RU2522242C2 - Алюминиевая лента с высоким содержанием марганца и магния - Google Patents
Алюминиевая лента с высоким содержанием марганца и магния Download PDFInfo
- Publication number
- RU2522242C2 RU2522242C2 RU2011147703/02A RU2011147703A RU2522242C2 RU 2522242 C2 RU2522242 C2 RU 2522242C2 RU 2011147703/02 A RU2011147703/02 A RU 2011147703/02A RU 2011147703 A RU2011147703 A RU 2011147703A RU 2522242 C2 RU2522242 C2 RU 2522242C2
- Authority
- RU
- Russia
- Prior art keywords
- substrate
- aluminum
- offset printing
- aluminum alloy
- thickness
- Prior art date
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 35
- 239000004411 aluminium Substances 0.000 title abstract 2
- 239000011572 manganese Substances 0.000 title description 20
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title description 17
- 239000011777 magnesium Substances 0.000 title description 17
- 229910052748 manganese Inorganic materials 0.000 title description 17
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title description 13
- 229910052749 magnesium Inorganic materials 0.000 title description 13
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 238000007645 offset printing Methods 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000005452 bending Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 27
- 238000000137 annealing Methods 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 238000009661 fatigue test Methods 0.000 claims description 5
- 238000007639 printing Methods 0.000 abstract description 23
- 238000005469 granulation Methods 0.000 abstract description 13
- 230000003179 granulation Effects 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 7
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 239000011651 chromium Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N1/00—Printing plates or foils; Materials therefor
- B41N1/04—Printing plates or foils; Materials therefor metallic
- B41N1/08—Printing plates or foils; Materials therefor metallic for lithographic printing
- B41N1/083—Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Printing Plates And Materials Therefor (AREA)
Abstract
Изобретение относится к алюминиевому сплаву для производства подложек для офсетных печатных форм. Алюминиевый сплав содержит следующие компоненты, в мас.%: 0,2% ≤ Fe ≤0,5%, 0,41% ≤ Mg ≤ 0,7%, 0,05% ≤ Si ≤ 0,25%, 0,31% ≤ Mn ≤0,6%, Cu ≤0,04%, Ti ≤ 0,05%, Zn ≤ 0,05%, Cr ≤ 0,01%, остальное - Al и неизбежные примеси, каждая из которых присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%. Техническим результатом изобретения является создание алюминиевого сплава и алюминиевой ленты, изготовленной из алюминиевого сплава, которая пригодна для производства подложек для печатных форм, обладающих более высоким сопротивлением усталости при изгибе поперек направления вращения и большей термической устойчивостью без снижения способности к зернению. 2 н. и 5 з.п. ф-лы, 4 табл., 2 ил.
Description
Изобретение относится к алюминиевому сплаву для производства подложек для офсетных печатных форм, а также к алюминиевой ленте, полученной из алюминиевого сплава, к способу производства алюминиевой ленты и ее применению для производства подложек для офсетных печатных форм.
