RU2530095C1 - Высокопрочная сталь с повышенной деформируемостью после закалки - Google Patents

Высокопрочная сталь с повышенной деформируемостью после закалки Download PDF

Info

Publication number
RU2530095C1
RU2530095C1 RU2013132189/02A RU2013132189A RU2530095C1 RU 2530095 C1 RU2530095 C1 RU 2530095C1 RU 2013132189/02 A RU2013132189/02 A RU 2013132189/02A RU 2013132189 A RU2013132189 A RU 2013132189A RU 2530095 C1 RU2530095 C1 RU 2530095C1
Authority
RU
Russia
Prior art keywords
steel
kgf
quenching
strength
elongation
Prior art date
Application number
RU2013132189/02A
Other languages
English (en)
Inventor
Виктор Алексеевич Корольков
Валерий Владимирович Гаевский
Татьяна Семеновна Фатеева
Эдуард Анатольевич Иванов
Роман Самуилович Клебанов
Original Assignee
Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации filed Critical Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Priority to RU2013132189/02A priority Critical patent/RU2530095C1/ru
Application granted granted Critical
Publication of RU2530095C1 publication Critical patent/RU2530095C1/ru

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области металлургии, а именно к конструкционным комплекснолегированным высокопрочным сталям, закаливающимся на воздухе, и может быть использовано при производстве осесимметричных деталей, работающих под давлением. Сталь содержит, в мас.%: углерод от 0,18 до менее 0,2, марганец 1,00-1,3, кремний 0,20-0,40, сера не более 0,010, фосфор не более 0,015, хром 2,90-3,20, медь не более 0,25, никель 2,20-2,50, молибден 0,70-0,90, ванадий от 0,15 до менее 0,20, железо и неизбежные примеси остальное. После закалки на воздухе и термомеханической обработки временное сопротивление разрыву σВ составляет не менее 170 кгс/мм2, а относительное удлинение δ5 составляет не менее 6%. 1 ил., 5 табл., 1 пр.

Description

Предлагаемое изобретение относится к области металлургии, а именно к конструкционным комплекснолегированным сталям, закаливающимся на воздухе, и может быть использовано при производстве осесимметричных деталей, работающих под давлением.
Высокопрочная сталь с повышенной деформируемостью после закалки может применяться для осуществления термомеханической обработки на прочность 170-180 кгс/мм2 путем деформации после закалки и отпуска.
Известна комплекснолегированная сталь марки 28Х3СНМ1ФА ТУ АД И 543-2002, содержащая, мас.%: углерод 0,26-0,31; марганец 0,50-0,80; кремний 0,90-1,20; сера не более 0,010; фосфор не более 0,015; хром 2,80-3,20; никель 0,90-1,20; молибден 0,75-0,85; ванадий 0,05-0,15; медь не более 0,15.
Данная композиция не обеспечивает требуемые параметры деформируемости после закалки, так как даже после отпуска 700°С характеристика пластичности ее по относительному удлинению δ5 не превышает 12% (см. фиг.1). Поэтому она не может использоваться для изготовления деталей термомеханическим упрочнением как с точки зрения пластичности, так и с точки зрения накопления при холодной деформации внутренних напряжений, которые могут приводить материал к разрушению непосредственно при деформации.
Известна также сталь 18Х2Н4МА ГОСТ 4543-71, имеющая химический состав, мас.%: углерод 0,14-0,20; марганец 0,25-0,55; кремний 0,17-0,37; хром 1,35-1,65; никель 4,00-4,40; молибден 0,30-0,40; сера не более 0,025; фосфор не более 0,025; медь не более 0,030.
Указанная сталь применяется для изготовления ответственных деталей, к которым предъявляются требования высокой вязкости и износостойкости однако относительное удлинение δ5 в диапазоне отпуска при температурах 200-500°С не поднимается выше 12%, при отпуске 600°С - выше 19%, но при этом временное сопротивление разрыву σв становится равным 94 кгс/мм2, что не позволяет обеспечить требуемую прочность после деформации на уровне 170 кгс/мм2.
Наиболее близкой по характеристикам является сталь марки 12Х3ГНМФБА по патенту РФ №2104325, С22С 38/48, опубл. 10.02.1998 г.), принятая авторами за прототип, имеющая следующий химический состав, мас.%: углерод 0,12-0,24; марганец 0,80-1,20; кремний 0,20-0,50; хром 2,90-3,40; никель 0,9-2,0; молибден 0,25-0,90; ванадий 0,03-0,15; ниобий 0,02-0,05; кальций 0,005-0,030; железо - остальное.
Указанный состав высокопрочной стали обеспечивает при всех температурах отпуска высокое относительное удлинение δ5=16…20% и свидетельствует о высокой ее деформируемости после закалки и отпуска.
Недостатком данной стали является уменьшенное значение временного сопротивления разрыву при пониженном содержании легирующих элементов в рамках широкого интервала значений.
Общими признаками с предлагаемой авторами сталью являются содержание в ней углерода, кремния, хрома, марганца, никеля, молибдена, ванадия, остальное - железо.
В отличие от прототипа предлагаемая авторами высокопрочная сталь с повышенной деформируемостью после закалки содержит следующие компоненты, мас.%: углерод 0,18-0,24; марганец 1,00-1,30; кремний 0,20-0,40; сера не более 0,010; фосфор не более 0,015; хром 2,90-3,20; медь не более 0,25; никель 2,20-2,50; молибден 0,70-0,90; ванадий 0,15-0,20, при этом остаток составляет железо и неизбежные примеси.
Именно это позволяет сделать вывод о наличии причинно-следственной связи между совокупностью существенных признаков заявляемого технического решения и достигаемым техническим результатом.
Указанные признаки, отличительные от прототипа и на которые распространяется испрашиваемый объем правовой охраны во всех случаях, достаточны.
Задачей предлагаемого изобретения является разработка высокопрочной стали с повышенной деформируемостью после закалки, закаливаемой на воздухе с последующей термомеханической обработкой и получением готовой детали с временным сопротивлением разрыву σв не ниже 170 кгс/мм2 при сохранении δ5 не ниже 6%.
Новая совокупность признаков изобретения позволяет получить сталь с повышенной деформируемостью после закалки и термомеханической обработки при температуре 450-600°C с улучшенной структурой и повышенной способностью к деформируемости.
Составы, режимы термической обработки, свойства стали после термической обработки и различных степеней деформации ротационной вытяжкой представлены в табл.1, 2, 3.
Таблица 1
Химический состав исследуемых плавок и прототипа
№ плавки Содержание элементов, масс.%
С Si Mn S P Cr Ni Mo V Nb Ca Fe
1 (прототип) 0,15 0,30 0,70 2,70 1,40 0,40 0,02 0,04 0,001 ост.
2 0,22 0,33 1,05 0,006 0,006 3,30 2,30 0,81 0,19 ост.
3 0,20 0,38 1,16 0,005 0,007 2,98 2,29 0,78 0,19 ост.
Таблица 2
Механические свойства прототипа и сталей после закалки и различных температур отпуска
№ плавки Температура отпуска, °С σв, кгс/см2 δ5, % ψ, % KCU+20, кгсм/см2 KCU-50, кгсм/см2
1 (прототип) 200 130 16,0 63,0 17,6 12,0
300 128 16,0 62,5 17,6 13,3
400 127 16,5 62,0 16,0 13,0
500 129 17,0 64,0 15,0 12,3
600 105 17,0 70,0 18,0 13,8
2 200 149 13,8 58,0 6,8 5,3
300 148 13,6 57,4 7,0 5,4
400 147 13,8 57,0 7,3 5,9
500 150 13,8 57,0 8,4 5,7
600 122 14,6 60,0 8,8 6,4
3 200 147 12,1 53,0 7,0 5,0
300 148 12,2 53,5 7,2 5,2
400 148 12,5 55,0 7,2 5,5
500 150 13,0 55,0 8,2 5,7
600 125 14,5 59,0 8,6 6,2
Таблица 3
Механические свойства прототипа и стали 22Х3ГН2М1ФА в зависимости от степени деформации ротационной вытяжкой
Температура отпуска, °С Временное сопротивление разрыву σв, кгс/мм2 Относительное удлинение δ5, %
Степень деформации ε, % Степень деформации ε, %
0 40 60 80 0 40 60 80
Прототип сталь 12Х3ГНМФБА
600 93,0 99,0 102,0 105,0 12,0 17,0 18,0 20,0
550 124,0 150,0 157,5 165,0 13,0 9,6 9,0 13,0
500 129,0 154,0 166,5 190,0 14,0 9,0 5,8 5,5
450 129,3 160,0 170,0 203,5 15,0 9,0 5,0 4,5
Сталь 22Х3ГН2М1ФА
600 128,0 136,0 144,0 153,0 14,0 12,5 12,0 11,0
550 142,0 162,0 173,0 184,0 13,0 10,6 10,2 7,2
500 158,0 185,0 195,0 202,0 13,0 12,5 10,0 5,0
450 155,0 169,0 196,0 разр. при деформ. 13,0 3,0 7,1 разр. при деформ.
Как видно из табл.3, в результате термомеханической обработки известного технического решения (прототип) при исходной прочности стали 129 кгс/мм2 (температура отпуска 450-500°С, степень деформации 60-80%) достигается прочность выше 170 кгс/мм2, однако, при этом относительное удлинение δ5 не превышает 6%, что приводит к охрупчиванию материала и разрушению детали с фрагментацией, что является не допустимым.
В предлагаемом техническом решении (сталь 22Х3ГН2М1ФА) при исходной прочности 142 кгс/мм2 (температура отпуска 550°С) требуемую прочность достигают при степени деформации 60% и пластичности δ5 на уровне 10,2%.
Таким образом, вышеуказанные признаки, отличающие предлагаемое техническое решение от прототипа, не выявлены в других технических решениях и не известны из уровня техники в процессе проведения патентных исследований, что позволяет сделать вывод о соответствии изобретения критерию «новизны».
Пример.
Заявляемую сталь 22Х3ГН2М1ФА производили на металлургическом заводе в 12-тонной дуговой электропечи, при этом было выплавлено 2 плавки с химическим составом 2 и 3, указанными в табл.1.
Сталь разливали в изложницы для получения слитка массой 13,5 т. Далее слитки выдерживали в изложницах и направляли в кузнечный цех.
Перед ковкой слиток нагревали в печи. Ковку слитка проводили на гидравлическом прессе в 3 этапа с подогревом поковки после каждого этапа.
Заготовки охлаждали на воздухе, затем подвергали высокому отпуску 720-740°С.
Оценка качества трубной заготовки по механическим свойствам показала на образцах, подвергнутых термической обработке (закалка с температуры 880°С, отпуск 400-550°С), значения, указанные в табл.4.
Таблица 4
Механические свойства стали 22Х3ГН2М1ФА в трубной заготовке
Температура отпуска, °С Временное сопротивление разрыву σв, кгс/см2 Условный предел текучести σ0,2, кгс/см2 Относительное удлинение δ5, % Относительное сужение ψ, % Ударная вязкость KCU+20, кгсм/см2
400 147 127 12,2 53 7,3
148 126 12,5 55 6,8
450 149 130 12,0 45 8,4
149 129 12,1 48 8,6
500 150 125 13,0 55 8,4
148 123 12,6 49 7,8
550 143 121 12,9 55 8,4
148 122 13,1 43 8,4
Из результатов табл.4 видно, что временное сопротивление разрыву σв соответствует 143-150 кгс/мм2 при получении относительного удлинения δ5, равного 12,0-13,1%, при хорошем запасе ресурса деформируемости стали после закалки, исходя из соотношения σ02в, равного 0,83-0,87.
Затем трубную заготовку из стали 22Х3ГН2М1ФА диаметром 440 мм и длиной 5810 мм отправили для изготовления тонкостенной трубы на трубопрокатный агрегат ТПА "159-426" Волжского трубного завода.
Результаты контроля качества полученных труб по механическим свойствам после закалки и отпуска при 550°С представлены в табл.5.
Таблица 5
№ плавки Временное сопротивление разрыву σв, кгс/мм2 Относительное удлинение δ5, % Ударная вязкость KCU кгсм/см2
2 154,0 18,0 6,1
150,0 16,0 7,6
153,6 18,5 6,7
151,0 15,1 7,3
3 153,2 13,4 6,4
154,9 12,7 7,5
150,6 16,2 6,3
151,6 13,0 6,4
Из полученной трубы методом ротационной вытяжки изготовили осесимметричные тонкостенные детали. Термомеханическую обработку вели по схеме: калибровка, предварительная механическая обработка, закалка + отпуск, механическая обработка под ротационную вытяжку, I ротационная вытяжка + II ротационная вытяжка + отжиг, уменьшающий напряжения. Партию деталей испытали на прочность до разрушения, при этом давление разрушения составило 316-331,4 кгс/см2, вместо 270 кгс/см2 (см. фиг.1). Проведенный контроль механических свойств показал, что временное сопротивление разрыву σв составило 175-185 кгс/мм2, а относительное удлинение δ5 - 8-10%.
Таким образом, полученные данные по изготовлению опытной партии осесимметричных деталей подтверждают возможность их изготовления из заявленной стали с повышенной деформируемостью после закалки термомеханическими методами обработки.

Claims (1)

  1. Высокопрочная сталь для изготовления осесимметричных деталей, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, медь, серу, фосфор, железо и неизбежные примеси, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:
    Углерод от 0,18 до менее 0,2 Марганец 1,00 - 1,3 Кремний 0,20 - 0,40 Сера не более 0,010 Фосфор не более 0,015 Хром 2,90 - 3,20 Медь не более 0,25 Никель 2,20 - 2,50 Молибден 0,70 - 0,90 Ванадий от 0,15 до менее 0,2 Железо и неизбежные примеси Остальное,

    при этом после закалки на воздухе и термомеханической обработки временное сопротивление разрыву σВ составляет не менее 170 кгс/мм2, а относительное удлинение δ5 составляет не менее 6%.
RU2013132189/02A 2013-07-12 2013-07-12 Высокопрочная сталь с повышенной деформируемостью после закалки RU2530095C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013132189/02A RU2530095C1 (ru) 2013-07-12 2013-07-12 Высокопрочная сталь с повышенной деформируемостью после закалки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013132189/02A RU2530095C1 (ru) 2013-07-12 2013-07-12 Высокопрочная сталь с повышенной деформируемостью после закалки

Publications (1)

Publication Number Publication Date
RU2530095C1 true RU2530095C1 (ru) 2014-10-10

Family

ID=53381546

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013132189/02A RU2530095C1 (ru) 2013-07-12 2013-07-12 Высокопрочная сталь с повышенной деформируемостью после закалки

Country Status (1)

Country Link
RU (1) RU2530095C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2104325C1 (ru) * 1996-06-07 1998-02-10 Государственное научно-производственное предприятие "Сплав" Конструкционная сталь
EP1123984A2 (en) * 2000-02-08 2001-08-16 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor and process for producing the same
EP1312690A1 (en) * 2001-11-14 2003-05-21 Sumitomo Metal Industries, Ltd. Steel material having improved fatigue crack driving resistance and manufacturing process therefor
EP2159296A1 (en) * 2007-04-13 2010-03-03 Sidenor Investigacion y Desarrollo, S.A. Hardened and tempered steel and method for producing parts of said steel
RU2462532C1 (ru) * 2011-01-31 2012-09-27 Леонид Михайлович Клейнер Сталь со структурой низкоуглеродистого мартенсита

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2104325C1 (ru) * 1996-06-07 1998-02-10 Государственное научно-производственное предприятие "Сплав" Конструкционная сталь
EP1123984A2 (en) * 2000-02-08 2001-08-16 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor and process for producing the same
EP1312690A1 (en) * 2001-11-14 2003-05-21 Sumitomo Metal Industries, Ltd. Steel material having improved fatigue crack driving resistance and manufacturing process therefor
EP2159296A1 (en) * 2007-04-13 2010-03-03 Sidenor Investigacion y Desarrollo, S.A. Hardened and tempered steel and method for producing parts of said steel
RU2462532C1 (ru) * 2011-01-31 2012-09-27 Леонид Михайлович Клейнер Сталь со структурой низкоуглеродистого мартенсита

Similar Documents

Publication Publication Date Title
JP5928654B2 (ja) 厚肉高靭性高張力鋼板およびその製造方法
JP6156574B2 (ja) 厚肉高靭性高張力鋼板およびその製造方法
US8293037B2 (en) Method for producing duplex stainless steel pipe
CN108368575B (zh) 冷锻调质品用轧制线棒
CN108779529B (zh) 钢材和油井用钢管
EP3209806B1 (en) An ultra-high strength thermo-mechanically processed steel
CN105408512A (zh) 高强度油井用钢材和油井管
KR20170066612A (ko) 재질 균일성이 우수한 후육 고인성 고장력 강판 및 그 제조 방법
JP6819198B2 (ja) 冷間鍛造調質品用圧延棒線
EP3222743A1 (en) Rolled steel bar or rolled wire material for cold-forged component
US20170219000A1 (en) Steel for bolts, and bolt
CN108699656B (zh) 钢材和油井用钢管
US11447849B2 (en) Non-heat treated steel for induction hardening
KR20120134534A (ko) 금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법
JP6679935B2 (ja) 冷間加工部品用鋼
EP3168319A1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts, and method for producing components made of said steel
WO2015163226A1 (ja) 地熱発電用タービンロータ材及びその製造方法
US10570487B2 (en) Rolled steel material for fracture splitting connecting rod
US10487372B2 (en) High-strength bolt
KR102113076B1 (ko) 압연 선재
KR20100057823A (ko) 괴상 성형된 기계 부품의 제조용 스틸
RU2530095C1 (ru) Высокопрочная сталь с повышенной деформируемостью после закалки
JP5030695B2 (ja) 破断分離性に優れる高炭素鋼およびその製造方法
RU2510424C1 (ru) Высокопрочная среднеуглеродистая комплекснолегированная сталь

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150713

NF4A Reinstatement of patent

Effective date: 20180305