RU2650439C1 - Универсальный термоэнергетический генератор. варианты - Google Patents
Универсальный термоэнергетический генератор. варианты Download PDFInfo
- Publication number
- RU2650439C1 RU2650439C1 RU2017100093A RU2017100093A RU2650439C1 RU 2650439 C1 RU2650439 C1 RU 2650439C1 RU 2017100093 A RU2017100093 A RU 2017100093A RU 2017100093 A RU2017100093 A RU 2017100093A RU 2650439 C1 RU2650439 C1 RU 2650439C1
- Authority
- RU
- Russia
- Prior art keywords
- heat sink
- heat
- thermosiphon
- generator
- water
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 238000009833 condensation Methods 0.000 claims abstract description 9
- 230000005494 condensation Effects 0.000 claims abstract description 9
- 238000001704 evaporation Methods 0.000 claims abstract description 9
- 230000008020 evaporation Effects 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 4
- 239000003990 capacitor Substances 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 5
- 230000001965 increasing effect Effects 0.000 abstract description 4
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Изобретение относится к области энергетик и может быть использовано в качестве автономных источников энергопитания. Заявлен термоэнергетический генератор, который содержит батарею термоэнергетических модулей, горячие электроды которых подключены к источнику тепловой энергии, а холодные электроды - к емкости с водой, имеющей жидкостный теплоотвод с трубным водоводом, при этом в одном варианте теплоотвод выполнен в корпусе прямого термосифона, изолированного от емкости с водой теплоизолированным контуром, а в верхней части корпуса термосифона размещены металлические решетки, соединенные посредством теплопроводных стержней с наружным дополнительным теплоотводом. В качестве теплопроводных стержней могут применяться тепловые трубы. В другом варианте теплоотвод выполнен в корпусах кольцевого термосифона, состоящего из испарительного и конденсаторного блоков, соединенных трубным водоводом и трубным паропроводом, причем трубный водовод присоединен к нижним внутренним поверхностям обоих блоков, а трубный паропровод подключен между верхней зоной испарения испарительного блока и верхней зоной конденсации в конденсаторном блоке. Трубный паропровод в конденсаторном блоке может оснащаться дополнительным теплообменником. Технический результат – упрощение конструкции термоэнергетического генератора и повышение эффективности термосифона за счет улучшения конденсации пара в нем. 2 н. и 2 з.п. ф-лы, 2 ил.
Description
Настоящее изобретение относится к термоэнергетическим генераторам и может быть использовано в энергетике в качестве автономных источников электроэнергии.
Известны многочисленные конструкции термоэнергетических генераторов (ТЭГ), увеличение коэффициента полезного действия которых достигается за счет создания большего перепада температур между холодным и горячим электродами.
«Термоэнергетический генератор» [1] содержит в качестве источника тепловой энергии лампу жидкого топлива, надетый на нее трубчатый теплопередатчик с вмонтированными в него термоэлементами, горячий электрод которых нагревается теплом лампы, а холодный электрод охлаждается ребрами радиатора за счет конвекции воздуха.
Недостатком данного устройства является незначительный и нестабильный перепад температур между электродами, малый КПД и малая вырабатываемая мощность.
На принципах воздушного охлаждения работают ТЭГи в промышленном исполнении, например, на газовых магистралях, так и бытовых энергопечах.
«Термоэнергетический генератор» [2] с прямым преобразованием тепловой энергии в электрическую содержит теплоприемник, внутри корпуса которого размещен источник тепла, а снаружи установлены термоэлектрические модули и основания теплообменников системы охлаждения, механически связанные с корпусом теплоприемника посредством средств крепления, причем средства крепления выполнены в виде листовых пружин переменного сечения по длине и расположены по краям оснований теплообменника с возможностью плотного и стабильного контакта через термоэлектрические модули к поверхностям корпуса теплоприемника.
Данный ТЭГ обеспечивает более эффективную и надежную работу, создавая стабильное поджатие модулей к теплоприемнику и к холодному теплообменнику, однако недостатком его является воздушный способ охлаждения теплообменника, не обеспечивающий достаточный перепад температур.
Известны энергопечи «Арктур-М», «Вега-25», «Чолбон-2», «Индигирка-М» [3]. Например, энергопечь «Индигирка-М» имеет выходную электрическую мощность ТЭГ 50 Вт. Охлаждение осуществляется встроенными дистанционно на корпусе электровентиляторами, которые подают атмосферный воздух к холодному электроду.
Наши лабораторные измерения показали, что такое охлаждение на энергопечи «Индигирка-М» не эффективно, так как средняя температура выходящего охлаждающего воздуха с вентиляторов «Твент» менее 100°С (см. «График температур», приложение к данной заявке), температура на горячем электроде во время максимального разогрева печи «Тгор» около 450°С, на холодном электроде «Тхол» 200…250°С, а перепад температур между электродами составил 200…250°С. Кроме того, на работу электровентиляторов требуется 15…18 Вт, т.е. около 30% электроэнергии от ТЭГ затрачивается «впустую».
Дальнейшее увеличение перепада температур между электродами ТЭГ «Индигирки-М» и в других подобных конструкциях путем усиления охлаждения вентиляторами, расположенными на корпусе печи, не представляется возможным из-за температурного перегрева обмоток и выхода из строя электродвигателей вентиляторов.
Известна также полезная модель [4] и изобретение [5] этих же авторов на ТЭГ, преобразующий энергию горения топлива в тепловую по схеме «Индигирки-М».
Энергопечь содержит отопительное устройство, на наружной поверхности корпуса которого закреплен термоэлектрический генератор, включающий опорную нагревательную пластину, на которой подвижно с применением биметаллических пластин закреплена тепловыравнивающая пластина с установленными на ней термоэлектрическими генераторными модулями, причем тепловыравнивающая пластина закреплена на опорной нагреваемой пластине при помощи шарнира с горизонтальной поворотной осью, а биметаллические пластины установлены между опорной нагреваемой пластиной и тепловыделяющей пластиной, при этом холодные спаи модулей установлены на радиаторе воздушного охлаждения.
Недостатком данных устройств, так же как и предыдущих, является малый температурный перепад между электродами и, как следствие, невысокий КПД. Кроме того, воздушный теплоотвод так же не эффективен при использовании его в ТЭГ большой мощности.
Наиболее близким аналогом (прототипом) является ТЭГ [6] по патенту РФ №2348089.
«Термоэлектрический бытовой генератор» содержит батарею термоэлектрических модулей, источник тепловой энергии (печь), систему циркуляции воды из емкости с резервом воды, пароводяной насос, жидкостный теплоотвод от ТЭГ и потребитель теплой воды, замкнутый с помощью водоводов на емкость с резервом воды, а циркуляция воды обеспечивается при помощи пароводяного насоса, приведенного в контакт с нагретой частью печи.
Постоянный отвод тепла циркулирующей воды от холодного электрода термоэлектрических модулей позволяет увеличить перепад температур между электродами и выходную мощность ТЭГ.
Однако недостатком прототипа является сложность выполнения системы циркуляции воды, необходимость стационарного исполнения, дороговизна в управлении и обслуживании.
Задачей предлагаемого изобретения является устранение вышеуказанных недостатков и создание универсального ТЭГ с более высоким КПД, не требующим постоянного принудительного подвода и отвода охлаждающий жидкости.
Технический результат предлагаемого изобретения заключается в следующем:
- упрощена конструкция ТЭГ по первому варианту за счет использования в схеме охлаждения вместо принудительного жидкостного теплоотвода прямого термосифона, осуществляющего циркуляцию постоянного объема жидкости внутри корпуса ТЭГ;
- повышена эффективность конденсации пара в термосифоне ТЭГ за счет использования дополнительных теплопоглощающих металлических решеток, соединенных теплопроводными стержнями с дополнительным наружным теплоотводом, а в качестве стержней могут быть использованы тепловые трубы;
- упрощена конструкция ТЭГ по второму варианту за счет использования в схеме охлаждения вместо принудительного жидкостного теплоотвода кольцевого термосифона, осуществляющего циркуляцию постоянного объема жидкости между испарительным и конденсаторным блоками термосифона;
- повышена эффективность термосифона за счет улучшения конденсации пара путем оснащения паропровода в конденсаторном блоке дополнительным теплообменником.
Технический результат достигается за счет того, что в термоэнергетическом генераторе, содержащем батарею термоэнергетических модулей, горячие электроды которых подключены к печи (источнику тепловой энергии), а холодные электроды - к емкости с водой, оснащенной жидкостным теплоотводом с трубным водоводом, жидкостный теплоотвод выполнен для первого варианта генератора в корпусе прямого термосифона, изолированного от емкости с водой теплоизолирующим контуром, причем в верхней части корпуса термосифона размещены металлические решетки, соединенные посредством теплопроводных стержней с наружным теплоотводом, а в качестве теплопроводных стержней применены тепловые трубы, обладающие высокой теплопроводностью.
Технический результат во втором варианте достигается за счет того, что в генераторе, содержащем батарею термоэнергетических модулей, горячие электроды которых подключены к печи (источнику тепловой энергии), а холодные электроды - к емкости с водой, оснащенной жидкостным теплоотводом с трубным водоводом, жидкостный теплоотвод выполнен в данном варианте в корпусе кольцевого термосифона, состоящего из испарительного и конденсаторного блоков, соединенных трубным водоводом и трубным паропроводом, причем трубный водовод присоединен к нижним внутренним поверхностям обоих блоков, трубный паропровод подключен между верхней зоной испарения испарительного блока и верхней зоной конденсации в конденсаторном блоке, а трубный паропровод в конденсаторном блоке оснащен дополнительным теплообменником.
На фиг. 1 изображен вариант «Универсального термоэнергетического генератора. Варианты» с использованием однокорпусного прямого термосифона, а на фиг. 2 - вариант генератора на основе кольцевого термосифона с раздельными корпусами испарительного и конденсаторного блоков.
«Универсальный термоэнергетический генератор. Варианты» содержит в первом варианте (фиг. 1) источник 1 тепловой энергии (печь), батарею 2 термоэнергетических модулей, горячие электроды 3 которых присоединены к источнику, а холодные электроды 4 - к емкости 5 с жидкостью или водой. Для условий с отрицательными температурами вода заменяется незамерзающей жидкостью. Емкость через теплоизолирующий контур 6 соединена с корпусом 7 прямого термосифона, оснащенного охлаждающими ребрами, а в верхней части корпуса расположены дополнительные теплопоглощающие решетки 8, соединенные теплопроводными стержнями 9 с дополнительным наружным теплоотводом 10, причем вместо теплопроводных стержней могут использоваться тепловые трубы.
По второму варианту генератор содержит кольцевой термосифон, состоящий из испарительного блока 11 и конденсаторного блока 12, соединенных трубным паропроводом 13 и трубным водоводом 14, а конец трубного паропровода в конденсаторном блоке оснащен дополнительным теплообменником 15, находящемся в уже сконденсированном объеме воды до уровня h.
«Универсальный термоэнергетический генератор. Варианты» работает по первому варианту следующим образом, фиг. 1. Тепловая энергия Q от источника 1 поступает на горячие электроды 3 термоэнергетического модуля 2, холодные электроды 4 которых охлаждаются емкостью 5 с жидкостью или с водой. Если в емкости содержится вода, то при достижении температуры 100°С она закипает и пары, поднимаясь (сплошные стрелки на фиг. 1) в верхнюю часть корпуса 7 термосифона конденсируются на стенках корпуса, так же на стенках дополнительных термопоглощающих решетках 8 и стекают (пунктирные стрелки на фиг. 1) обратно в емкость 5 с водой. Осуществляемый таким образом круговорот «вода - пар - вода» в термосифоне позволяет увеличить перепад температур между электродами, отобрать избыточную тепловую энергию с холодных электродов 4, температура которых при использовании воды будет равна температуре кипения 100°С, тепловая энергия при этом через оребренный корпус выбрасывается в окружающее пространство, причем объем используемой в термосифоне жидкости (в данном случае воды) остается постоянным. Электрическая энергия снимается обычным образом проводниками с электродов модулей (проводники условно не показаны на чертежах).
Если необходим ТЭГ большей электрической мощности и требуется отвести от холодных электродов 4 значительное количество тепловой энергии, то через дополнительные теплопроводные стержни 9 подключают дополнительный наружный теплоотвод 10, в качестве которого может быть использован дополнительный массивный воздушный охладитель или дополнительная емкость с водой, а вместо стержней 9 применить более эффективные по теплопроводности тепловые трубы.
Теплоизолирующий контур 6 в данной тепловой схеме позволяет уменьшить теплопередачу от емкости 5 к корпусу 7 термосифона, исключив прямой контакт между ними.
Для стационарных ТЭГ большой электрической мощности может использоваться второй вариант с применением кольцевого термосифона [7], (фиг. 2). На данном чертеже условно показано присоединение испарительного блока 11 к холодному электроду батареи 2 только с боковой поверхности источника 1 тепловой энергии, а фактически может использоваться вся его горячая поверхность.
При закипании в блоке 11 воды ее пары по трубному паропроводу 13 поднимаются в блок 12 конденсации, где после конденсации вода накапливается в донной части блока 12 и после достижения уровня слива h через трубный водовод 14 сливается в испарительный блок 11, осуществляя кругооборот «вода - пар - вода». Усиление конденсации достигается за счет снижения температуры паров в теплообменнике 15, так как он находится уже в зоне сконденсированной жидкости h.
Универсальность предлагаемого устройства заключается в том, что для малых мощностей оно может использоваться, например, в качестве надстройки к «Генераторам термоэлектрическим» типа ГТУ-12-12 [8].
Предлагаемая схема теплопровода с помощью прямого или кольцевого термосифона может быть альтернативой охлаждения любых термоэлектрических генераторов, в том числе термоэлектрических сборок серии «воздух - воздух» на разные мощности охлаждения, выпускаемых НПО «Кристалл» [9].
Учитывая изложенное, следует ожидать, что предлагаемое изобретение найдет широкое применение в быту и в промышленности.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Воронин А.Н., Северов А.А. Термоэнергетический генератор. Авторское свидетельство СССР №96698, МПК Н01V 1/02 (аналог).
2. Плеханов С.И., Тереков А.Я., Новиков В.Э. Термоэнергетический генератор. Патент РФ №2529437, МПК H01L 35/28.
3. Энергопечь. Технические характеристики моделей. [Электронный ресурс]. Режим доступа: http://www.energopech.ru.
4. Баукин В.Г. Винокуров А.В. и др. Отопительное устройство с термоэлектрическим генератором и термоэлектрический генератор. Патент РФ на полезную модель №95183, МПК H01L 35/28 (аналог).
5. Баукин В.Г., Винокуров А.В. и др. Отопительное устройство с термоэлектрическим генератором и термоэлектрический генератор. Патент РФ №2419749, МПК F24H 3/12 (аналог).
6. Исмаилов Т.А., Аминов Г.И. Термоэлектрический бытовой генератор. Патент РФ №2348089, МПК H01L 35/28 (прототип).
7. Попов А.И., Щеклеин С.Е. Кольцевой регулируемый термосифон. Положительное решение по заявке №2015122705 от 11.06.2015.
8. Альтернативные источники тока. Генератор термоэлектрический ГТУ-12-12. [Электронный ресурс]. Режим доступа: www.ait-1.narod.ru.
9. Термоэлектрические сборки серии «Воздух - Воздух» для уличного применения. [Электронный ресурс]. Режим доступа: http://www.crystalltherm.com/ru.
10. Патент США US 3728160. 17.04.73.
11. Патент США US 4095998. 20.06.78.
12. Патент Японии JP 2006294738 А. 26.10.2006.
13. Патент Японии JP 2008021678 А. 31.01.2008.
Claims (4)
1. Универсальный термоэнергетический генератор, содержащий батарею термоэнергетических модулей, горячие электроды которых подключены к печи (источнику тепловой энергии), а холодные электроды - к емкости с водой, оснащенной жидкостным теплоотводом с трубным водоводом, отличающийся тем, что жидкостный теплоотвод генератора выполнен в корпусе прямого термосифона, изолированного от емкости с водой теплоизолированным контуром, причем в верхней части корпуса термосифона размещены металлические решетки, соединенные посредством теплопроводных стержней с наружным дополнительным теплоотводом.
2. Универсальный термоэнергетический генератор по п. 1, отличающийся тем, что в качестве теплопроводных стержней применены тепловые трубы.
3. Универсальный термоэнергетический генератор, содержащий батарею термоэнергетических модулей, горячие электроды которых подключены к печи (источнику тепловой энергии), а холодные электроды - к емкости с водой, оснащенной жидкостным теплоотводом с трубным водоводом, отличающийся тем, что жидкостный теплоотвод генератора выполнен в корпусах кольцевого термосифона, состоящего из испарительного и конденсаторного блоков, соединенных трубным водоводом и трубным паропроводом, причем трубный водовод присоединен к нижним внутренним поверхностям обоих блоков, а трубный паропровод подключен между верхней зоной испарения испарительного блока и верхней зоной конденсации в конденсаторном блоке.
4. Универсальный термоэнергетический генератор по п. 3, отличающийся тем, что трубный паропровод в конденсаторном блоке оснащен дополнительным теплообменником.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017100093A RU2650439C1 (ru) | 2017-01-09 | 2017-01-09 | Универсальный термоэнергетический генератор. варианты |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017100093A RU2650439C1 (ru) | 2017-01-09 | 2017-01-09 | Универсальный термоэнергетический генератор. варианты |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2650439C1 true RU2650439C1 (ru) | 2018-04-13 |
Family
ID=61976706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017100093A RU2650439C1 (ru) | 2017-01-09 | 2017-01-09 | Универсальный термоэнергетический генератор. варианты |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2650439C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU182542U1 (ru) * | 2018-05-23 | 2018-08-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ФГБОУ ВО "ВГТУ") | Термоэлектрический генераторный модуль |
RU186073U1 (ru) * | 2018-09-06 | 2018-12-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ФГБОУ ВО "ВГТУ") | Термоэлектрический генераторный модуль |
RU217290U1 (ru) * | 2023-01-11 | 2023-03-24 | Роман Олегович Голубев | Унифицированный утилизационный термоэлектрический генератор морского исполнения |
FR3129379A1 (fr) * | 2021-11-25 | 2023-05-26 | Safran Aircraft Engines | Dispositif de production d’énergie électrique à rendement amélioré |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU57969U1 (ru) * | 2006-06-21 | 2006-10-27 | Открытое акционерное общество "РИФ" | Автономный малогабаритный термоэлектрический источник тока |
US20080083446A1 (en) * | 2005-03-02 | 2008-04-10 | Swapan Chakraborty | Pipeline thermoelectric generator assembly |
RU2348089C1 (ru) * | 2007-07-16 | 2009-02-27 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) | Термоэлектрический бытовой генератор |
RU2359363C1 (ru) * | 2008-01-09 | 2009-06-20 | Евгений Викторович Буряк | Термоэлектрический генератор |
US20100132818A1 (en) * | 2006-12-14 | 2010-06-03 | Robert Dell | Thermoelectric power generation device |
KR20120038335A (ko) * | 2010-10-13 | 2012-04-23 | 충북대학교 산학협력단 | 열전 발전시스템 |
RU2529437C2 (ru) * | 2013-01-23 | 2014-09-27 | Открытое акционерное общество "Научно-производственное предприятие Квант" | Термоэлектрический генератор |
-
2017
- 2017-01-09 RU RU2017100093A patent/RU2650439C1/ru not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080083446A1 (en) * | 2005-03-02 | 2008-04-10 | Swapan Chakraborty | Pipeline thermoelectric generator assembly |
RU57969U1 (ru) * | 2006-06-21 | 2006-10-27 | Открытое акционерное общество "РИФ" | Автономный малогабаритный термоэлектрический источник тока |
US20100132818A1 (en) * | 2006-12-14 | 2010-06-03 | Robert Dell | Thermoelectric power generation device |
RU2348089C1 (ru) * | 2007-07-16 | 2009-02-27 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) | Термоэлектрический бытовой генератор |
RU2359363C1 (ru) * | 2008-01-09 | 2009-06-20 | Евгений Викторович Буряк | Термоэлектрический генератор |
KR20120038335A (ko) * | 2010-10-13 | 2012-04-23 | 충북대학교 산학협력단 | 열전 발전시스템 |
RU2529437C2 (ru) * | 2013-01-23 | 2014-09-27 | Открытое акционерное общество "Научно-производственное предприятие Квант" | Термоэлектрический генератор |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU182542U1 (ru) * | 2018-05-23 | 2018-08-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ФГБОУ ВО "ВГТУ") | Термоэлектрический генераторный модуль |
RU186073U1 (ru) * | 2018-09-06 | 2018-12-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ФГБОУ ВО "ВГТУ") | Термоэлектрический генераторный модуль |
FR3129379A1 (fr) * | 2021-11-25 | 2023-05-26 | Safran Aircraft Engines | Dispositif de production d’énergie électrique à rendement amélioré |
WO2023094779A1 (fr) * | 2021-11-25 | 2023-06-01 | Safran Aircraft Engines | Dispositif de production d'énergie électrique à rendement amélioré |
RU217290U1 (ru) * | 2023-01-11 | 2023-03-24 | Роман Олегович Голубев | Унифицированный утилизационный термоэлектрический генератор морского исполнения |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2650439C1 (ru) | Универсальный термоэнергетический генератор. варианты | |
CN102570289B (zh) | 一种光纤耦合模块的温控散热系统 | |
FR2402846A1 (fr) | Systeme de chauffage et de refroidissement fonctionnant a l'aide d'energie solaire | |
RU178115U1 (ru) | Термоэлектрический генераторный модуль | |
FR3066260B1 (fr) | Dispositif de regulation thermique de cellules de stockage d'energie electrique de type cylindrique | |
RU2359363C1 (ru) | Термоэлектрический генератор | |
KR20190026455A (ko) | 보일러용 열전 발전장치 | |
RU2345294C1 (ru) | Устройство для охлаждения тепловыделяющей аппаратуры | |
RU186073U1 (ru) | Термоэлектрический генераторный модуль | |
CN112968009A (zh) | 一种热管-半导体制冷联合的电子芯片散热装置及其控制回路 | |
CN210982726U (zh) | 散热器和激光雷达 | |
KR20170099281A (ko) | 캠핑용 열전발전장치 | |
Al‐Madhhachi et al. | Thermal, environmental, and cost analysis of effective solar portable vaccine refrigerator by COMSOL Multiphysics | |
RU2511922C1 (ru) | Термоэлектрический блок охлаждения | |
Maydanik et al. | Two-phase loop thermosyphons | |
RU172184U1 (ru) | Устройство для охлаждения масляного трансформатора | |
RU182542U1 (ru) | Термоэлектрический генераторный модуль | |
KR100812797B1 (ko) | 휴대용 열전발전기 | |
CN210608832U (zh) | 一种电机蒸发冷却装置 | |
RU183345U1 (ru) | Устройство для преобразования тепловой энергии трансформатора в электрическую энергию | |
RU2345511C2 (ru) | Устройство для нагрева и охлаждения статического преобразователя | |
CN206516454U (zh) | 油入式变压器散热模组 | |
Remeli | Simultaneous industrial waste heat recovery and power generation using heat pipe assisted thermoelectric generator | |
RU224498U1 (ru) | Термоэлектрический генератор с жидкостным охлаждением | |
US11653567B2 (en) | Thermoelectric generator using in situ passive cooling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190110 |