RU2545090C1 - Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой - Google Patents

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой Download PDF

Info

Publication number
RU2545090C1
RU2545090C1 RU2013145523/28A RU2013145523A RU2545090C1 RU 2545090 C1 RU2545090 C1 RU 2545090C1 RU 2013145523/28 A RU2013145523/28 A RU 2013145523/28A RU 2013145523 A RU2013145523 A RU 2013145523A RU 2545090 C1 RU2545090 C1 RU 2545090C1
Authority
RU
Russia
Prior art keywords
amplitude
controlled
differential resistance
bipole
terminal
Prior art date
Application number
RU2013145523/28A
Other languages
English (en)
Other versions
RU2013145523A (ru
Inventor
Вячеслав Андреевич Сергеев
Илья Владимирович Фролов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет"
Priority to RU2013145523/28A priority Critical patent/RU2545090C1/ru
Application granted granted Critical
Publication of RU2545090C1 publication Critical patent/RU2545090C1/ru
Publication of RU2013145523A publication Critical patent/RU2013145523A/ru

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле R д и ф | I и = U m / M I и .
Figure 00000005
Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.

Description

Изобретение относится к технике измерения параметров нелинейных элементов электрических цепей с температурозависимой вольт-амперной характеристикой (ВАХ) и может быть использовано, например, при параметрическом контроле полупроводниковых диодов и полупроводниковых приборов с р-n-переходами.
Известен способ измерения дифференциального сопротивления полупроводниковых диодов (см. ГОСТ 18986.14-85 Диоды полупроводниковые. Методы измерения дифференциального и динамического сопротивлений), заключающийся в подаче постоянного тока I0 для задания рабочей точки и переменного гармонического тока малой амплитуды Im в качестве тестового сигнала на калибровочный резистор сопротивлением RK, в измерении амплитуды U переменного напряжения на калибровочном резисторе, в подключении к генератору тока вместо калибровочного резистора контролируемого диода и в измерении амплитуды U переменной составляющей напряжения на контролируемом диоде и определении дифференциального сопротивления диода по формуле R д и ф | I и = ( U m д / U m к ) R K .
Figure 00000001
Условием точного измерения дифференциального сопротивления нелинейных двухполюсников является малость тестового сигнала. В ГОСТ 18986.14-85 условие малости тестового сигнала задается в виде ограничения амплитуды переменного тока, которая не должна превышать 10% значения постоянного тока.
Недостатком известного способа является большая погрешность, обусловленная саморазогревом p-n-перехода диода в процессе измерения рассеиваемой мощностью.
Известен способ определения дифференциального сопротивления температурозависимых двухполюсников по наклону изотермической ВАХ, измеренной в импульсном режиме путем подачи на контролируемый двухполюсник последовательности импульсов тока с нарастающей амплитудой, и в измерении амплитуды импульсов напряжения на контролируемом двухполюснике (см. Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. - М.: Высшая школа. - 1975. - С.777). Способ измерения изотермической ВАХ путем подачи последовательности импульсов тока с линейно нарастающей амплитудой реализован ряде современных параметрических анализаторов (см., например, Keithley 420 SCS Parameter Analyzer: www.keithley.ru/products/semiconductors/dcac/carrentvoltage/420scs).
Недостатком способа является низкая точность, обусловленная большой погрешностью однократного измерения импульсного напряжения на контролируемом двухполюснике и необходимостью вычисления разности двух близких по значению напряжений. Известно, что погрешность разности двух близких по значению физических величин, измеренных даже с небольшой погрешностью, во много раз превышает погрешность измерения каждой из величин.
Технический результат - повышение точности измерения дифференциального сопротивления нелинейных двухполюсников с температурочувствительной ВАХ.
Технический результат достигается тем, что в известном способе, состоящем в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле R д и ф | I 0 = U m / M I и .
Figure 00000002
