RU2522155C1 - Сверхкритический сепаратор - Google Patents

Сверхкритический сепаратор Download PDF

Info

Publication number
RU2522155C1
RU2522155C1 RU2013130774/04A RU2013130774A RU2522155C1 RU 2522155 C1 RU2522155 C1 RU 2522155C1 RU 2013130774/04 A RU2013130774/04 A RU 2013130774/04A RU 2013130774 A RU2013130774 A RU 2013130774A RU 2522155 C1 RU2522155 C1 RU 2522155C1
Authority
RU
Russia
Prior art keywords
section
heat
extract
solvent
extract phase
Prior art date
Application number
RU2013130774/04A
Other languages
English (en)
Inventor
Андрей Владиславович Курочкин
Original Assignee
Андрей Владиславович Курочкин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей Владиславович Курочкин filed Critical Андрей Владиславович Курочкин
Priority to RU2013130774/04A priority Critical patent/RU2522155C1/ru
Application granted granted Critical
Publication of RU2522155C1 publication Critical patent/RU2522155C1/ru

Links

Images

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

Изобретение относится к устройству для сепарации смесей в сверхкритических условиях. Изобретение касается сверхкритического сепаратора, оснащенного подогревателем экстрактной фазы и рекуперационным теплообменником. В качестве сепаратора установлено гидроциклонное устройство, соединенное с трехсекционным вертикальным колонным аппаратом, содержащим верхнюю секцию рекуперации тепла в качестве рекуперационного теплообменника, среднюю термосепарационную секцию, нижнюю термосепарационную секцию в качестве подогревателя экстрактной фазы, и зону изотермической сепарации, расположенную между средней и нижней термосепарационными секциями и оснащенную распределительным устройством, примыкающим к нижней термосепарационной секции. При этом средняя термосепарационная секция отделена от секции рекуперации тепла полуглухой перегородкой, оснащенной аксиальным трубопроводом, расположенным в межтрубном пространстве секции рекуперации тепла, секция рекуперации тепла состоит из блока теплообменных элементов, расположенных в кольцевом пространстве, образованном корпусом секции и аксиальным трубопроводом, оснащенным линиями ввода экстракта и подачи нагретого экстракта в гидроциклонное устройство, а также включает линию вывода регенерированного растворителя, средняя и нижняя термосепарационные секции состоят из блоков тепломассообменных элементов, оснащенных линиями ввода/вывода теплоносителя, а нижняя термосепарационная секция дополнительно оснащена линией вывода экстрактной фазы, обогащенной экстрагированным веществом, кроме того, гидроциклонное устройство оснащено линиями подачи растворителя и экстрактной фазы в зону изотермической сепарации. Технический результат - снижение потерь растворителя с экстрактной фазой и повышение глубины регенерации растворителя. 1 ил.

Description

Изобретение относится к устройствам для сепарации смесей в сверхкритических условиях и может быть использовано в нефтеперерабатывающей, нефтехимической, химической, фармацевтической, пищевой и других отраслях промышленности для разделения растворов в сверхкритических по отношению к растворителю условиях, с получением регенерированного растворителя и жидкой фазы, обогащенной растворенным веществом, например, для разделения деасфальтизатного раствора на установках деасфальтизации гудрона с получением регенерированного растворителя и деасфальтизатной фазы, обогащенной деасфальтизатом.
Работа сверхкритического сепаратора основана на нагреве и гравитационной сепарации раствора (экстракта), расслаивающегося в сверхкритических по отношению к растворителю температурно-барических условиях, с образованием верхней легкой фазы регенерированного растворителя, и нижней тяжелой фазы (экстрактной фазы), обогащенной растворенным веществом (экстрагированным веществом). Сепаратор во многих случаях оснащен рекуперационным теплообменником, позволяющим использовать тепло регенерированного растворителя для нагрева раствора.
Известен способ деасфальтизации нефтяных остатков [Патент RU 2232792, МПК C10G 21/28, опубл. 20.07.2004 г.], который предусматривает использование сверхкритического горизонтального гравитационного сепаратора, оснащенного рекуперационным теплообменником с линией подачи нагретого регенерированного растворителя из сепаратора и линией вывода охлажденного регенерированного растворителя, пароперегревателем, а также оборудованного линиями подачи деасфальтизатного раствора (экстракта) через рекуперационный теплообменник и пароперегреватель в сепаратор, вывода регенерированного растворителя и деасфальтизатной (экстрактной) фазы.
Основным недостатком известного сверхкритического сепаратора являются потери пропана (растворителя) с деасфальтизатной (экстрактной) фазой, например при деасфальтизации гудрона пропаном деасфальтизатная фаза содержит 15,2-18,0% масс. пропана. Это влечет за собой дополнительные энергозатраты на регенерацию пропана, содержащегося в деасфальтизатной фазе и получение при этом деасфальтизата (экстрагированного вещества).
Наиболее близок по технической сущности к заявляемому изобретению и принят в качестве прототипа способ регенерации пропана из деасфальтизатного раствора, позволяющий снизить потери пропана [Патент RU 2051951, МПК C10G 21/28, опубл. 10.01.1996 г.], который предусматривает использование сверхкритического сепаратора, включающего емкостной гравитационный сепаратор, оснащенный встроенным или выносным подогревателем деасфальтизатного раствора (экстрактной фазы).
Недостатком известного сверхкритического сепаратора являются потери пропана (растворителя) с деасфальтизатной (экстрактной) фазой, содержащей 7,7-14,3% масс. пропана. При этом также невысока глубина регенерации пропана, который содержит 0,2-0,4% масс. остаточного деасфальтизата (экстрагированного вещества), что уменьшает эффективность процесса.
Задачей изобретения является снижение потерь растворителя с экстрактной фазой и повышение глубины регенерации растворителя.
При реализации изобретения в качестве технического результата достигается:
- снижение потерь растворителя с экстрактной фазой за счет оснащения сверхкритического сепаратора гидроциклонным устройством и устройством для нагрева экстрактной фазы в пленочном режиме,
- повышение глубины регенерации растворителя за счет оснащения сверхкритического сепаратора устройством для нагрева растворителя и отвода выделившейся экстрактной фазы в пленочном режиме.
Указанный технический результат достигается тем, что в известном сверхкритическом сепараторе, включающем сепаратор, оснащенный подогревателем экстрактной фазы и рекуперационным теплообменником, особенность заключается в том, что в качестве сепаратора установлено гидроциклонное устройство, соединенное с трехсекционным вертикальным колонным аппаратом, содержащим верхнюю секцию рекуперации тепла в качестве рекуперационного теплообменника, среднюю термосепарационную секцию, нижнюю термосепарационную секцию в качестве подогревателя экстрактной фазы, и зону изотермической сепарации, расположенную между средней и нижней термосепарационными секциями и оснащенную распределительным устройством, примыкающим к нижней термосепарационной секции, при этом средняя термосепарационная секция отделена от секции рекуперации тепла полуглухой перегородкой, оснащенной аксиальным трубопроводом, расположенным в межтрубном пространстве секции рекуперации тепла, секция рекуперации тепла состоит из блока теплообменных элементов, например, спирально-радиального типа, расположенных в кольцевом пространстве, образованном корпусом секции и аксиальным трубопроводом, оснащенным линиями ввода экстракта и подачи нагретого экстракта в гидроциклонное устройство, а также включает линию вывода регенерированного растворителя, средняя и нижняя термосепарационные секции состоят из блоков тепломассообменных элементов, например, спирально-радиального типа, оснащенных линиями ввода/вывода теплоносителя, а нижняя термосепарационная секция дополнительно оснащена линией вывода экстрактной фазы, обогащенной экстрагированным веществом, кроме того, гидроциклонное устройство оснащено линиями подачи растворителя и экстрактной фазы в зону изотермической сепарации.
Секция рекуперации тепла и термосепарационные секции могут быть выполнены в виде отдельных аппаратов.
Установка в предлагаемом сверхкритическом сепараторе гидроциклонного устройства, соединенного с трехсекционным вертикальным колонным аппаратом, в качестве сепаратора позволяет осуществить предварительную сепарацию в условиях сверхкритической сепарации и последующую термосепарацию выделенных растворителя и экстрактной фазы, за счет чего снизить потери растворителя с экстрактной фазой и повысить глубину регенерации растворителя.
Отделение средней термосепарационной секции от секции рекуперации тепла полуглухой перегородкой, оснащенной аксиальным трубопроводом, расположенным в межтрубном пространстве секции рекуперации тепла, позволяет осуществить нисходящее движение охлаждаемого растворителя, что обеспечивает эффективный теплообмен.
Оснащение средней и нижней термосепарационных секций блоками тепломассообменных элементов, например, спирально-радиального типа, позволяет осуществить пленочный режим движения экстрактной фазы. При этом экстрактная фаза, выделяющаяся. при нагреве растворителя теплоносителем в средней термосепарационной секции, стекает по вертикальным поверхностям тепломассообменных элементов в пленочном режиме, за счет чего предотвращается образование капельной жидкости и ее унос с растворителем, что обеспечивает высокую глубину регенерации растворителя.
Нагрев теплоносителем экстрактной фазы, стекающей в пленочном режиме по вертикальным поверхностям тепломассообменных элементов нижней термосепарационной секции, приводит к выделению растворителя вследствие снижения его растворимости в экстрактной фазе при нагреве, что обеспечивает снижение потерь растворителя. Растворитель, выделяющийся при нагреве экстрактной фазы, движется снизу вверх за счет разницы плотностей по межтрубному пространству и попадает через отверстия в распределительном устройстве в зону изотермической сепарации и далее в среднюю термосепарационную секцию. Экстрактную фазу, обогащенную экстрагированным веществом, выводят из нижней термосепарационной секции, для последующего удаления остаточного растворителя и получения экстрагированного вещества.
Распределение экстрактной фазы по поверхностям тепломассообменных элементов нижней термосепарационной секции осуществляется с помощью распределительного устройства, которое представляет собой, например, тарелку провального типа, оснащенную устройствами (патрубками) вывода растворителя в зону изотермической сепарации. В зоне изотермической сепарации расположена поверхность раздела фаз растворителя и экстрактного раствора.
Предлагаемый трехсекционный сверхкритический сепаратор 1, выполненный в виде вертикального колонного аппарата, состоит из верхней секции рекуперации тепла 2, средней термосепарационной секции 3, нижней термосепарационной секции 4 и зоны изотермической сепарации 5, расположенной между ними.
Верхняя секция рекуперации тепла 2 оснащена блоком тепломассообменных элементов с линией 6 ввода экстрактного раствора (например, деасфальтизатного раствора) и линией 7 подачи нагретого экстрактного раствора в гидроциклонное устройство 8, а также линией 9 вывода регенерированного растворителя, например, пропана.
Гидроциклонное устройство 8 соединено с зоной изотермической сепарации 5 линией 10 подачи растворителя и линией 11 подачи экстрактной фазы, например, деасфальтизатной фазы.
Верхняя секция рекуперации тепла 2 отделена от средней термосепарационной секции 3 полуглухой перегородкой 12, оснащенной аксиальным трубопроводом 13, расположенным в межтрубном пространстве секции 2. Средняя 3 и нижняя 4 термосепарационные секции оснащены блоками тепломассообменных элементов с линиями 14 ввода нагретого теплоносителя и 15 вывода отработанного теплоносителя. Нижняя термосепарационная секция 4 оснащена линией 17 вывода экстрактной фазы, обогащенной экстрагированным веществом, например, деасфальтизатной фазы. Зона изотермической сепарации 5 оснащена распределительным устройством 16, примыкающим к нижней термосепарационной секции 4.
Сверхкритический сепаратор работает следующим образом. Экстрактный раствор (I), например, деасфальтизатный раствор, по линии 6 подают в низ тепломассообменного блока секции рекуперации тепла 2 в качестве хладагента, выводят при температуре не ниже температуры расслоения, в виде двухфазной смеси, по линии 7 из верха тепломассообменного блока в гидроциклонное устройство 8, где разделяют на растворитель (II), например, пропан, который подают по линии 10 в верхнюю часть зоны изотермической сепарации 5, и экстрактную фазу (III), например, деасфальтизатную фазу, которую подают по линии 11 в нижнюю часть зоны изотермической сепарации 5.
Растворитель (II) из зоны изотермической сепарации 5 поступает в среднюю термосепарационную секцию 3, где нагревается теплоносителем (IV), подаваемым в верх тепломассообменного блока по линии 14 и выводимым из его низа по линии 15. Выделяющаяся при этом экстрактная фаза стекает по вертикальным поверхностям тепломассообменных элементов в зону изотермической сепарации 5, а нагретый регенерированный растворитель по трубопроводу 13 направляется в секцию рекуперации тепла 2, где охлаждается экстрактным раствором (I) и выводится (V) из нижней части секции по линии 9.
Экстрактная фаза (III) из зоны изотермической сепарации 5 поступает в нижнюю термосепарационную секцию 4, где с помощью распределительного устройства 16 подается на вертикальные поверхности тепломассообменных элементов и нагревается теплоносителем (IV), подаваемым в низ тепломассообменного блока по линии 14 и выводимым из его верха по линии 15. Выделяющийся при этом растворитель по межтрубному пространству поступает через отверстия в распределительном устройстве 16 в зону изотермической сепарации 5, а экстрактную фазу (VI), обогащенную экстрагированным веществом, например, деасфальтизатную фазу, выводят с низа секции по линии 17.
Предлагаемый сверхкритический сепаратор при деасфальтизации гудрона пропаном позволяет получить пропан (растворитель), содержащий менее 0,1% масс. деасфальтизата, и деасфальтизатную фазу (экстрактную фазу), содержащую не более 4,0% масс. пропана.
Таким образом, предлагаемое устройство позволяет снизить потери растворителя с экстрактной фазой и повысить глубину регенерации растворителя. Изобретение может быть использовано в нефтеперерабатывающей, химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности.

Claims (1)

  1. Сверхкритический сепаратор, включающий сепаратор, оснащенный подогревателем экстрактной фазы и рекуперационным теплообменником, отличающийся тем, что в качестве сепаратора установлено гидроциклонное устройство, соединенное с трехсекционным вертикальным колонным аппаратом, содержащим верхнюю секцию рекуперации тепла в качестве рекуперационного теплообменника, среднюю термосепарационную секцию, нижнюю термосепарационную секцию в качестве подогревателя экстрактной фазы и зону изотермической сепарации, расположенную между средней и нижней термосепарационными секциями и оснащенную распределительным устройством, примыкающим к нижней термосепарационной секции, при этом средняя термосепарационная секция отделена от секции рекуперации тепла полуглухой перегородкой, оснащенной аксиальным трубопроводом, расположенным в межтрубном пространстве секции рекуперации тепла, секция рекуперации тепла состоит из блока теплообменных элементов, например, спирально-радиального типа, расположенных в кольцевом пространстве, образованном корпусом секции и аксиальным трубопроводом, оснащенным линиями ввода экстракта и подачи нагретого экстракта в гидроциклонное устройство, а также включает линию вывода регенерированного растворителя, средняя и нижняя термосепарационные секции состоят из блоков тепломассообменных элементов, например, спирально-радиального типа, оснащенных линиями ввода/вывода теплоносителя, а нижняя термосепарационная секция дополнительно оснащена линией вывода экстрактной фазы, обогащенной экстрагированным веществом, кроме того, гидроциклонное устройство оснащено линиями подачи растворителя и экстрактной фазы в зону изотермической сепарации.
RU2013130774/04A 2013-07-04 2013-07-04 Сверхкритический сепаратор RU2522155C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013130774/04A RU2522155C1 (ru) 2013-07-04 2013-07-04 Сверхкритический сепаратор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013130774/04A RU2522155C1 (ru) 2013-07-04 2013-07-04 Сверхкритический сепаратор

Publications (1)

Publication Number Publication Date
RU2522155C1 true RU2522155C1 (ru) 2014-07-10

Family

ID=51217247

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013130774/04A RU2522155C1 (ru) 2013-07-04 2013-07-04 Сверхкритический сепаратор

Country Status (1)

Country Link
RU (1) RU2522155C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075657A (zh) * 2019-05-23 2019-08-02 广东碳染科技有限公司 超临界混流体内热式洁净分离釜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2051951C1 (ru) * 1992-11-02 1996-01-10 Институт проблем нефтехимпереработки АН Республики Башкортостан Способ регенерации пропана из деасфальтизатного раствора
RU2147922C1 (ru) * 1999-03-16 2000-04-27 Санкт-Петербургский государственный технологический институт Реактор для жидкофазных процессов окисления углеводородов
RU2232792C2 (ru) * 2002-09-27 2004-07-20 Государственное унитарное предприятие "Институт нефтехимпереработки" Способ деасфальтизации нефтяных остатков
RU2352610C2 (ru) * 2004-06-02 2009-04-20 Юоп Ллк Аппарат и способ для экстрагирования сернистых соединений из углеводородного потока
US20120204599A1 (en) * 2009-11-02 2012-08-16 Paul Scott Northrop Cryogenic system for removing acid gases from a hydrocarbon gas stream, with removal of hydrogen sulfide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2051951C1 (ru) * 1992-11-02 1996-01-10 Институт проблем нефтехимпереработки АН Республики Башкортостан Способ регенерации пропана из деасфальтизатного раствора
RU2147922C1 (ru) * 1999-03-16 2000-04-27 Санкт-Петербургский государственный технологический институт Реактор для жидкофазных процессов окисления углеводородов
RU2232792C2 (ru) * 2002-09-27 2004-07-20 Государственное унитарное предприятие "Институт нефтехимпереработки" Способ деасфальтизации нефтяных остатков
RU2352610C2 (ru) * 2004-06-02 2009-04-20 Юоп Ллк Аппарат и способ для экстрагирования сернистых соединений из углеводородного потока
US20120204599A1 (en) * 2009-11-02 2012-08-16 Paul Scott Northrop Cryogenic system for removing acid gases from a hydrocarbon gas stream, with removal of hydrogen sulfide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075657A (zh) * 2019-05-23 2019-08-02 广东碳染科技有限公司 超临界混流体内热式洁净分离釜
CN110075657B (zh) * 2019-05-23 2023-12-29 广东御纺新材料科技有限公司 超临界混流体内热式洁净分离釜

Similar Documents

Publication Publication Date Title
ES2720727T3 (es) Proceso y aparato para producir hidrocarburos
RU2020100577A (ru) Реакторные установки с рециркуляцией флюида
US20160038854A1 (en) Method and apparatus for improving hydrogen utilization rate of hydrogenation apparatus
CN108096999A (zh) 一种再沸器法负压粗苯蒸馏工艺
CN104279539A (zh) 一种产汽方法和设备
CN103261373A (zh) 用于从含氢卤酸的生物质水解产物中蒸发出卤化氢和水的方法和装置
RU2522155C1 (ru) Сверхкритический сепаратор
RU86948U1 (ru) Установка улавливания нефтепродуктов из реакторов коксования
IL45660A (en) Method of and apparatus for steam stripping immiscible materials
KR101410502B1 (ko) 폐플라스틱 및 폐유의 정제시스템과 그 정제방법
US3043072A (en) Method and means for treatment of oil well production
CN103920541A (zh) 一种沸腾床加氢催化剂脱油系统及其方法
WO2020064001A1 (zh) 一种罐底油泥中油、泥、水三相分离以及油泥中油的高效回收的方法
RU2339677C1 (ru) Способ деасфальтизации нефтяных остатков
CN107163994B (zh) 一种转换吸收设备、荒煤气回收利用系统以及荒煤气回收利用的方法
RU2011152049A (ru) Способ извлечения углеводородов из нефтеносных песков и горючих сланцев
RU2458053C1 (ru) Способ управления экстракцией капролактама
CN106370028A (zh) 一种炼焦荒煤气余热回收方法及装置
RU2496558C1 (ru) Способ регенерации метанола из насыщенного водой раствора
RU2511369C2 (ru) Способ и устройство для отделения твердых частиц из водной фазы
CA2900497A1 (en) Supercritical boiler for oil recovery
RU2599157C1 (ru) Способ подготовки углеводородного газа к транспорту
RU2683267C1 (ru) Установка для переработки жидких углеводородов
RU2537298C1 (ru) Установка для переработки нефтешламов
RU2433161C1 (ru) Способ разделения жидкой смеси, содержащей нефть и/или нефтепродукты, и установка для его осуществления

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210216