RU2536482C1 - Регенерация катализатора с использованием колонны быстрого охлаждения - Google Patents

Регенерация катализатора с использованием колонны быстрого охлаждения Download PDF

Info

Publication number
RU2536482C1
RU2536482C1 RU2013132474/04A RU2013132474A RU2536482C1 RU 2536482 C1 RU2536482 C1 RU 2536482C1 RU 2013132474/04 A RU2013132474/04 A RU 2013132474/04A RU 2013132474 A RU2013132474 A RU 2013132474A RU 2536482 C1 RU2536482 C1 RU 2536482C1
Authority
RU
Russia
Prior art keywords
stream
water
reactor
column
cooling column
Prior art date
Application number
RU2013132474/04A
Other languages
English (en)
Inventor
Джозеф А. МОНТАЛБАНО
Джон Дж. Сенетар
Дэниэл А. КАУФФ
Гурджит С. САНДХУ
Original Assignee
Юоп Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юоп Ллк filed Critical Юоп Ллк
Application granted granted Critical
Publication of RU2536482C1 publication Critical patent/RU2536482C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу быстрого охлаждения потока, выходящего из реактора для превращения метанола в олефины. Способ включает подачу указанного выходящего потока в колонну быстрого охлаждения; подачу потока циркулирующей воды в колонну быстрого охлаждения и стекание потока вода в колонне каскадами вниз; распыление второго потока воды для образования факела распыла из капель воды, причем указанный факел распыла направляют в каналы для пара, через которые проходят выходящие из реактора потоки, при этом факел распыла распыляется непосредственно над отверстиями тарелок, расположенных в колонне быстрого охлаждения; и контактирование выходящего из реактора потока с потоком воды и факелом распыла из водяных капель для удаления частиц катализатора из выходящего потока, при этом образуются быстро охлажденный выходящий из реактора поток и отводимый из колонны поток воды и твердых частиц. Использование настоящего изобретения позволяет повысить эффективность удаления мелкодисперсных частиц твердого катализатора из выходящего из реактора потока продукта. 9 з.п. ф-лы, 3 ил.

