RU2599157C1 - Способ подготовки углеводородного газа к транспорту - Google Patents

Способ подготовки углеводородного газа к транспорту Download PDF

Info

Publication number
RU2599157C1
RU2599157C1 RU2015121464/03A RU2015121464A RU2599157C1 RU 2599157 C1 RU2599157 C1 RU 2599157C1 RU 2015121464/03 A RU2015121464/03 A RU 2015121464/03A RU 2015121464 A RU2015121464 A RU 2015121464A RU 2599157 C1 RU2599157 C1 RU 2599157C1
Authority
RU
Russia
Prior art keywords
gas
separation
methanol
gas flow
water
Prior art date
Application number
RU2015121464/03A
Other languages
English (en)
Inventor
Сергей Владимирович Мазанов
Олег Павлович Кабанов
Ильдар Ильбертович Гильмутдинов
Алексей Александрович Фролов
Александр Юрьевич Корякин
Original Assignee
Общество с ограниченной ответственностью "Газпром добыча Уренгой"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром добыча Уренгой" filed Critical Общество с ограниченной ответственностью "Газпром добыча Уренгой"
Priority to RU2015121464/03A priority Critical patent/RU2599157C1/ru
Application granted granted Critical
Publication of RU2599157C1 publication Critical patent/RU2599157C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)

Abstract

Изобретение относится к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. Технический результат заключается в интенсификации процесса низкотемпературной сепарации газа с десорбцией метанола из водометанольного раствора в сепарируемый газ. Согласно способу подготовки углеводородного газа к транспорту газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток газом и за счет понижения давления проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, вводят в нее жидкую фазу после вторичной сепарации газового потока, направляют для отделения от углеводородного конденсата, газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, выводят водный раствор из установки, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, вводят водометанольный раствор в газовый поток, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком и смешивают с углеводородным конденсатом после первичной и вторичной сепарации, направляют углеводородный конденсат для отделения от него газа низкого давления и водометанольного раствора, эжектируют газ низкого давления в газовый поток, выводят из установки углеводородный конденсат и водометанольный раствор. Отделенную при вторичной сепарации жидкую фазу направляют в газовый поток низкого давления. 1 ил., 1 табл.

Description

Изобретение относится к газонефтяной промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки продукции газоконденсатных месторождений.
Известен способ подготовки углеводородного газа к транспорту методом низкотемпературной сепарации (НТС) газа в три ступени (см. «Сбор и промысловая подготовка газа на северных месторождениях России», А.И. Гриценко, В.А. Истомин и др., М.: ОАО Издательство «Недра», 1999, стр. 378-379), включающий в себя первичную сепарацию газового потока, охлаждение газового потока и его вторичную сепарацию, охлаждение газового потока, понижение его давления с дополнительным охлаждением, окончательную сепарацию газового потока и его нагрев в две ступени, вывод отсепарированного и нагретого газа из установки, понижение давления отделенной при первичной сепарации жидкости и разделение ее на газовую, углеводородную и водную фазы, подачу 25% углеводородной фазы в газовый поток, поступающий на окончательную сепарацию.
Недостатком этого способа является то, что при наличии легкоплавких парафинов в углеводородной фазе, полученной при первичной сепарации, происходит их кристаллизация и образование парафиноотложений при окончательной сепарации. Кроме этого в подаваемую углеводородную фазу в газовый поток необходимо вводить ингибитор гидратообразования, что приводит к увеличению расхода метанола в процессе подготовки газа на 10-15%. При этом в водном растворе, который выводится с установки, содержится значительное количество метанола, который необходимо регенерировать.
Наиболее близким аналогом, по сути, к предлагаемому техническому решению является способ подготовки газоконденсатной смеси к транспорту трехступенчатой сепарацией (Опыт эксплуатации основного технологического оборудования по подготовке к транспорту газа ачимовских горизонтов на УКПГ-22 ООО «Газпром добыча Уренгой». О.А. Николаев, А.В. Букин. Приоритетные направления развития Уренгойского комплекса / Сборник научных трудов, посвященный 35-летию ООО «Газпром добыча Уренгой». - М.: ИД Недра, 2013. С.83-90), в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, охлаждают его газом и за счет понижения давления проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, вводят в нее жидкую фазу после вторичной сепарации газового потока, направляют для отделения от углеводородного конденсата газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, выводят водный раствор из установки, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, вводят водометанольный раствор в газовый поток, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком и смешивают с углеводородным конденсатом после первичной и вторичной сепарации, направляют углеводородный конденсат для отделения от него газа низкого давления и водометанольного раствора, эжектируют газ низкого давления в газовый поток, выводят из установки углеводородный конденсат и водометанольный раствор.
В этом способе за счет десорбции метанола в газовом потоке после первичной сепарации из водометанольного раствора, полученного при окончательной сепарации газа и последующего выделения водометанольного раствора из жидкой фазы, понижается концентрация метанола в водном растворе, выводимом с установки, до уровня, когда регенерация метанола не требуется.
Недостатком этого способа является ввод жидкой фазы после вторичной сепарации в жидкую фазу после первичной сепарации и десорбции метанола, что не позволяет десорбировать метанол из водометанольного раствора из жидкой фазы после вторичной сепарации. Кроме этого сепарация конденсата в три ступени снижает извлечение конденсата из пластового газа по сравнению с одно- и двухступенчатой сепарацией.
Целью изобретения является сокращение расхода ингибитора гидратообразования - метанола в процессе подготовки газа к транспорту и увеличение выхода из пластового газа тяжелых углеводородов в конденсат.
Поставленная цель достигается следующим образом. В способе подготовки газоконденсатной смеси к транспорту трехступенчатой сепарацией, в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток газом и за счет понижения давления, проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, вводят в нее жидкую фазу после вторичной сепарации газового потока, направляют для отделения от углеводородного конденсата газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, выводят водный раствор из установки, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, вводят водометанольный раствор в газовый поток, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком и смешивают с углеводородным конденсатом после первичной и вторичной сепарации, направляют углеводородный конденсат для отделения от него газа низкого давления и водометанольного раствора, эжектируют газ низкого давления в газовый поток, выводят из установки углеводородный конденсат и водометанольный раствор, в отличие от прототипа осуществляется ввод жидкой фазы, полученной при промежуточной сепарации в газ низкого давления, чем обеспечивают увеличение извлечения конденсата из пластового газа и увеличение количества водометанольного раствора, из которого десорбируют газовым потоком метанол.
Предлагаемое изобретение поясняется фиг. 1.
На чертеже обозначены следующие элементы:
1 - трубопровод;
2 - сепаратор первой ступени;
3 - трубопровод;
4 - трубопровод;
5 - колонна-десорбер;
6 - трубопровод;
7 - трубопровод;
8 - трубопровод;
9 - трубопровод;
10 - воздушный охладитель;
11 - трубопровод;
12 - теплообменник «газ-конденсат»;
13 - трубопровод;
14 - теплообменник «газ-газ»;
15 - трубопровод;
16 - теплообменник «газ-газ»;
17 - трубопровод;
18 - сепаратор второй ступени;
19 - трубопровод;
20 - трубопровод;
21 - трубопровод;
22 - теплообменник «газ-газ»;
23 - трубопровод;
24 - редуцирующее устройство (эжектор);
25 - трубопровод;
26 - сепаратор третьей ступени;
27 - трубопровод;
28 - трубопровод;
29 - трубопровод;
30 - трубопровод;
31 - трубопровод;
32 - трехфазный разделитель;
33 - трубопровод;
34 - трубопровод;
35 - трубопровод;
36 - трехфазный разделитель;
37 - трубопровод;
38 - трубопровод;
39 - трубопровод;
40 - трехфазный разделитель;
41 - трубопровод;
42 - трубопровод;
43 - трубопровод.
Продукцию газоконденсатных скважин по трубопроводу 1 подают в сепаратор первой ступени 2, где из него отделяют механические примеси, воду и жидкую углеводородную фазу. Жидкую фазу с низа сепаратора первой ступени 2 по трубопроводу 3 отводят для разделения на газовую, углеводородную и водную фазы в трехфазный разделитель 32.
Отсепарированный газовый поток по трубопроводу 4 отводят с верха сепаратора первой ступени 2 и подают в колонну-десорбер 5 для насыщения газового потока метанолом. Водный раствор с низа колонны-десорбера 5 по трубопроводу 7 вводят в жидкую фазу, транспортируемую по трубопроводу 3.
Вводят в газовый поток трубопровода 8 метанол по трубопроводу 9. Подают газовый поток для охлаждения по трубопроводу 8 в воздушный охладитель 10 и по трубопроводу 11 в теплообменник «газ-конденсат» 12. Далее газовый поток подают для дополнительного охлаждения в две ступени по трубопроводу 13 в теплообменник «газ-газ» 14 и по трубопроводу 15 в теплообменник «газ-газ» 16.
Охлажденный газовый поток подают по трубопроводу 17 для разделения газа и жидкости в сепаратор второй ступени 18. Вводят в газовую фазу трубопровода 19 метанол по трубопроводу 21. Газовую фазу с верха сепаратора 18 по трубопроводу 19 для дальнейшего охлаждения подают в теплообменник «газ-газ» 22. Далее этот газ подают по трубопроводу 23 для охлаждения за счет понижения давления в редуцирующее устройство (эжектор) 24. Охлажденную газожидкостную смесь по трубопроводу 25 подают в сепаратор третьей ступени 26.
Отсепарированный газ с верха сепаратора 26 подают для нагревания в три ступени по трубопроводу 27 в теплообменник «газ-газ» 22, по трубопроводу 29 в теплообменник «газ-газ» 16 и по трубопроводу 30 в теплообменник «газ-газ» 14. Нагретый отсепарированный газ по трубопроводу 31 выводят из установки.
Газовую фазу из разделителя 32 вводят через трубопровод 33 в газовый поток трубопровода 25.
Жидкую фазу с низа сепаратора 26 по трубопроводу 28 направляют в трехфазный разделитель 36 для разделения на газовую, углеводородную и водную фазы. Газ из разделителя 36 поступает в сепаратор третьей ступени 26. Углеводородный конденсат направляют для нагревания по трубопроводу 38 в теплообменник «газ-конденсат» 12.
Нагретый углеводородный конденсат из теплообменника 12 по трубопроводу 39 подают в трехфазный разделитель 40 для разделения на газовую, углеводородную и водную фазы. Вводят углеводородный конденсат из трехфазного разделителя 32 по трубопроводу 34 в трубопровод 39. Из разделителя 40 выводят из установки по трубопроводу 43 углеводородный конденсат и по трубопроводу 42 водометанольный раствор. Газ из разделителя 40 по трубопроводу 41 подают в эжектор 24. Вводят жидкую фазу из сепаратора 18 по трубопроводу 20 в трубопровод 41 и трубопровод 3. Водометанольный раствор из разделителя 36 направляют в колонну-десорбер 5.
Для оценки эффективности предложенного способа по сравнению с аналогом-прототипом были проведены исследования с помощью технологической модели УКПГ-22 Уренгойского месторождения. На технологическую линию установки низкотемпературной сепарации подавали пластовую продукцию газоконденсатного месторождения в количестве 5 млн м3/сут.
Результаты проведенных исследований по обработке газоконденсатной смеси по прототипу и по предлагаемому техническому решению приведены в таблице 1. В исследованных режимах давление и температура сырья на входе в сепаратор первой ступени составили соответственно 11,0 МПа и 40°С, давление в сепараторе второй ступени составило 10,8 МПа. Температура газа после воздушного холодильника принята равной 30°С. Температура газа после теплообменника «газ-конденсат» определялась исходя из температуры конденсата после теплообменника 25°С.
Температура в сепараторе второй ступени подбиралась с учетом поверхности теплообменников 1290 м2 и их коэффициента теплопередачи 200 Вт/°С·К. Давление и температура газа в сепараторах третьей (низкотемпературной) ступени составляли соответственно 5,5 МПа и изменялась с шагом 5°С от минус 30 до минус 40°С.
В существующей технологии при поддержании температуры в сепараторе третьей ступени от минус 30 до минус 40°С расход метанола по изобретению ниже на 409÷689 г/1000 м3 пластового газа (на 38,7÷47,7%) по сравнению с прототипом. Снижение расхода метанола происходит за счет увеличения количества водометанольного раствора, подаваемого в колонну-десорбер в 4,8÷7,8 раза. При этом количество метанола, поступающего на десорбцию, у изобретения возрастает в 4,4÷7,8 раза.
Благодаря этому количество метанола в водном растворе после установки снижается на 99,4÷228,5 г/1000 м3 пластового газа. Снижается также и количество метанола, уносимого с газом сепарации, на 15,7÷1,1 г/1000 м3 пластового газа и с нестабильным конденсатом на 294,4÷459,0 г/1000 м3 пластового газа. Удельный выход конденсата по изобретению на 1 г/м3 пластового газа больше, чем по прототипу.
Таким образом, по предлагаемой технологии на УКПГ ачимовских залежей Уренгойского месторождения возможно сократить расход метанола при подготовке газа и конденсата за счет подачи жидкой фазы из промежуточного сепаратора в трубопровод, по которому подается газ низкого давления на эжектор.
Figure 00000001

Claims (1)

  1. Способ подготовки углеводородного газа к транспорту, в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток воздухом, углеводородным конденсатом, газом в две ступени, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток газом и за счет понижения давления проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят газ из установки, смешивают жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола, вводят в нее жидкую фазу после вторичной сепарации газового потока, направляют для отделения от углеводородного конденсата, газа и водного раствора, вводят газ в газовый поток перед окончательной сепарацией, выводят водный раствор из установки, направляют жидкую фазу после окончательной сепарации для разделения на углеводородный конденсат, газ и водометанольный раствор, возвращают газ на повторную окончательную сепарацию совместно с газовым потоком, вводят водометанольный раствор в газовый поток, выводят водный раствор из газового потока, углеводородный конденсат нагревают газовым потоком и смешивают с углеводородным конденсатом после первичной и вторичной сепарации, направляют углеводородный конденсат для отделения от него газа низкого давления и водометанольного раствора, эжектируют газ низкого давления в газовый поток, выводят из установки углеводородный конденсат и водометанольный раствор, отличающийся тем, что отделенную при вторичной сепарации жидкую фазу направляют в газовый поток низкого давления.
RU2015121464/03A 2015-06-04 2015-06-04 Способ подготовки углеводородного газа к транспорту RU2599157C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015121464/03A RU2599157C1 (ru) 2015-06-04 2015-06-04 Способ подготовки углеводородного газа к транспорту

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015121464/03A RU2599157C1 (ru) 2015-06-04 2015-06-04 Способ подготовки углеводородного газа к транспорту

Publications (1)

Publication Number Publication Date
RU2599157C1 true RU2599157C1 (ru) 2016-10-10

Family

ID=57127396

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015121464/03A RU2599157C1 (ru) 2015-06-04 2015-06-04 Способ подготовки углеводородного газа к транспорту

Country Status (1)

Country Link
RU (1) RU2599157C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646899C1 (ru) * 2017-01-09 2018-03-12 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ подготовки углеводородного газа к транспорту
RU2768436C1 (ru) * 2020-12-09 2022-03-24 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа нефтегазоконденсатных месторождений севера рф

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454914A (en) * 1982-05-03 1984-06-19 Union Oil Company Of California Method for conditioning geothermal brine to reduce scale formation
SU1606827A1 (ru) * 1988-11-29 1990-11-15 Уренгойское Производственное Объединение Им.С.А.Оруджева Способ подготовки углеводородного газа к транспорту
RU2161526C1 (ru) * 2000-06-06 2001-01-10 Ананенков Александр Георгиевич Способ подготовки природного газа
RU2294430C1 (ru) * 2005-06-14 2007-02-27 Общество С Ограниченной Ответственностью "Уренгойгазпром" Способ подготовки углеводородного газа к транспорту
RU2341738C1 (ru) * 2007-02-22 2008-12-20 Закрытое акционерное общество "Центральное конструкторское бюро нефтегазовой промышленности" (ЗАО "ЦКБ НГП") Способ подготовки углеводородного газа

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454914A (en) * 1982-05-03 1984-06-19 Union Oil Company Of California Method for conditioning geothermal brine to reduce scale formation
SU1606827A1 (ru) * 1988-11-29 1990-11-15 Уренгойское Производственное Объединение Им.С.А.Оруджева Способ подготовки углеводородного газа к транспорту
RU2161526C1 (ru) * 2000-06-06 2001-01-10 Ананенков Александр Георгиевич Способ подготовки природного газа
RU2294430C1 (ru) * 2005-06-14 2007-02-27 Общество С Ограниченной Ответственностью "Уренгойгазпром" Способ подготовки углеводородного газа к транспорту
RU2341738C1 (ru) * 2007-02-22 2008-12-20 Закрытое акционерное общество "Центральное конструкторское бюро нефтегазовой промышленности" (ЗАО "ЦКБ НГП") Способ подготовки углеводородного газа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
НИКОЛАЕВ О.А. и др. Опыт эксплуатации основного технологического оборудования по подготовке к транспорту газа ачимовских горизонтов на УКПГ-22 ООО "Газпром добыча Уренгой". Приоритетные направления развития Уренгойского комплекса: Сборник научных трудов. М., Издательский дом Недра, 2013, всего 411 с., с.83-90. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646899C1 (ru) * 2017-01-09 2018-03-12 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ подготовки углеводородного газа к транспорту
RU2768436C1 (ru) * 2020-12-09 2022-03-24 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа нефтегазоконденсатных месторождений севера рф

Similar Documents

Publication Publication Date Title
CN107438475B (zh) 从吸收剂中能量有效回收二氧化碳的方法和适于运行该方法的设备
AU2013224145B2 (en) Gas treatment system using supersonic separators
EP2720994B1 (en) Method and apparatus for the removal of polyvalent cations from mono ethylene glycol
RU119389U1 (ru) Установка для подготовки газа нефтяных и газоконденсатных месторождений к транспорту
RU2576300C1 (ru) Устройство для низкотемпературной сепарации газа и способ его работы
US9399908B2 (en) Systems and method for separating dimethyl ether from oil and water
RU2599157C1 (ru) Способ подготовки углеводородного газа к транспорту
RU2701020C1 (ru) Способ подготовки углеводородного газа к транспорту
RU2286377C1 (ru) Способ низкотемпературного разделения углеводородного газа
RU2600141C1 (ru) Способ подготовки углеводородного газа к транспорту
RU2725320C1 (ru) Способ подготовки углеводородного газа к транспорту
RU2555909C1 (ru) Способ подготовки углеводородного газа к транспорту
RU2283690C1 (ru) Способ обработки газоконденсатной углеводородной смеси
RU2175882C2 (ru) Способ подготовки углеводородного газа к транспорту "оптимет"
CN110721493A (zh) 一种粗品二氧化硫中分离三氯乙烷的方法
RU2646899C1 (ru) Способ подготовки углеводородного газа к транспорту
CN105779055A (zh) 一种天然气脱汞装置及方法
RU2294429C2 (ru) Способ подготовки углеводородного газа к транспорту
RU2124930C1 (ru) Способ подготовки природного газа
RU2161526C1 (ru) Способ подготовки природного газа
CN109550359B (zh) 一种高效吸收剂回收驰放气中组分的利用方法
RU2495239C1 (ru) Способ подготовки газа нефтяных и газоконденсатных месторождений к транспорту и установка для его осуществления
RU2627754C1 (ru) Способ подготовки углеводородного газа к транспорту
RU2765415C1 (ru) Способ подготовки углеводородного газа к транспорту методом низкотемпературной сепарации
RU2593300C2 (ru) Способ подготовки углеводородного газа к транспорту