RU2529437C2 - Термоэлектрический генератор - Google Patents

Термоэлектрический генератор Download PDF

Info

Publication number
RU2529437C2
RU2529437C2 RU2013103101/28A RU2013103101A RU2529437C2 RU 2529437 C2 RU2529437 C2 RU 2529437C2 RU 2013103101/28 A RU2013103101/28 A RU 2013103101/28A RU 2013103101 A RU2013103101 A RU 2013103101A RU 2529437 C2 RU2529437 C2 RU 2529437C2
Authority
RU
Russia
Prior art keywords
heat
heat sink
thermoelectric generator
thermoelectric
housing
Prior art date
Application number
RU2013103101/28A
Other languages
English (en)
Other versions
RU2013103101A (ru
Inventor
Сергей Иванович Плеханов
Анатолий Яковлевич Тереков
Виктор Энгельсович Новиков
Original Assignee
Открытое акционерное общество "Научно-производственное предприятие Квант"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное предприятие Квант" filed Critical Открытое акционерное общество "Научно-производственное предприятие Квант"
Priority to RU2013103101/28A priority Critical patent/RU2529437C2/ru
Publication of RU2013103101A publication Critical patent/RU2013103101A/ru
Application granted granted Critical
Publication of RU2529437C2 publication Critical patent/RU2529437C2/ru

Links

Images

Abstract

Изобретение относится к области прямого преобразования тепловой энергии в электрическую. Сущность: термоэлектрический генератор содержит теплоприемник, внутри корпуса которого размещен источник тепла. Снаружи корпуса установлены последовательно в тепловом отношении термоэлектрические модули и основания теплообменников системы охлаждения, механически связанные с корпусом теплоприемника с помощью средства крепления. Корпус теплоприемника выполнен прямоугольной формы в сечении. По большим сторонам корпуса симметрично расположены термоэлектрические модули и основания. Средство крепления выполнено в виде листовых пружин переменного сечения по длине, имеющих наибольшую толщину в средней зоне, уменьшающуюся к консольной части пружин, вынесенную за теплоприемник. Пружины попарно механически связаны между собой и расположены по краям оснований теплообменников с возможностью плотного и стабильного их прижатия с помощью винтовых блоков через термоэлектрические модули к поверхностям корпуса теплоприемника. Технический результат: повышение кпд, мощности и стабильности работы. 7 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области прямого преобразования тепловой энергии в электрическую, а именно к конструкции термоэлектрического генератора, используемого в качестве автономного источника электрической энергии, способного стабильно работать на различных видах топлива (газообразное, жидкое, твердое) при утилизации тепловой энергии, а также на возобновляемом виде топлива.

Известен термоэлектрический генератор, содержащий камеру сгорания топлива, теплоприемник с размещенными на нем термобатареями, к которым примыкают основания теплообменников (см. патент РФ №2166223, кл. H01L 35/00, от 15.04.1999 г.).

Однако известная конструкция термогенератора не обеспечивает требуемую эффективность преобразования тепловой энергии в электрическую из-за значительных тепловых потерь в контактах между теплоприемником и термобатареями, а также между последними и теплообменниками, что обусловлено конструктивными недостатками известной конструкции, не обеспечивающей требуемое по величине и стабильное по времени усилие поджима термобатарей к теплообменнику и теплоприемнику.

Наиболее близким к предложенному техническому решению является известная конструкция термоэлектрического генератора, содержащего теплоприемник, внутри корпуса которого размещен источник тепла, а снаружи установлены последовательно в тепловом отношении термоэлектрические модули основания теплообменников системы охлаждения, механически связанные с корпусом теплоприемника посредством средства крепления (см. патент РФ №2018197 С1, кл. H01L 35/22, от 15.04.1992 г.).

Однако и это известное решение не обеспечивает эффективную и надежную работу термоэлектрического генератора, т.к. не создает необходимого по величине и стабильного во времени усилия поджима термоэлектрических модулей к теплоприемнику и холодному теплообменнику (воздушному радиатору). Это происходит потому, что усилие поджима передается на термоэлектрический модуль через ребра воздушного радиатора, которые выполняются из теплопроводных материалов, например алюминия, меди или в худшем случае сплавов на их основе, имеющих сравнительно низкие механические характеристики. Так, например, для алюминия длительная прочность при комнатной температуре не превышает 1 кг/мм2. Это приблизительно равняется оптимальному усилию поджатия термоэлектрического модуля к теплообменной поверхности теплоприемника и холодного теплообменника, например радиатора. При этом необходимо также учесть, что температура воздушных радиаторов значительно выше комнатной и может достигать 100-150 градусов Цельсия, механические свойства алюминия и других вышеназванных теплопроводных материалов заметно снижаются при повышении температуры и, как следствие, происходит уменьшение усилия поджима термоэлектрического модуля к теплоприемнику и радиатору, и в итоге - рост термических сопротивлений на электроизоляционных контактах и потеря электрической мощности каждым из модулей и термоэлектрическим генератором в целом.

Изготовление радиаторов из сплавов на основе алюминия, меди с добавками марганца и кремния позволяют повысить их механические свойства, при этом значительно ухудшается теплопроводность сплавов, что снижает эффективность радиаторов и ведет к снижению электрической мощности термоэлектрического генератора.

Усилие поджима модулей к теплообменным поверхностям радиатора и теплоприемника в известной конструкции подвержено еще и временной деградации из-за явления ползучести материала стяжной оболочки, что также ведет к ухудшению работы термоэлектрического генератора, снижению кпд преобразования тепла в электричество.

Предлагается термоэлектрический генератор, в котором корпус теплоприемника выполнен прямоугольной формы в сечении, по большим сторонам которого симметрично расположены упомянутые термоэлектрические модули основания, а средство крепления выполнено в виде листовых пружин переменного сечения по длине, имеющих наибольшую толщину в средней зоне, уменьшающуюся к консольной части пружин, вынесенную за теплоприемник, и попарно механически связанных между собой, при этом листовые пружины расположены по краям оснований теплообменников с возможностью плотного и стабильного их прижатия с помощью винтовых блоков через термоэлектрические модули к поверхностям корпуса теплоприемника, при этом каждый винтовой блок выполнен в виде стяжки и двух тяг с разнонаправленной резьбой на одноименных концах, на других противоположных концах которых выполнены элементы для соединения с консолями листовых пружин, при этом стяжка выполнена с разнонаправленной резьбой на концах и установлена с возможностью взаимодействия с соответствующими концами тяг, и сближая консоли при вращении в одну сторону и отдаляя их при вращении в противоположную сторону, причем тяги выполнены в виде втулок с внутренней резьбой по краям, обращенным к стяжке, а стяжка - в виде шпильки с разнонаправленной резьбой по краям и с участком под ключ в средней части, при этом элементы для соединения с консолями пружин выполнены в виде профильного бокового отверстия на конце каждой из тяг, по размерам соответствующего в сечении концам пружин, каждая из которых снабжена пазом под размер тяги для соединения стяжки и тяг с консолями пружин, а теплоприемник изготовлен из термостойкого материала, в качестве которого используют чугун, или сплавы на основе алюминия, или сплавы на основе никеля и хрома, или окись алюминия, или окись бериллия, или нитрид бора, или карбид кремния, или стеклоуглерод, или стеатит, а участок под ключ в средней части стяжки выполнен в виде многогранника, и теплообменники выполнены в виде радиаторов воздушного или жидкостного охлаждения, или теплообменники выполнены в виде тепловых гравитационных труб.

Термоэлектрический генератор предлагаемой конструкции поясняется чертежом (рис.1), где 1 - корпус теплоприемника, 2 - цилиндрические тяги с разносторонней резьбой на концах, 3 - стяжка с разносторонней резьбой и средней частью под гаечный ключ, 4 - тепловая изоляция боковой стенки теплоприемника, 5 - тепловыравнивающая пластина по горячей стороне термоэлектрического модуля, 6 - термоэлектрический модуль (ТЭМ), 7 - листовая пружина переменного сечения, 8 - ребро воздушного радиатора охлаждения, 9 - консольная часть ТЭМ с гермовыводами и откачным штенгелем, 10 - камера сгорания топлива с отверстиями - 11; 12, 13 - ребра теплоприемника, 14 - паз в консольной части пружины, 15 - сквозные отверстия в пружинах под стопорные элементы (винты).

Устройство работает следующим образом. Термоэлектрические модули(ь) устанавливаются на теплосъемных поверхностях корпуса теплоприемника (1), внутри которого расположена камера сгорания топлива (10). Внутренняя поверхность теплоприемника (1) снабжена ребрами (12, 13) для отбора тепла от камеры сгорания топлива (10) через отверстия (11) в стенке камеры. В зазоре между термоэлектрическим модулем (6) и теплоприемником (1) размещены тепловыравнивающие пластины (5) из теплопроводного материала, способного работать на воздухе при температуре 500-580 градусов Цельсия, например алюминия, никеля. Эти материалы обеспечивают малое электрическое сопротивление контакта между термоэлектрическим модулем (6) и рабочей поверхностью теплоприемника (1) при существующих в термогенераторе усилиях поджатия порядка 30-40 кг/см2 и в то же время обеспечивают проскальзывание модуля (6) относительно теплоприемника (1) при их нагреве и охлаждении. Необходимое усилие одностороннего сжатия модуля (6) обеспечивается сжатием пружин (7) с осуществляемым путем вкручивания стяжки (3) с разносторонней резьбой на концах в соответствующие разносторонние резьбовые отверстия стяжных тяг (2), при этом происходит взаимное сближение их торцов, обращенных к шпильке (3), и натяжение пружин (7) за счет изгиба консольных частей. Для предотвращения соскальзывания стяжных тяг (2) с концов пружин (7) в последних предусмотрены пазы (14) и сквозные отверстия под стопорные винты (12). Пружины (7) изготавливаются переменного сечения для обеспечения равномерности распределения усилия поджима по длине паза, выполненного в основании теплообменника, например воздушного радиатора (8). Для вакуумирования и заполнения внутренней полости термоэлектрического модуля инертным газом предусмотрена в конструкции защитного чехла модуля откачная трубка, расположенная в консольной части модуля (9), в которой размещены гермовыводы для токовых проводников.

При сгорании топлива в камере сгорания (10) тепловой поток, проходящий через термоэлектрический модуль (6) частично преобразуется в электричество, а остальная его часть сбрасывается в окружающую среду с помощью воздушного радиатора (8) или жидкостного теплообменника, в котором так же, как и в воздушном радиаторе выполнены продольные пазы под пружины.

Прижимной блок в предложенном устройстве (пружины (7), стяжки (3), цилиндрические тяги (2)) вынесены из горячей зоны генератора, что обеспечивает их сравнительно небольшой нагрев (приблизительно 100 градусов Цельсия) и стабильную работу в течение длительного времени (15-20 лет).

Claims (8)

1. Термоэлектрический генератор, содержащий теплоприемник, внутри корпуса которого размещен источник тепла, а снаружи установлены последовательно в тепловом отношении термоэлектрические модули и основания теплообменников системы охлаждения, механически связанные с корпусом теплоприемника посредством средства крепления, отличающийся тем, что корпус теплоприемника выполнен прямоугольной формы в сечении, по большим сторонам которого симметрично расположены упомянутые термоэлектрические модули и основания, а средство крепления выполнено в виде листовых пружин переменного сечения по длине, имеющих наибольшую толщину в средней зоне, уменьшающуюся к консольной части пружин, вынесенную за теплоприемник, и попарно механически связанных между собой, при этом листовые пружины расположены по краям оснований теплообменников с возможностью плотного и стабильного их прижатия с помощью винтовых блоков через термоэлектрические модули к поверхностям корпуса теплоприемника.
2. Термоэлектрический генератор по п.1, отличающийся тем, что каждый винтовой блок выполнен в виде стяжки и двух тяг с разнонаправленной резьбой на одноименных концах, на других противоположных концах которых выполнены элементы для соединения с консолями листовых пружин, при этом стяжка выполнена с разнонаправленной резьбой на концах и установлена с возможностью взаимодействия с соответствующими концами тяг, и сближая консоли при вращении в одну сторону и отдаляя их при вращении в противоположную сторону.
3. Термоэлектрический генератор по п.1, отличающийся тем, что тяги выполнены в виде втулок с внутренней резьбой по краям, обращенным к стяжке, а стяжка - в виде шпильки с разнонаправленной резьбой по краям и с участком под ключ в средней части, при этом элементы для соединения с консолями пружин выполнены в виде профильного бокового отверстия на конце каждой из тяг, по размерам соответствующего в сечении концам пружин, каждая из которых снабжена пазом под размер тяги, для соединения стяжки и тяг с консолями пружин.
4. Термоэлектрический генератор по п.1, отличающийся тем, что теплоприемник выполнен из термостойкого материала.
5. Термоэлектрический генератор по п.4, отличающийся тем, что в качестве термостойкого материала используют чугун, или сплавы на основе алюминия, или сплавы на основе никеля и хрома, или окись алюминия, или окись бериллия, или нитрид бора, или карбид кремния, или стеклоуглерод, или стеатит.
6. Термоэлектрический генератор по п.3, отличающийся тем, что участок под ключ в средней части стяжки выполнен в виде многогранника.
7. Термоэлектрический генератор по п.1, отличающийся тем, что теплообменники выполнены в виде радиаторов воздушного или жидкостного охлаждения.
8. Термоэлектрический генератор по п.1, отличающийся тем, что теплообменники выполнены в виде тепловых гравитационных труб.
RU2013103101/28A 2013-01-23 2013-01-23 Термоэлектрический генератор RU2529437C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013103101/28A RU2529437C2 (ru) 2013-01-23 2013-01-23 Термоэлектрический генератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013103101/28A RU2529437C2 (ru) 2013-01-23 2013-01-23 Термоэлектрический генератор

Publications (2)

Publication Number Publication Date
RU2013103101A RU2013103101A (ru) 2014-07-27
RU2529437C2 true RU2529437C2 (ru) 2014-09-27

Family

ID=51264699

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013103101/28A RU2529437C2 (ru) 2013-01-23 2013-01-23 Термоэлектрический генератор

Country Status (1)

Country Link
RU (1) RU2529437C2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU178115U1 (ru) * 2017-11-03 2018-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ФГБОУ ВО "ВГТУ") Термоэлектрический генераторный модуль
RU2650439C1 (ru) * 2017-01-09 2018-04-13 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Универсальный термоэнергетический генератор. варианты
RU2682767C1 (ru) * 2018-06-05 2019-03-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Автономный пункт сбора данных для системы обнаружения утечек жидких углеводородов
RU2704568C1 (ru) * 2019-01-09 2019-10-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ установки термоэлектрических модулей
RU2717249C2 (ru) * 2017-12-12 2020-03-19 Общество с ограниченной ответственностью "Термоэлектрические инновационные технологии" (ООО "ТЕРМОИНТЕХ") Термоэлектрический генератор
RU2719392C1 (ru) * 2016-05-25 2020-04-17 Янмар Ко., Лтд. Термоэлектрическое устройство генерирования мощности и термоэлектрическая система генерирования мощности

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728160A (en) * 1968-08-19 1973-04-17 Sanders Nuclear Corp Radioisotope means
RU2018197C1 (ru) * 1992-04-15 1994-08-15 Шалаев Николай Васильевич Термоэлектрический генератор
RU2065645C1 (ru) * 1993-02-03 1996-08-20 Шалаев Николай Васильевич Термоэлектрический генератор
RU6088U1 (ru) * 1996-08-29 1998-02-16 Акционерное общество "Позит" (Правдинский опытный завод источников тока) Термоэлектрический генератор

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728160A (en) * 1968-08-19 1973-04-17 Sanders Nuclear Corp Radioisotope means
RU2018197C1 (ru) * 1992-04-15 1994-08-15 Шалаев Николай Васильевич Термоэлектрический генератор
RU2065645C1 (ru) * 1993-02-03 1996-08-20 Шалаев Николай Васильевич Термоэлектрический генератор
RU6088U1 (ru) * 1996-08-29 1998-02-16 Акционерное общество "Позит" (Правдинский опытный завод источников тока) Термоэлектрический генератор

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2719392C1 (ru) * 2016-05-25 2020-04-17 Янмар Ко., Лтд. Термоэлектрическое устройство генерирования мощности и термоэлектрическая система генерирования мощности
RU2650439C1 (ru) * 2017-01-09 2018-04-13 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Универсальный термоэнергетический генератор. варианты
RU178115U1 (ru) * 2017-11-03 2018-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ФГБОУ ВО "ВГТУ") Термоэлектрический генераторный модуль
RU2717249C2 (ru) * 2017-12-12 2020-03-19 Общество с ограниченной ответственностью "Термоэлектрические инновационные технологии" (ООО "ТЕРМОИНТЕХ") Термоэлектрический генератор
RU2682767C1 (ru) * 2018-06-05 2019-03-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Автономный пункт сбора данных для системы обнаружения утечек жидких углеводородов
RU2704568C1 (ru) * 2019-01-09 2019-10-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ установки термоэлектрических модулей

Also Published As

Publication number Publication date
RU2013103101A (ru) 2014-07-27

Similar Documents

Publication Publication Date Title
KR101590000B1 (ko) 전지셀 어셈블리 및 상기 전지셀 어셈블리의 냉각핀을 제조하는 방법
JP5183172B2 (ja) Battery system
US7360365B2 (en) Thermoelectric heat pumps
EP2389705B2 (de) Temperiertes batteriesystem ii
CN102369611B (zh) 热电发电机单元
TWI481096B (zh) New structure bus bar
CN101599525B (zh) 热电模块装置和用于其中的热交换器
EP1515376A2 (de) Vorrichtung zur Erzeugung elektrischer Energie
US4734139A (en) Thermoelectric generator
KR101940577B1 (ko) 히트싱크 및 파워 배터리 시스템
JP5787755B2 (ja) 電気エネルギーを発生させる装置を備える熱交換管束、及びこの管束を備える熱交換器
US3129116A (en) Thermoelectric device
RU2444814C1 (ru) Термоэлектрический кластер, способ его работы, устройство соединения в нем активного элемента с теплоэлектропроводом, генератор (варианты) и тепловой насос (варианты) на его основе
US20130213449A1 (en) Thermoelectric plate and frame exchanger
JPWO2009013960A1 (ja) 熱電変換モジュール
EP2256772B1 (en) Cooling device for a circuit breaker and circuit breaker comprising such device
JP2013157111A (ja) 組電池の冷却兼加熱構造
KR101116892B1 (ko) 전지팩
CA2529224C (en) Co-generation of electricity by the seebeck effect within a fuel cell
Li et al. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles
US5987891A (en) Thermoelectric refrigerator/warmer using no external power, and refrigerating/warming method
Fan et al. Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator
US6823135B1 (en) Waste energy recovery system, including method of recovering waste energy from fluids, and pipes having thermally interrupted sections
US7985918B2 (en) Thermoelectric module
CN201655931U (zh) 应用于电池的加热结构及装置与辅助模组

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160124