Description

По данной заявке испрашиваются преимущества заявки на патент США №13/324034, дата подачи 13.12.2011, которая испрашивает преимущества предварительной заявки на патент США №61/424897, дата подачи 20.12.2010.
Область техники, к которой относится изобретение
Настоящее изобретение относится к превращению метанола в олефины. В частности, изобретение относится к регенерации катализатора, используемого в процессе превращения метанола в олефины.
Уровень техники
Традиционным процессом производства олефинов является крекинг исходного нефтяного сырья с образованием олефинов. Крекинг нефтяного сырья осуществляют путем каталитического крекинга, парового крекинга или некоторой комбинации двух указанных способов процессов. Полученными олефинами обычно являются легкие олефины, такие как этилен и пропилен. Для продуктов, содержащих легкие олефины, полученных из этилена и пропилена, существует большой рынок. Поскольку для нефтяного сырья, получаемого из сырой нефти, характерна проблема растущих цен, выгодно обеспечить другие источники этилена и пропилена. Известно также, что олефины могут быть получены из оксигенатов (оксигенатных соединений). Наиболее традиционным процессом превращения оксигенатов в олефины является производство легких олефинов из метанола, при этом метанол может быть получен из других источников, включая биомассу и природный газ.
Процесс превращения оксигенатов в олефины является важным технологическим процессом применения оксигенатов, таких как метанол, и их превращения в более ценные продукты, такие как мономеры для пластмасс, такие как этилен и пропилен. Процесс превращения оксигенатов в олефины представляет собой каталитический процесс, и катализатором обычно служит молекулярно-ситовый катализатор. В число молекулярных сит, эффективных для каталитического процесса, входят молекулярные сита типа ZSM, но, в частности, было установлено, что в указанном технологическом процессе хорошо работают молекулярные сита, содержащие кремнеалюмофосфаты (SAPO).
Указанные молекулярные сита SAPO синтезируют путем образования смеси, содержащей источники кремния, алюминия и фосфора, смешанные с органическим темплатом (матричным материалом), и последующей кристаллизации молекулярного сита в реакционных условиях. На форму, которую принимает молекулярное сито, влияют многие факторы, включая относительные количества различных компонент, порядок их смешения, параметры проведения реакции, например температура и давление, а также выбор органического матричного материала.
Однако катализаторы процесса превращения метанола в олефины (МТО-процесса) дешевые и подвержены эрозии. Эрозия приводит к образованию мелкодисперсных частиц катализатора, которые переносятся в потоке продукта, выходящего из реактора МТО-процесса. Мелкодисперсные частицы катализатора создают проблему для оборудования, установленного ниже по ходу движения потока.
Сущность изобретения
Настоящее изобретение повышает эффективность удаления мелкодисперсных частиц твердого катализатора из выходящего из реактора потока продукта. Мелкодисперсные частицы при их транспортировании через находящееся ниже по потоку оборудование создают проблемы для технического обслуживания и эксплуатации, которые могут привести к значительным затратам. Объектом настоящего изобретения является способ быстрого охлаждения потока продукта, выходящего из реактора для обработки углеводородов, в котором используется катализатор. Выходящий поток (эффлюент) направляют в колонну быстрого охлаждения. В колонну быстрого охлаждения направляют также поток циркулирующей воды, который каскадами стекает вниз, проходя через колонну и контактируя с указанным потоком, выходящим из реактора. В колонну быстрого охлаждения направляют второй поток воды, который создает факел распыла капель воды для контактирования с выходящим из реактора потоком. Факел распыла направляют в паровые каналы (каналы для пара), через которые протекает поток выходящего из реактора продукта. Выходящий поток контактирует с первым потоком воды, стекающим вниз через колонну, и контактирует со вторым потоком распыленных капель, при этом образуется быстро охлажденный выходящий из реактора поток, имеющий пониженное содержание твердых частиц и отводимый через выходной патрубок поток воды и твердых частиц.
В одном воплощении выходящий из реактора поток представляет собой поток, выходящий из реактора превращения метанола в олефины. Колонна быстрого охлаждения содержит дисковые и кольцевые контактные тарелки, у которых первый поток воды создает водяную пелену для прохождения через нее выходящего из реактора потока, по мере его прохождения через указанную колонну быстрого охлаждения. Один аспект улучшения контакта и смачиваемости частиц твердого катализатора заключается во введении в поток циркулирующей воды поверхностно-активного вещества.
Другие задачи, преимущества и применения настоящего изобретения будут понятны специалистам в данной области техники из нижеследующего подробного описания и сопровождающих чертежей.
Краткое описание чертежей
Фиг.1 - существующая конструкция колонны быстрого охлаждения.
Фиг.2 - улучшенная конструкция колонны быстрого охлаждения, функционирующей в режиме противотока.
Фиг.3 - улучшенная конструкция колонны быстрого охлаждения, функционирующей в режиме с параллельными потоками.
Подробное описание изобретения