Формы сигналов на контролируемом двухполюснике, иллюстрирующие и поясняющие принцип измерения, показаны на фиг.1. При подаче на контролируемый двухполюсник амплитудно-модулированной по гармоническому закону последовательности импульсов тока импульсное напряжение на контролируемом двухполюснике будет также амплитудно-модулированным по закону, близкому к гармоническому, со средней амплитудой Uи, при этом, если глубина M модуляции импульсов тока мала, амплитуда Um огибающей импульсного напряжения на контролируемом двухполюснике будет пропорциональна дифференциальному сопротивлению двухполюсника U m = M I и R д и ф | I и .
Figure 00000003
При малой длительности τи и большой скважности Qи импульсов тока разогревом активной области контролируемого двухполюсника рассеиваемой мощностью можно пренебречь. Сущность изобретения состоит в том, что при амплитудно-импульсной модуляции тестовых импульсов тока и последующем измерении полезного сигнала на частоте модуляции за счет частотной фильтрации и многократного повторения измерительного сигнала существенно уменьшаются шумы и пульсации источника питания и измерительных цепей, что повышает помехоустойчивость способа и снижает погрешность измерения дифференциального сопротивления контролируемого двухполюсника по сравнению с известными способами.
Выбор временных параметров тестового сигнала, то есть длительности τи и скважности Qи импульсов тока, определяется теплофизическими параметрами двухполюсника: тепловой постоянной времени τT и тепловым сопротивлением RT. Для полупроводниковых приборов характерная тепловая постоянная времени кристалла составляет сотни микросекунд и длительность импульсов тока рекомендуется выбирать не более 100 мкс. Приращение температуры активной области полупроводникового прибора в импульсном режиме при малой глубине модуляции определяется по формуле ΔT=RTUиIи/Qи, то есть в Qи раз меньше, чем в статическом режиме. В большинстве практических случаев при тех параметрах электрического режима, при которых измеряются характеристики полупроводниковых приборов, перегрев их активной области в статическом режиме не превышает 40-50°C и уже при скважности Qи>30 перегрев активной области контролируемого двухполюсника в импульсном не будет превышать 1-2°C. Заметим, что частота модуляции Ω последовательности импульсов тока согласно теоремы Котельникова должна выбираться из условия Ω<(1/4τиQи).
Структурная схема устройства, реализующего способ, показана на фиг.2, а эпюры, поясняющие работу устройства, - на фиг.3.
Устройство содержит клеммы 1 для подключения контролируемого двухполюсника, генератор импульсов тока 2, генератор низкой частоты 3, модулятор 4, демодулятор 5 и селективный вольтметр 6. При этом одна из клемм для подключения контролируемого двухполюсника соединена с общей шиной (землей) устройства, а вторая клемма - с выходом модулятора 4, сигнальный вход которого соединен с выходом генератора импульсов тока 2, а модулирующий вход модулятора соединен с выходом генератора низкой частоты 3, вторая клемма для подключения контролируемого двухполюсника соединена также со входом демодулятора 5, выход которого подключен ко входу селективного вольтметра 6.
Устройство работает следующим образом. После подключения контролируемого двухполюсника к клеммам 1 и подачи сигнала пуск на генератор импульсов тока 2 и генератор низкой частоты 3 на входы модулятора 4 поступает последовательность коротких импульсов тока большой скважности и модулирующее гармоническое напряжение заданной низкой частоты, с выхода модулятора амплитудно-модулированная последовательность импульсов тока со средней амплитудой Iи и глубиной модуляции M (фиг.3а) подается на контролируемый двухполюсник, импульсное напряжение на контролируемом двухполюснике, которое также является импульсно модулированным (фиг.3б) подается на вход демодулятора 5 и с выхода демодулятора огибающая импульсного напряжения (фиг.3в) поступает на вход селективного вольтметра 6, настроенного на частоту модуляции. По показанию Aпок селективного вольтметра определяем амплитуду Um огибающей импульсного напряжения по формуле Um=kAпок, где коэффициент k определяется типом преобразователя переменного напряжения в постоянное селективного вольтметра, и далее рассчитываем дифференциальное сопротивление контролируемого двухполюсника по формуле
R д и ф | I и = U m / M I и .
Figure 00000004
Заметим, что если глубину М модуляции тока при заданной средней амплитуде импульсов тока задать в выбранной системе единиц из условия MIи=k×10n, где n - целое число, то показания селективного вольтметра будут равны дифференциальному сопротивлению контролируемого двухполюсника.