Алюминиевые ленты для производства подложек для офсетных печатных форм должны быть очень высокого качества, и в этой связи их постоянно совершенствуют. Алюминиевая лента должна соответствовать комплексной совокупности свойств. Так, во время производства подложки для офсетных печатных форм алюминиевую ленту подвергают электрохимическому зернению, при этом процесс зернения должен обеспечить неструктурированный внешний вид без эффекта полос при максимальной скорости обработки. Предназначение зерненной структуры алюминиевой ленты состоит в том, чтобы обеспечить возможность постоянного нанесения на подложку печатной формы фоточувствительных слоев, которые впоследствии освещают. Фоточувствительные слои прожигают при температуре от 220°С до 300°С в течение периода времени от 3 до 10 мин. Типичными сочетаниями времени и температуры прожигания являются, например, 240°С в течение 10 мин или 280°С в течение 4 мин. Кроме того, подложка печатной формы должна быть удобной для пользования, т.е. чтобы подложку для печатных форм можно было зажимать в печатном устройстве. Следовательно, размягчение подложки для печатных форм после процесса прожигания должно быть не слишком выражено. Максимальная прочность на разрыв до процесса прожигания может гарантировать то, что прочность на разрыв после процесса прожигания будет достаточно высокой. Однако высокая прочность на разрыв до процесса прожигания препятствует выравниванию алюминиевой ленты, то есть ликвидации деформации рулона алюминиевой ленты перед обработкой для формирования подложки для печатных форм. Кроме того, все шире применяются печатные машины с максимальной площадью печатающих элементов, и поэтому подложки для печатных форм надо зажимать не вдоль направления вращения, а поперек направления вращения для создания очень большой ширины печати. Это означает, что все большее значение приобретает сопротивление усталости при изгибе подложки для печатных форм поперек направления вращения. Для оптимизации свойств алюминиевой ленты в плане ее способности к зернению, ее термостойкости, механических свойств до и после процесса прожигания, а также сопротивления усталости при изгибе вдоль направления вращения, за основу была взята лента для производства подложек для офсетных печатных форм, которая характеризуется хорошей способностью к зернению в сочетании с высоким сопротивлением усталости при изгибе вдоль направления вращения и достаточной термической устойчивостью, известная из европейского патента ЕР 1065071 В1, который принадлежит заявителю. Вследствие увеличения размеров печатных машин и возникшего в результате этого требования увеличения подложки для печатных форм встал вопрос о необходимости улучшения свойств алюминиевых сплавов и изготовленных из них подложек для печатных форм в плане размягчения в направлении, поперечном направлению вращения, при отсутствии отрицательного влияния на способность алюминиевой ленты к зернению.
Из международной заявки WO 2007/045676, которая тоже была подана заявителем, также известно объединение высокого содержания железа: от 0,4 масс.% до 1 масс.% с относительно высоким содержанием марганца и содержанием магния максимум до 0,3 масс.%. При использовании этого алюминиевого сплава можно улучшить термическую устойчивость и сопротивление усталости при изгибе вдоль направления вращения после процесса прожигания. Однако ранее считалось, что, в частности, содержание марганца и магния в количестве более 0,3 масс.% представляет собой проблему для способности алюминиевого сплава к зернению.
В связи с этим целью настоящего изобретения является создание алюминиевого сплава и алюминиевой ленты, которая пригодна для производства подложек для печатных форм и обладает более высоким сопротивлением усталости при изгибе поперек направления вращения и большей термической устойчивостью без снижения способности к зернению. При этом настоящее изобретение решает проблему создания способа изготовления алюминиевой ленты, которая, в частности, хорошо адаптирована к производству подложек для офсетных печатных форм, предназначенных для зажимания в поперечном направлении.
Согласно первому раскрытию настоящего изобретения описанная выше цель создание алюминиевого сплава для производства подложек для офсетных печатных форм достигается тем, что алюминиевый сплав содержит следующие компоненты, в масс.%:
0,2% ≤ Fe ≤ 0,5%,
0,11% ≤ Mg ≤ 0,7%,
0,05% ≤ Si ≤ 0,25%,
0,31% ≤ Mn ≤ 0,6%,
Сu ≤ 0,04%,
Ti ≤ 0,1%,
Zn ≤ 0,1%,
Cr ≤ 0,1%,
остальное Al и неизбежные примеси, каждая из которых присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%.
В отличие от алюминиевых сплавов, ранее использовавшихся для производства подложек для офсетных печатных форм, которые в целом содержат в очень небольших долях марганец и магний, алюминиевый сплав по изобретению объединяет высокое содержание марганца по меньшей мере 0,31 масс.% с относительно высоким содержанием магния от 0,1 до 0,7 масс.%. В результате этого было обнаружено, что алюминиевый сплав по изобретению не только обладает очень хорошим сопротивлением усталости при изгибе поперек направления вращения благодаря объединению высокого содержания марганца и магния. В связи с отличной термической устойчивостью подложки для печатных форм, изготовленные из алюминиевого сплава по изобретению, удобны для пользования, и особенно высока надежность технологического процесса в плане обеспечения механических свойств до и после процесса прожигания. Несмотря на высокое содержание марганца и магния, вопреки ожиданию, специалисты не обнаружили никаких проблем в плане способности к зернению.
Хорошее поведение при зернении также обусловлено кремнием, который содержится в алюминиевом сплаве по изобретению в количестве от 0,05 масс.% до 0,25 масс.%. При электрохимическом зернении или травлении содержание Si обеспечивает получение большого числа достаточно глубоких углублений, позволяющих гарантировать оптимальную абсорбцию светочувствительного лака.
Содержание меди должно быть ограничено максимум 0,04 масс.% для предотвращения возникновения неоднородных структур во время процесса зернения. Титан, который вводят в алюминиевый сплав для уменьшения зерен в расплаве, создает проблемы при зернении при высоком содержании, составляющем более 0,1 масс.%. Уровень цинка и хрома оказывает отрицательное действие на результат зернения, и, следовательно, они должны присутствовать в количестве не более 0,1 масс.%.
Согласно первому осуществлению алюминиевого сплава по изобретению термическую устойчивость алюминиевого сплава можно дополнительно повысить, если алюминиевый сплав будет содержать Мn в количестве, масс.%:
0,5 масс.%≤Мn≤0,6 масс.%.
Было обнаружено, что более высокое содержание марганца не только приводит к дальнейшему повышению термической устойчивости, то есть к меньшему размягчению после процесса прожигания, но одновременно стабилизирует сопротивление усталости при изгибе поперек направления вращения применительно к выбранному способу производства. Этот эффект особенно выражен при содержании марганца от 0,5 масс.% до 0,6 масс.%.
Согласно следующему осуществлению алюминиевого сплава по изобретению содержание Mg в упомянутом сплаве составляет в масс.%:
0,5%≤Mg≤0,7%,
и, таким образом, сопротивление усталости при изгибе поперек направления вращения может быть дополнительно повышено. При более высоком содержании марганца, например по меньшей мере 0,5 масс.%, или при сочетании марганца с магнием с содержанием магния по меньшей мере 0,5 масс.% не было выявлено проблем в плане способности к электрохимическому зернению алюминиевой ленты, изготовленной из соответствующего алюминиевого сплава.
Как было указано, Ti, Zn и Сr могут отрицательно повлиять на результат зернения и в принципе могут привести к возникновению эффекта полос на алюминиевой ленте. Таким образом, алюминиевый сплав по изобретению может быть дополнительно улучшен в плане надежности процесса при зернении и, следовательно, применительно к его использованию для подложек для печатных форм, если алюминиевый сплав содержит следующие компоненты сплава, в масс.%:
Ti≤0,05%,
Zn≤0,05%,
Cr≤0,01%.
Согласно второму раскрытию настоящего изобретения описанная выше цель достигается алюминиевой лентой для изготовления подложек для офсетных печатных форм, состоящей из алюминиевого сплава по изобретению, толщиной от 0,15 мм до 0,5 мм. Алюминиевая лента по изобретению характеризуется не только отличной способностью к зернению, но гарантирует оптимальное удобство применительно к использованию очень больших печатных устройств с зажимаемыми поперек подложками для печатных форм благодаря очень хорошей термической устойчивости при умеренной прочности на разрыв. Самое главное, это дополняется отличным сопротивлением усталости алюминиевой ленты по изобретению при изгибе поперек направления вращения.
Согласно следующему осуществлению алюминиевой ленты по изобретению после процесса прожигания при температуре 280°С в течение 4 мин упомянутая лента обладает прочностью на разрыв Rm более 150 МПа, условным пределом текучести Rp 0.2 более 140 МПа и сопротивлением усталости при изгибе поперек направления вращения по меньшей мере 1950 циклов по результатам испытаний усталости при изгибе. Поскольку алюминиевая лента по изобретению обладает очень хорошей термической устойчивостью, с помощью традиционных параметров способа можно подогнать показатели прочности на разрыв до процесса прожигания так, чтобы они находились в идеальном технологическом диапазоне, например, чтобы они позволяли скорректировать «остаточную деформацию рулона» и одновременно гарантировали удобство при пользовании и стабильность при применении в очень больших печатных устройствах.
Благодаря описанной выше совокупности свойств алюминиевого сплава и изготовленной из него алюминиевой ленты, согласно третьему раскрытию настоящего изобретения упомянутую выше цель также достигают применением алюминиевой ленты по изобретению для изготовления подложек для офсетных печатных форм.
И наконец, согласно четвертому раскрытию настоящего изобретения упомянутую выше цель достигают способом изготовления алюминиевой ленты для подложек для офсетных печатных форм, состоящей из алюминиевого сплава по изобретению, заключающимся в том, что отливают прокатываемый слиток, прокатываемый слиток необязательно гомогенизируют при температуре от 450°С до 610°С, прокатываемый слиток подвергают горячей прокатке до толщины от 2 до 9 мм и горячекатаную ленту подвергают холодной прокатке с промежуточным отжигом или без него до конечной толщины от 0,15 мм до 0,5 мм. Процесс промежуточного отжига, если этот промежуточный отжиг проводится, выполняют так, чтобы последующим процессом холодной прокатки до конечной толщины задавалась требуемая конечная прочность алюминиевой ленты в конечном прокатанном состоянии.
Промежуточный отжиг предпочтительно проводят при промежуточной толщине от 0,5 до 2,8 мм, при этом промежуточный отжиг выполняют в рулоне или в печи непрерывного отжига при температуре от 230°С до 470°С. В результате этого промежуточного отжига конечную прочность алюминиевой ленты в конечном прокатанном состоянии можно корректировать в зависимости от толщины ленты, при которой проводят промежуточный отжиг. Заключительный процесс отжига предпочтительно можно опустить для снижения затрат на производство до минимального уровня.
Благодаря алюминиевому сплаву по изобретению в сочетании с описанными параметрами сопротивление усталости при изгибе поперек направления вращения очень высоко, и при этом размягчение алюминиевой ленты, вызванное обязательным процессом прожигания, снижено. В результате могут быть изготовлены подложки для печатных форм способом по изобретению, которые помимо отличной способности к зернению также объединяют свойства прекрасной термической устойчивости и высокого сопротивления усталости при изгибе поперек направления вращения.
Благодаря этому появляется множество возможностей изготовления и совершенствования алюминиевого сплава по изобретению, алюминиевой ленты по изобретению, ее применения и способа изготовления алюминиевой ленты. Для этого были сделаны ссылки на пункты, зависимые от пунктов 1, 6 и 9, и на описание способов осуществления в сочетании с фигурой.
Единственная фиг. показывает схематический вид в разрезе устройства, используемого для определения усталости при изгибе.
В таблице 1 ниже показана композиция эталонного алюминиевого сплава Ref и алюминиевых сплавов по изобретению 15, 16 и 17, которые также были исследованы. Показатели композиции в таблице 1 приведены в масс.%.
Сплавы 15, 16 и 17 по изобретению имели гораздо более высокое содержание марганца - 0,5 масс.% по сравнению с эталонным алюминиевым сплавом. Содержание Mg варьировало от 0,2 масс.% до 0,6 масс.%. Прокатываемые слитки отливали из алюминиевых сплавов указанных композиций. Затем прокатываемый слиток гомогенизировали при температуре от 450°С до 610°С и подвергали горячей прокатке до толщины горячей ленты 4 мм. Холодную прокатку до конечной толщины 0,3 мм проводили как с промежуточным отжигом, так и без него, при этом промежуточный отжиг проводили при толщине ленты 0,9 - 1,2 мм, предпочтительно 1,1 мм. При промежуточном отжиге использовали два температурных диапазона, более конкретно от 300°С до 350°С и от 400°С до 450°С.
Алюминиевую ленту, изготовленную в соответствии с описанным выше способом, подвергали электрохимическому зернению для изучения пригодности для производства подложек для печатных форм. Неожиданно и вопреки ожиданиям специалистов не было отмечено возникновения эффекта полос после процесса зернения, даже при относительно высоком содержании магния и марганца в алюминиевых сплавах по изобретению. Следовательно, все алюминиевые сплавы по изобретению характеризуются очень хорошим или хорошим поведением при зернении. Результаты испытаний способности к зернению показаны в таблице 2.
Таблица 2 | |
Сплав | Поведение при зернении |
Ref | ++ |
15 | ++ |
16 | + |
17 | + |
В таблице 3 показаны результаты испытаний на усталость при изгибе, а также связанные с ней показатели толщины при промежуточном отжиге и диапазоны температур промежуточного отжига.
Как ясно видно из таблицы 3, число возможных циклов изгиба как в конечном прокатанном состоянии, так и в состоянии после прожигания может быть значительно увеличено по сравнению с эталонным сплавом. При 2300 циклах минимальное число циклов изгиба поперек направления вращения в состоянии после прожигания в 1,8 раз выше, чем у эталонного сплава. Таким образом, алюминиевый сплав по изобретению особенно хорошо адаптирован для производства подложек для очень больших печатных форм, которые зажимают в печатных устройствах поперек направления вращения.
Повышенная термическая устойчивость также обеспечивается за счет высокого содержания марганца, что более конкретно проявляется в более высоких показателях прочности на разрыв и условного предела текучести. Механические свойства образцов сплавов приведены в таблице 4. Их замеряли в соответствии со стандартом EN.
Таблица 4 | ||
Прожигание при 280°С/4 мин, при замере вдоль направления вращения |
||
Номер испытания | Rp 0.2 (МПа) | Rm (МПа) |
R | 136 | 145 |
5.1 | 180 | 193 |
5.2 | 153 | 170 |
5.3 | 148 | 164 |
6.1 | 181 | 192 |
6.2 | 154 | 170 |
6.3 | 151 | 169 |
7.1 | 178 | 193 |
7.2 | 162 | 182 |
7.3 | 161 | 179 |
Влияние промежуточного отжига на показатели Rm и Rp 0.2 очевидно. Самые высокие показатели прочности на разрыв Rm и условного предела текучести Rp 0.2 были выявлены в испытаниях 5.1, 6.1 и 7.1. Это следует связать с изготовлением лент без промежуточного отжига. Промежуточный отжиг при 0,9 мм - 1,2 мм, предпочтительно при 1,1 мм давал умеренные показатели прочности на разрыв и условного предела текучести после процесса прожигания, тогда как эти показатели снова снижались при повышении температуры промежуточного отжига, что демонстрируют практические примеры 5.3, 6.3 и 7.3.
Все замеренные значения прочности на разрыв Rm и условного предела текучести RP 0.2 алюминиевой ленты по изобретению значительно выше ранее полученных показателей для эталонного сплава в ходе испытания R несмотря на то, что для промежуточного отжига была выбрана меньшая толщина алюминиевой ленты по изобретению при той же температуре промежуточного отжига.
На фиг.1а показан схематический вид устройства для измерения усталости при изгибе 1, которое использовалось для определения числа возможных циклов испытаний на усталость при изгибе. Устройство 1 для определения усталости при изгибе состоит из подвижного сегмента 3, который расположен на фиксированном сегменте 4 так, что сегмент 3 двигается назад и вперед во время испытания усталости при изгибе качением по фиксированному сегменту 4, и, таким образом, фиксированный образец 2 подвергается изгибу под прямыми углами относительно растяжения образца, фиг.1b. Для исследования усталости при изгибе поперек направления вращения необходимо вырезать образец из алюминиевой ленты по изобретению только поперек направления вращения и зажать в устройстве для определения усталости при изгибе 1. Радиус сегментов 3, 4 составляет 30 мм. Замеряют число циклов изгиба, при этом цикл изгиба заканчивается при достижении сегментом 3 исходной позиции.
Замеры усталости при изгибе сплавов по изобретению явно показали, что в целом число циклов изгиба можно увеличить при повышении содержания марганца и магния, при этом высокий показатель числа циклов изгиба до растрескивания образца также достигался без промежуточного отжига. Более конкретно, число циклов изгиба при проведении промежуточного отжига в конечном прокатанном состоянии в значительной степени было приближено к числу циклов изгиба образца с высоким содержанием марганца и магния в состоянии после прожигания. В этом отношении можно наблюдать положительное влияние содержания марганца и магния на механические свойства алюминиевой ленты по изобретению.
Claims (7)
1. Подложка для офсетных печатных форм, состоящая из алюминиевого сплава, характеризующаяся тем, что алюминиевый сплав содержит следующие компоненты, в мас.%:
0,2% ≤ Fe ≤ 0,5%,
0,41% ≤ Mg ≤ 0,7%,
0,05% ≤ Si ≤ 0,25%,
0,31% ≤ Mn ≤ 0,6%,
Сu ≤ 0,04%,
Ti ≤ 0,05%,
Zn ≤ 0,05%,
Cr ≤ 0,01%,
Al и неизбежные примеси - остальное, причем каждая из примесей присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%, и после процесса прожигания при температуре 280°С в течение 4 мин подложка обладает прочностью на разрыв Rm более 150 МПа, условным пределом текучести Rp 0,2 более 140 МПа, а также сопротивлением усталости при изгибе поперек направления вращения по меньшей мере 1950 циклов по результатам испытаний усталости при изгибе.
0,2% ≤ Fe ≤ 0,5%,
0,41% ≤ Mg ≤ 0,7%,
0,05% ≤ Si ≤ 0,25%,
0,31% ≤ Mn ≤ 0,6%,
Сu ≤ 0,04%,
Ti ≤ 0,05%,
Zn ≤ 0,05%,
Cr ≤ 0,01%,
Al и неизбежные примеси - остальное, причем каждая из примесей присутствует в количестве не более 0,05%, а в целом они составляют максимум 0,15%, и после процесса прожигания при температуре 280°С в течение 4 мин подложка обладает прочностью на разрыв Rm более 150 МПа, условным пределом текучести Rp 0,2 более 140 МПа, а также сопротивлением усталости при изгибе поперек направления вращения по меньшей мере 1950 циклов по результатам испытаний усталости при изгибе.
2. Подложка для офсетных печатных форм по п.1, характеризующаяся тем, что алюминиевый сплав содержит Мn в количестве, мас.%:
0,5%≤Мn≤0,6%.
0,5%≤Мn≤0,6%.
3. Подложка для офсетных печатных форм по п.1 или 2, характеризующаяся тем, что алюминиевый сплав содержит Mg в количестве, мас.%:
0,5%<Mg≤0,7%.
0,5%<Mg≤0,7%.
4. Подложка для офсетных печатных форм по п.1 или 2, характеризующаяся тем, что подложка имеет толщину от 0,15 мм до 0,5 мм.
5. Подложка для офсетных печатных форм по п.3, характеризующаяся тем, что подложка имеет толщину от 0,15 мм до 0,5 мм.
6. Способ изготовления алюминиевой ленты для подложек для офсетных печатных форм по любому из пунктов 1-5, в котором отливают прокатываемый слиток, прокатываемый слиток необязательно гомогенизируют при температуре от 450°С до 610°С, подвергают горячей прокатке до толщины от 2 до 9 мм, и горячекатаную ленту подвергают холодной прокатке с промежуточным отжигом или без него до конечной толщины от 0,15 мм до 0,5 мм.
7. Способ по п.6, характеризующийся тем, что промежуточный отжиг проводят при промежуточной толщине от 0,5 до 2,8 мм, предпочтительно от 0,9 до 1,2 мм, и осуществляют его в рулоне или в печи непрерывного отжига при температуре от 230°С до 470°С.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09158702.2A EP2243848B1 (de) | 2009-04-24 | 2009-04-24 | Mangan- und magnesiumreiches Aluminiumband |
EP09158702.2 | 2009-04-24 | ||
PCT/EP2010/055434 WO2010122143A1 (de) | 2009-04-24 | 2010-04-23 | Mangan- und magnesiumreiches aluminiumband |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011147703A RU2011147703A (ru) | 2013-05-27 |
RU2522242C2 true RU2522242C2 (ru) | 2014-07-10 |
Family
ID=41008979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011147703/02A RU2522242C2 (ru) | 2009-04-24 | 2010-04-23 | Алюминиевая лента с высоким содержанием марганца и магния |
Country Status (9)
Country | Link |
---|---|
US (1) | US20120094103A1 (ru) |
EP (1) | EP2243848B1 (ru) |
JP (1) | JP5537652B2 (ru) |
KR (1) | KR101477251B1 (ru) |
CN (1) | CN102421924A (ru) |
BR (1) | BRPI1015254A2 (ru) |
ES (1) | ES2568280T3 (ru) |
RU (1) | RU2522242C2 (ru) |
WO (1) | WO2010122143A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2749101C1 (ru) * | 2020-08-07 | 2021-06-04 | Федеральное государственное бюджетное учреждение науки Самарский федеральный исследовательский центр Российской академии наук (СамНЦ РАН) | СПОСОБ ХОЛОДНОЙ МНОГОПРОХОДНОЙ ПРОКАТКИ ТОНКИХ ЛЕНТ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ Al-Mg |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2430620T3 (es) * | 2009-04-24 | 2013-11-21 | Hydro Aluminium Deutschland Gmbh | Banda de aluminio rica en manganeso y muy rica en magnesio |
CN103572134A (zh) * | 2013-11-05 | 2014-02-12 | 吴高峰 | 一种锰镁铝合金 |
CN112718856A (zh) * | 2020-12-14 | 2021-04-30 | 东北轻合金有限责任公司 | 一种改善5系铝合金带材表面冲制吕德斯带的制造方法 |
WO2023031334A1 (de) * | 2021-09-03 | 2023-03-09 | Speira Gmbh | Umformoptimiertes aluminiumlegierungsband und verfahren zur herstellung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2221891C1 (ru) * | 2002-04-23 | 2004-01-20 | Региональный общественный фонд содействия защите интеллектуальной собственности | Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия |
EP1293579A3 (en) * | 2001-09-12 | 2004-04-07 | Fuji Photo Film Co., Ltd. | Support for lithographic printing plate and presensitized plate |
EP1676931A2 (en) * | 2000-12-11 | 2006-07-05 | Novelis, Inc. | Aluminium alloy for lithographic sheet |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126746A (ja) * | 1984-07-18 | 1986-02-06 | Kobe Steel Ltd | 平版印刷版用アルミニウム合金 |
JPS6286143A (ja) | 1985-10-11 | 1987-04-20 | Sky Alum Co Ltd | 印刷版支持体用アルミニウム合金素板 |
JPS62230946A (ja) * | 1986-04-01 | 1987-10-09 | Furukawa Alum Co Ltd | 平版印刷版用アルミニウム合金支持体 |
JP3161141B2 (ja) | 1993-03-02 | 2001-04-25 | 日本軽金属株式会社 | アルミニウム合金薄板の製造方法 |
DE29924474U1 (de) | 1999-07-02 | 2003-08-28 | Hydro Aluminium Deutschland GmbH, 53117 Bonn | Lithoband |
JP2001220638A (ja) * | 2000-02-08 | 2001-08-14 | Kobe Steel Ltd | 表面品質に優れたアルミニウム合金およびその成分設計方法 |
JP2007070674A (ja) * | 2005-09-06 | 2007-03-22 | Fujifilm Holdings Corp | 平版印刷版用アルミニウム合金板およびその製造方法 |
BRPI0617702B8 (pt) | 2005-10-19 | 2023-01-10 | Hydro Aluminium Deutschland Gmbh | Processo para produção de uma fita de alumínio para suportes de placa de impressão litográfica |
ES2430620T3 (es) * | 2009-04-24 | 2013-11-21 | Hydro Aluminium Deutschland Gmbh | Banda de aluminio rica en manganeso y muy rica en magnesio |
-
2009
- 2009-04-24 ES ES09158702.2T patent/ES2568280T3/es active Active
- 2009-04-24 EP EP09158702.2A patent/EP2243848B1/de not_active Not-in-force
-
2010
- 2010-04-23 WO PCT/EP2010/055434 patent/WO2010122143A1/de active Application Filing
- 2010-04-23 CN CN201080018271XA patent/CN102421924A/zh active Pending
- 2010-04-23 JP JP2012506518A patent/JP5537652B2/ja not_active Expired - Fee Related
- 2010-04-23 KR KR1020117027958A patent/KR101477251B1/ko active IP Right Grant
- 2010-04-23 BR BRPI1015254A patent/BRPI1015254A2/pt not_active Application Discontinuation
- 2010-04-23 RU RU2011147703/02A patent/RU2522242C2/ru active
-
2011
- 2011-10-21 US US13/278,540 patent/US20120094103A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1676931A2 (en) * | 2000-12-11 | 2006-07-05 | Novelis, Inc. | Aluminium alloy for lithographic sheet |
EP1293579A3 (en) * | 2001-09-12 | 2004-04-07 | Fuji Photo Film Co., Ltd. | Support for lithographic printing plate and presensitized plate |
RU2221891C1 (ru) * | 2002-04-23 | 2004-01-20 | Региональный общественный фонд содействия защите интеллектуальной собственности | Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2749101C1 (ru) * | 2020-08-07 | 2021-06-04 | Федеральное государственное бюджетное учреждение науки Самарский федеральный исследовательский центр Российской академии наук (СамНЦ РАН) | СПОСОБ ХОЛОДНОЙ МНОГОПРОХОДНОЙ ПРОКАТКИ ТОНКИХ ЛЕНТ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ Al-Mg |
Also Published As
Publication number | Publication date |
---|---|
KR20110137835A (ko) | 2011-12-23 |
JP5537652B2 (ja) | 2014-07-02 |
CN102421924A (zh) | 2012-04-18 |
BRPI1015254A2 (pt) | 2016-05-03 |
EP2243848B1 (de) | 2016-03-30 |
ES2568280T3 (es) | 2016-04-28 |
WO2010122143A1 (de) | 2010-10-28 |
JP2012524840A (ja) | 2012-10-18 |
EP2243848A1 (de) | 2010-10-27 |
RU2011147703A (ru) | 2013-05-27 |
US20120094103A1 (en) | 2012-04-19 |
KR101477251B1 (ko) | 2014-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11326232B2 (en) | Aluminum strip for lithographic printing plate carriers and the production thereof | |
RU2522242C2 (ru) | Алюминиевая лента с высоким содержанием марганца и магния | |
EP2602348B2 (en) | Grain-oriented magnetic steel sheet | |
US10927437B2 (en) | Aluminium strip for lithographic printing plate supports with high flexural fatigue strength | |
JP5944862B2 (ja) | 陽極酸化処理後の表面品質に優れたアルミニウム合金板およびその製造方法 | |
RU2497956C1 (ru) | Способ изготовления листа из электротехнической стали с ориентированной зеренной структурой | |
JP3962751B2 (ja) | 曲げ加工性を備えた電気電子部品用銅合金板 | |
KR102109908B1 (ko) | 양극 산화 처리 후의 표면 품질이 우수한 알루미늄 합금판 및 그 제조 방법 | |
JP4157899B2 (ja) | 曲げ加工性に優れた高強度銅合金板 | |
CN101946014A (zh) | 铜合金材料 | |
JP4503696B2 (ja) | 曲げ加工性に優れた銅合金板からなる電子部品 | |
JP5439610B2 (ja) | 高強度、高伝導性銅合金及びその製造方法 | |
JP6024867B2 (ja) | 打ち抜き加工後の鉄損特性に優れるモータコア用鋼板 | |
US20120073711A1 (en) | Manganese-rich and highly magnesium-rich aluminium strip | |
WO2013145824A1 (ja) | コルソン合金及びその製造方法 | |
JP2008024995A (ja) | 耐熱性に優れた電気電子部品用銅合金板 | |
JP5250067B2 (ja) | 裏面白化防止性に優れる印刷版用高強度アルミニウム合金板 | |
JP5250068B2 (ja) | 裏面白化防止性に優れる印刷版用高強度アルミニウム合金板の製造方法 | |
US20110039121A1 (en) | Aluminum strip for lithographic printing plate carriers and the production thereof | |
WO2012111188A1 (ja) | 析出硬化型マルテンサイト系ステンレス鋼 | |
JP2004277804A (ja) | ニッケル材料 | |
JP5753389B2 (ja) | 印刷版用アルミニウム合金板およびその製造方法 | |
JPS6045702B2 (ja) | 耐孔食性にすぐれたAl合金板材 | |
JPH04333538A (ja) | 均質性に優れたFe−Cu系合金板の製造方法 |