Многие способы обработки углеводородов включают охлаждение и/или быстрое охлаждение выходящего из реактора потока продукта. Эти способы могут включать быстрое охлаждение потока, полученного в промежуточном процессе, перед его направлением в последующий технологический аппарат. Одна область применения, в которой быстрое охлаждение является условием обработки выходящего потока, включает превращение метанола в олефины (МТО). МТО-процесс предусматривает контактирование в реакторе сырьевого потока, содержащего метанол, с катализатором с получением в результате выходящего из реактора потока. Поток, выходящий из реактора МТО-процесса, содержит мелкодисперсные частицы катализатора, и известный из уровня техники способ включает использование колонны быстрого охлаждения, показанной на фиг.1. Известный способ включает прохождение выходящего из реактора потока 10, содержащего реакторные пары, в колонну быстрого охлаждения 20, в которой пары поднимаются вверх и проходят через выпускной патрубок 22. Водный поток 24 для быстрого охлаждения поступает в колонну 20 и стекает вниз, проходя через ряд дисковых или кольцевых тарелок 28. Поток быстрого охлаждения предназначен для захвата мелкодисперсных частиц катализатора в нижней части колонны 20. Поток быстрого охлаждения с мелкодисперсными частицами 30 накапливается, фильтруется и нагнетается обратно на вход 24 для потока быстрого охлаждения. Однако было обнаружено, что мелкодисперсные частицы катализатора все же легко проходят через верх колонны. Фильтры и трубопроводы показали наличие в них твердого материала, подобного бетону, который, как предполагается, является мелкими частицами катализатора. Эти мелкодисперсные частицы загрязняют находящееся ниже по потоку оборудование вплоть до конечного компрессора. Кроме того, было обнаружено, что частицы катализатора еще обладают некоторой активностью и могут быть направлены на рециркуляцию в реактор, в котором они были образованы. Это может увеличить продолжительность цикла работы реактора.
Настоящее изобретение относится к улучшенным способу, использующему колонну быстрого охлаждения и конструкции для дополнительного удаления мелкодисперсных частиц катализатора из выходящего из реактора парового потока. Способ, как это показано на фиг.2, включает ввод в колонну распыленных потоков, образующих жидкую пелену, которая дополнительно отделяет мелкодисперсные частицы катализатора. Способ включает транспортирование выходящего из реактора потока 10 в колонну быстрого охлаждения 20. В колонну 20 быстрого охлаждения направляют поток 24 циркулирующей воды, которая каскадами стекает вниз, проходя через ряд дисковых 26 и кольцевых 28 контактных тарелок при одновременном прохождении паров через воду, каскадами стекающую вниз. Способ, кроме того, включает направление второго потока 40 воды в ряд распылительных сопел 42 для образования факела 44 распыла из водяных капель. Сопла 42 размещены так, что факел 44 распыла распределяется над отверстиями кольцевых тарелок 28. Выходящий из реактора поток, по мере того как он поднимается вверх в колонне 20 быстрого охлаждения, контактирует с потоком каскадами стекающей воды и факелом 44 распыла воды из сопел. Выходящий быстро охлажденный поток 22 отводится сверху колонны 20 быстрого охлаждения, а поток 30 воды и твердой фазы отводится снизу колонны 20.
Хотя выше описан способ, в котором используется колонна, снабженная дисковыми и кольцевыми тарелками, указанный способ может также включать использование других конструкций тарелок, через которые первый поток каскадами стекает в колонне и по которым, возможно, протекает вперед и назад в поперечном направлении. Второй поток воды распыляют над участками тарелок, на которых понимаются вверх потоки паров в противотоке относительно потока воды, используемой для быстрого охлаждения.
Способ может также включать прохождение быстро охлажденного выходящего из реактора потока 22 через циклонное устройство (не показано). Циклонное устройство является механическим средством для удаления остатка твердых мелкодисперсных частиц катализатора, которым удалось пройти через два потока быстрого охлаждения. В результате получается быстро охлажденный поток с пониженным содержанием частиц катализатора.
Во втором воплощении, иллюстрируемом на фиг.3, в соответствии с изобретением используется колонна быстрого охлаждения с параллельными потоками. Способ включает подачу во входной патрубок потока 10 паров из реактора, который проходит вверх колонны 20 быстрого охлаждения. В колонну 20 направляется также поток 24 циркулирующей воды, которая каскадами стекает вниз, проходя через ряд тарелок 26, 28, при этом образуется пелена воды, и выходящие из реактора пары контактируют с пеленой воды по мере прохождения через тарелки 26, 28. Поток воды 24 и выходящий из реактора поток 10 проходят через колонну 20 вниз в нижнюю часть 32 колонны, где пары и жидкость разъединяются с образованием потока 22 быстро охлажденных паров и потока 30 промывочной жидкости. Быстро охлажденный поток 22 паров выходит через патрубок, имеющийся на боковой поверхности колонны 20 ниже последней контактной тарелки, а промывочный поток 30 выходит снизу колонны 20. В нижней части 32 колонны может быть размещен колпак 34 для улавливания паров, по мере их отделения от жидкости. Колпак 34 будет улавливать пары при их подъемном движении вверх по мере отделения от жидкости, которая продолжает протекать в направлении вниз.
Во втором воплощении способ, кроме того, включает использование ряда распыляющих сопел 42. Эти сопла 42 установлены на конце впускных трубопроводов для второго потока 40 воды, и каждое сопло формирует поток 44 с образованием факела распыла, создающего пелену из капель жидкости для дополнительного улучшения контакта с выходящими из реактора парами 10 и для удаления твердых мелкодисперсных частиц катализатора. Предпочтительным выбором конструкции контактной тарелки являются дисковые 26 и кольцевые 28 тарелки, при этом дисковые тарелки 26 установлены над отверстиями кольцевых тарелок 28. Распылительные сопла 42 расположены также над отверстиями кольцевых тарелок 28 и размещены под дисковыми тарелками 26. Конструкция сопел и их расположение выбраны так, чтобы создать пелену из капель 44 распыляемой воды по периметру отверстий кольцевых тарелок 28.
Эффективность процесса повышается, если твердые частицы могут легко смачиваться потоком 24 циркулирующей воды. В одном воплощении для улучшения смачиваемости мелкодисперсных частиц катализатора в водный поток 24 и во второй поток 40 воды добавляют поверхностно-активное вещество. Способность частиц катализатора к сцеплению с водой повышает удаление небольших твердых частиц, которые еще остаются в выходящем из реактора потоке 10. На выбор поверхностно-активного вещества может влиять ряд факторов процесса, включающих, но не в качестве ограничения, летучесть поверхностно-активного вещества, молекулярный вес поверхностно-активного вещества и т.п.
Рассматриваемое воплощение с параллельными потоками может включать использование второй колонны (не показана). В режиме с параллельными потоками и при наличии второй колонны первую колонну используют, главным образом, для отделения твердых мелкодисперсных частиц катализатора, а вторую колонну - для быстрого охлаждения выходящего из реактора потока после его отвода из первой колоны. В воплощении с двумя колоннами первая колонна предназначена, главным образом, для улавливания мелкодисперсных частиц катализатора, а вторая колонна - для осуществления функции быстрого охлаждения.
В другом воплощении способ может включать направление потока 24 рециркулирующей воды в колонну 20 быстрого охлаждения. В колонну 20 быстрого охлаждения направляют также поток 24, выходящий из реактора. В колонне 20 быстрого охлаждения используется насадка и распределительная тарелка с большими отверстиями вместо использования контактных тарелок. Насадка выполнена с большими отверстиями, например, в виде больших колец с прорезями или больших колец Рашига. Способ, кроме того, включает подачу второго потока 40 жидкости в колонну 20, в которой второй поток жидкости образует пелену из распыленных капель 44 над большими отверстиями в распределительной тарелке. В воплощении с использованием слоев насадки колонна 20 быстрого охлаждения может содержать большое количество слоев насадки, а также распределительную тарелку, размещенную над слоем насадки, и распылительное сопло или ряд распылительных сопел, размещенных над каждой распределительной тарелкой, при этом распылительные сопла создают пелену из жидких капель над отверстиями каждой из распределительных тарелок.
Одним воплощением изобретения является устройство для быстрого охлаждения парового потока, содержащего твердые частицы. Устройство представляет собой колонну быстрого охлаждения, содержащую входной патрубок для парового потока, расположенный вблизи днища колонны, патрубок для входа жидкости быстрого охлаждения, находящийся вблизи верха колонны, выходной патрубок для потока быстро охлажденных паров, находящийся вблизи верха колонны, и выходной патрубок для жидкости вблизи днища колонны. Колонна содержит ряд контактных тарелок для отекания жидкости быстрого охлаждения в колонне каскадами вниз с образованием пелены жидкости, через которую проходит паровой поток. В предпочтительном воплощении контактные тарелки представляют собой дисковые и кольцевые тарелки, расположенные в чередующемся порядке. Устройство, кроме того, содержит ряд средств для распыливания, предназначенных для ввода второго жидкого потока в колонну быстрого охлаждения. Средства распыливания выполнены с возможностью создания пелены из капель жидкости над отверстиями контактных тарелок, и, в частности, над отверстиями кольцевых тарелок.
Способ может включать дополнительные конструктивные особенности. Помимо указанных выше особенностей - это использование сужения сечения трубы со средствами распыления воды для дополнительного воздействия воды на твердые частицы катализатора. Такая особенность характерна для систем с реакторами меньших размеров. Выходящий из реактора поток может быть направлен так, чтобы он входил в колонну быстрого охлаждения тангенциально и был периферическим потоком. Такой ввод создает центробежные силы, облегчающие отделение твердой фазы из отведенного из реактора потока.
Другие возможные конструктивные особенности включают дополнительное использование внутренних направляющих лопаток в нижней части колонны быстрого охлаждения. Лопатки могут обеспечить вихревую составляющую потока выходящего газа и облегчают удаление твердых частиц из циклонически движущегося выходящего потока газа.
Хотя настоящее изобретение было раскрыто с помощью рассмотренных предпочтительных воплощений, следует понимать, что изобретение не ограничивается описанными воплощениями и охватывает различные модификации и эквивалентные конструктивные решения, входящие в объем приложенных пунктов формулы изобретения.

Claims (10)

1. Способ быстрого охлаждения потока, выходящего из реактора для превращения метанола в олефины, включающий:
подачу указанного выходящего потока в колонну быстрого охлаждения;
подачу потока циркулирующей воды в колонну быстрого охлаждения и стекание потока воды в колонне каскадами вниз;
распыление второго потока воды для образования факела распыла из капель воды, причем указанный факел распыла направляют в каналы для пара, через которые проходят выходящие из реактора потоки, при этом факел распыла распыляется непосредственно над отверстиями тарелок, расположенных в колонне быстрого охлаждения; и
контактирование выходящего из реактора потока с потоком воды и факелом распыла из водяных капель для удаления частиц катализатора из выходящего потока, при этом образуются быстро охлажденный выходящий из реактора поток и отводимый из колонны поток воды и твердых частиц.
2. Способ по п.1, в котором второй водяной поток распыляют над каждым отверстием контактных тарелок для контактирования факела распыла с выходящим из реактора потоком.
3. Способ по п.1, в котором колонна быстрого охлаждения содержит ряд дисковых и кольцевых контактных тарелок, обеспечивающих стекание воды в колонне каскадами.
4. Способ по п.3, в котором факел распыла направляют к отверстиям кольцевых контактных тарелок.
5. Способ по п.1, в котором поток воды стекает через колонну быстрого охлаждения вниз, а выходящий из реактора поток проходит через колонну быстрого охлаждения вверх.
6. Способ по п.1, в котором поток воды стекает через колонну быстрого охлаждения вниз и выходящий из реактора поток проходит через колонну быстрого охлаждения вниз.
7. Способ по п.1, дополнительно включающий добавление поверхностно-активного вещества в поток циркулирующей воды и во второй поток воды для повышения смачивающей способности воды быстрого охлаждения.
8. Способ по п.1, в котором колонна быстрого охлаждения заполнена насадкой, включающей слой насадки с большими отверстиями для контактирования циркулирующей воды и выходящего из реактора потока, при этом второй поток воды распыляют над верхом слоя насадки.
9. Способ по п.8, в котором колонна быстрого охлаждения содержит ряд слоев насадки с системой распыления, направляющей факел распыла, образованный из второго потока воды, на верх каждого слоя насадки.
10. Способ по п.1, дополнительно включающий прохождение быстро охлажденного выходящего из реактора потока через циклонное устройство и получение в результате потока твердых частиц и быстро охлажденного выходящего из реактора потока с пониженным содержанием мелкодисперсных частиц катализатора.
RU2013132474/04A 2010-12-20 2011-12-15 Регенерация катализатора с использованием колонны быстрого охлаждения RU2536482C1 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201061424897P 2010-12-20 2010-12-20
US61/424,897 2010-12-20
US13/324,034 US8877997B2 (en) 2010-12-20 2011-12-13 Quench tower catalyst recovery
US13/324,034 2011-12-13
PCT/US2011/065076 WO2012087732A2 (en) 2010-12-20 2011-12-15 Improved quench tower catalyst recovery

Publications (1)

Publication Number Publication Date
RU2536482C1 true RU2536482C1 (ru) 2014-12-27

Family

ID=46235240

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013132474/04A RU2536482C1 (ru) 2010-12-20 2011-12-15 Регенерация катализатора с использованием колонны быстрого охлаждения

Country Status (4)

Country Link
US (1) US8877997B2 (ru)
CN (1) CN102527171B (ru)
RU (1) RU2536482C1 (ru)
WO (1) WO2012087732A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111282372A (zh) * 2020-01-16 2020-06-16 董国亮 一种洗涤塔工艺水的热量回收方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941419A (zh) * 2014-03-31 2015-09-30 英尼奥斯欧洲股份公司 反应器流出物的改进的氨移除
EP3600707B1 (en) * 2017-04-24 2021-06-23 Manik Ventures Limited Material recycling apparatus
IT201900006601A1 (it) * 2019-05-07 2020-11-07 Valli Zabban S P A Impianto per lo smaltimento di sfiati di apparecchiature industriali contenenti vapori di bitume e polveri fini
US11534732B2 (en) * 2020-02-26 2022-12-27 Uop Llc Process and apparatus for quenching a reactor effluent stream
US11725153B2 (en) 2020-04-17 2023-08-15 Uop Llc Process and apparatus for recovering catalyst from a product stream

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3080153A (en) * 1959-03-27 1963-03-05 Air Prod & Chem Quench tower
EA200500863A1 (ru) * 2002-11-27 2005-12-29 Эксонмобил Кемикэл Пейтентс Инк. Способ обработки катализаторной мелочи и её устранение

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889265A (en) * 1955-11-30 1959-06-02 Exxon Research Engineering Co Quench nozzle for fluid coker reactor vapors
US5234578A (en) * 1988-08-26 1993-08-10 Uop Fluidized catalytic cracking process utilizing a high temperature reactor
CN1100851C (zh) * 2000-04-29 2003-02-05 中国石化集团洛阳石油化工工程公司 烃类流化催化转化反应产物的急冷塔及急冷方法
US7011740B2 (en) * 2002-10-10 2006-03-14 Kellogg Brown & Root, Inc. Catalyst recovery from light olefin FCC effluent
US7273961B2 (en) * 2003-01-24 2007-09-25 Exxonmobil Chemical Patents Inc. Quench process
US7038102B2 (en) 2003-07-30 2006-05-02 Exxonmobil Chemical Patents Inc. Liquid contacting of post-quench effluent vapor streams from oxygenate to olefins conversion to capture catalyst fines
US7404891B2 (en) 2004-03-29 2008-07-29 Exxonmobil Chemical Patents Inc. Heat recovery technique for catalyst regenerator flue gas
US7935650B2 (en) * 2006-12-18 2011-05-03 Uop Llc Neutralization of quench stream in a process for handling catalyst from an oxygenate-to-olefin reaction
US20090325783A1 (en) 2008-06-30 2009-12-31 Myers Daniel N Oto quench tower catalyst recovery system utilizing a low temperature fluidized drying chamber
CN101352651A (zh) * 2008-09-19 2009-01-28 史汉祥 降温、除尘、脱硫一体化设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3080153A (en) * 1959-03-27 1963-03-05 Air Prod & Chem Quench tower
EA200500863A1 (ru) * 2002-11-27 2005-12-29 Эксонмобил Кемикэл Пейтентс Инк. Способ обработки катализаторной мелочи и её устранение

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111282372A (zh) * 2020-01-16 2020-06-16 董国亮 一种洗涤塔工艺水的热量回收方法

Also Published As

Publication number Publication date
CN102527171A (zh) 2012-07-04
CN102527171B (zh) 2015-04-08
WO2012087732A2 (en) 2012-06-28
US8877997B2 (en) 2014-11-04
US20120157740A1 (en) 2012-06-21
WO2012087732A3 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
RU2536482C1 (ru) Регенерация катализатора с использованием колонны быстрого охлаждения
US11478769B2 (en) Reactor systems comprising fluid recycling
EP2636439B1 (en) Method for cleaning and separating mto reaction gas containing catalyst micropowders
US7114507B2 (en) Process for removing contaminants from a compressor intercooler in a methanol to olefin separation system
RU2012129238A (ru) Способ превращения углеводородов на твердом катализаторе с использованием составных реакторов с движущимся слоем
RU2742576C1 (ru) Устройство и способ получения пара-ксилола и совместного получения низших олефинов из метанола и/или диметилового эфира и бензола
RU2013157347A (ru) Реактор с псевдоожиженным слоем и способ для получения олефинов из оксигенатов
RU2649385C1 (ru) Реактор с псевдоожиженным слоем, установка и способ получения легких олефинов
RU2743989C1 (ru) Устройство с кипящим слоем и способ получения пара-ксилола и совместного получения низших олефинов из метанола и/или диметилового эфира и толуола
CN105198687B (zh) 减少mto下游回收中的积垢的选择
DE60310612T2 (de) Verfahren zur handhabung und entsorgung vonkatalysatorfeinstoffen
US7935650B2 (en) Neutralization of quench stream in a process for handling catalyst from an oxygenate-to-olefin reaction
CN104437267B (zh) 由含氧化合物制备烯烃的装置及其应用
US7138558B2 (en) Direct return of oxygenate recycle stream in olefin production process
KR102302841B1 (ko) 용액 중합 공정에서의 올레핀 회수 방법
CN115461129A (zh) 用于从产物料流中回收催化剂的方法和设备
US20090163756A1 (en) Reactor cooler
JP5130047B2 (ja) オキシジェネート−オレフィン反応器内の停滞域へのパージガスストリーム
WO2013132047A1 (en) Process for quenching a stream comprising essentially olefins and steam
CN105566023B (zh) 高效混合的甲醇制烯烃反应‑再生装置及其反应方法
CN113620765B (zh) 含氧化合物制烯烃工艺反应生成气的预处理方法和设备
CN114286720B (zh) 最大化低碳烯烃产率的带挡板的湍流/快速流化床反应器
CN102093154B (zh) 甲醇制烯烃的原料的净化
KR20240108498A (ko) 중합체 오일 회수 방법