Claims (1)

  1. Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле
    R д и ф | I и = U m / M I и .
    Figure 00000005
RU2013145523/28A 2013-10-10 2013-10-10 Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой RU2545090C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013145523/28A RU2545090C1 (ru) 2013-10-10 2013-10-10 Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013145523/28A RU2545090C1 (ru) 2013-10-10 2013-10-10 Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Publications (2)

Publication Number Publication Date
RU2545090C1 true RU2545090C1 (ru) 2015-03-27
RU2013145523A RU2013145523A (ru) 2015-04-20

Family

ID=53282704

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013145523/28A RU2545090C1 (ru) 2013-10-10 2013-10-10 Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Country Status (1)

Country Link
RU (1) RU2545090C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU347683A1 (ru) * А. А. Рибикаускас , А. А. Чеснис Институт физики полупроводников Литовской ССР Устройство для измерения дифференциальных сопротивлений нелинейных элементов
SU481857A1 (ru) * 1973-12-11 1975-08-25 Институт Физики Полупроводников Ан Литовской Сср Устройство дл измерени дифференциального сопротивлени нелинейных элементов
SU482697A1 (ru) * 1974-01-03 1975-08-30 Институт Физики Полупроводников Ан Лит.Сср Устройство дл измерени дифференциального сопротивлени диодных структур
CN102288337B (zh) * 2011-06-15 2013-03-13 基康仪器(北京)有限公司 差动电阻式传感器的测量方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU347683A1 (ru) * А. А. Рибикаускас , А. А. Чеснис Институт физики полупроводников Литовской ССР Устройство для измерения дифференциальных сопротивлений нелинейных элементов
SU481857A1 (ru) * 1973-12-11 1975-08-25 Институт Физики Полупроводников Ан Литовской Сср Устройство дл измерени дифференциального сопротивлени нелинейных элементов
SU482697A1 (ru) * 1974-01-03 1975-08-30 Институт Физики Полупроводников Ан Лит.Сср Устройство дл измерени дифференциального сопротивлени диодных структур
CN102288337B (zh) * 2011-06-15 2013-03-13 基康仪器(北京)有限公司 差动电阻式传感器的测量方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE Bree, P Leussink, "The Wheatstone Gadget: a simple ciruit for the measuring differential resistance variations", Sixth Workshop on Micromachining Micromechanics and Microsystem, Копенгаген, 3-5 сентября, 1995; *
ГОСТ 18986.14-85. *

Also Published As

Publication number Publication date
RU2013145523A (ru) 2015-04-20

Similar Documents

Publication Publication Date Title
RU2640089C2 (ru) Система и способ контроля рабочего состояния igbt-устройства в реальном времени
Radwan et al. HP memristor mathematical model for periodic signals and DC
US5905384A (en) Method for testing semiconductor element
RU2402783C1 (ru) Способ измерения теплового импеданса полупроводниковых диодов
KR20130119871A (ko) 전지 직류 저항 평가 시스템
RU2463618C1 (ru) Способ определения теплового импеданса кмоп цифровых интегральных микросхем
RU2492436C1 (ru) Устройство для измерения температуры
RU2545090C1 (ru) Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой
RU2585970C1 (ru) Генератор хаотических колебаний
RU2507526C1 (ru) Способ измерения теплового импеданса полупроводниковых диодов с использованием полигармонической модуляции греющей мощности
US3296523A (en) Apparatus for measuring characteristics of materials through the application of pulses of successively increasing amplitude
RU2504793C1 (ru) Способ определения теплового импеданса цифровых кмоп интегральных микросхем
RU2613481C1 (ru) Способ измерения переходной тепловой характеристики цифровых интегральных схем
EP3594669B1 (en) Thermal analysis of semiconductor devices
US3845388A (en) Rms converter
RU2639989C2 (ru) Способ измерения переходной тепловой характеристики полупроводниковых изделий
Frankeser et al. Using the on-state-Vbe, sat-voltage for temperature estimation of SiC-BJTs during normal operation
CN109959850B (zh) 一种测量结型器件温度及自热效应的方法
RU2548925C1 (ru) Способ измерения последовательного сопротивления базы полупроводникового диода
RU2569922C1 (ru) Способ определения теплового сопротивления переход-корпус цифровых интегральных микросхем
RU2722541C1 (ru) Генератор хаотических колебаний
RU2591877C2 (ru) Мостовой измеритель параметров двухполюсников
RU2556315C2 (ru) Способ измерения теплового импеданса светодиодов
RU2565859C1 (ru) Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности
RU2547882C2 (ru) Способ измерения температуры среды

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151011