルタル、モルタル硬化体及び粉体組成物
JP6039208B2 (ja) コンクリート組成物の製造方法
KR102661980B1 (ko) 도로 또는 지반 공동부 긴급 복구용 조성물 및 도로 또는 지반 공동부 긴급 복구 방법
JPS6358775B2 (ru)
JP2013220973A (ja) セメント組成物
RU2413117C2 (ru) Способ нанесения балластного материала на поверхность трубы для подводного трубопровода
RU2165394C1 (ru) Способ приготовления бетонной смеси
JP2514576B2 (ja) 炭酸カルシウムを主成分とした岩石粉mpグラウトを用いたエア―モルタルにより目的個所を充填固結する工法
JP5440956B2 (ja) グラウト材充填方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner