RU2521719C1 - Ртутный монитор - Google Patents

Ртутный монитор Download PDF

Info

Publication number
RU2521719C1
RU2521719C1 RU2013107775/28A RU2013107775A RU2521719C1 RU 2521719 C1 RU2521719 C1 RU 2521719C1 RU 2013107775/28 A RU2013107775/28 A RU 2013107775/28A RU 2013107775 A RU2013107775 A RU 2013107775A RU 2521719 C1 RU2521719 C1 RU 2521719C1
Authority
RU
Russia
Prior art keywords
gas
port
nebulizer
window
mercury
Prior art date
Application number
RU2013107775/28A
Other languages
English (en)
Inventor
Сергей Евгеньевич Шолупов
Александр Анатольевич Строганов
Павел Владимрович Питиримов
Original Assignee
Общество с ограниченной ответственностью "ВИНТЕЛ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ВИНТЕЛ" filed Critical Общество с ограниченной ответственностью "ВИНТЕЛ"
Priority to RU2013107775/28A priority Critical patent/RU2521719C1/ru
Priority to UAA201507348A priority patent/UA113115C2/uk
Priority to CA2901103A priority patent/CA2901103C/en
Priority to CN201480008675.9A priority patent/CN105008897B/zh
Priority to EA201500771A priority patent/EA028028B1/ru
Priority to EP14751714.8A priority patent/EP2957891B1/en
Priority to US14/768,142 priority patent/US9389168B2/en
Priority to PCT/RU2014/000031 priority patent/WO2014126507A1/ru
Application granted granted Critical
Publication of RU2521719C1 publication Critical patent/RU2521719C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/11Filling or emptying of cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/714Sample nebulisers for flame burners or plasma burners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0045Hg

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

Изобретение относится к аналитическим системам автоматического измерения концентрации ртути и может быть использовано для мониторинга промышленной и сточной воды и дымовых газов. Ртутный монитор содержит узел ввода пробы, термический атомизатор, аналитическую кювету с возможностью подогрева, узел газового коллектора и откачивающий побудитель расхода. Кювета оптически связана с атомно-абсорбционным спектрометром и содержит, по меньшей мере, один входной газовый порт, расположенный в центральной ее части, и, по меньшей мере, два выходных газовых порта. С узлом ввода пробы связан нагнетающий побудитель расхода с возможностью введения анализируемой пробы в термический атомизатор, а в корпусе аналитической кюветы с двух сторон между окном и ближайшим к нему выходным газовым портом выполнены отверстия с возможностью подачи через них газа. Изобретение обеспечивает улучшение потребительских характеристик монитора. 5 з.п. ф-лы, 7 ил.

Description

Заявляемое изобретение относится к аналитическим системам автоматического измерения концентрации ртути и может быть использовано для мониторинга промышленной и сточной воды и дымовых газов.
Известен ртутный анализатор PA-2 Mercury Process Analyzer фирмы Mercury Instruments, Германия [1], предназначенный для непрерывного измерения концентрации ртути в промышленных сточных водах предприятий по сжиганию отходов, теплоэлектростанций, очистных сооружений и т.д. Ртутный монитор содержит модуль пробоподготовки, в котором происходит предварительное окисление пробы соответствующим реагентом, модуль восстановления, где ртуть восстанавливается до атомного состояния при введении восстановителя, газообменный блок, в котором элементная ртуть выделяется из жидкой пробы и попадает в газ-носитель, и аналитическую кювету, куда газ-носитель доставляет элементную ртуть и где определяется количество выделившейся ртути атомно-абсорбционным способом анализа.
К недостаткам аналога следует отнести необходимость проведения предварительной работы по выбору способа окисления пробы (в зависимости от матрицы пробы и форм нахождения ртути в пробе), высокие требования к чистоте реактивов, используемых как при пробоподготовке, так и при восстановлении ртути до атомного состояния, а также малую продолжительность работы монитора без обслуживания оператора, что обусловлено выпадением восстановителя и солей жесткости из раствора восстановления и из пробы соответственно. Кроме того, необходимо часто пополнять расходуемые реактивы.
Известно устройство для мониторинга ртутных выбросов [2], содержащее узел ввода пробы анализируемого газа, термический атомизатор, где все ртутные соединения диссоциируют с образованием элементной ртути, аналитическую кювету с возможностью подогрева, что значительно снижает скорость окисления элементной ртути продуктами диссоциации и матричными компонентами, атомно-абсорбционный спектрометр, который позволяет измерять элементную ртуть и значительно снижать матричное влияние.
К недостаткам аналога следует отнести непродолжительную работу устройства без обслуживания оператором, обусловленную загрязнением окон аналитической кюветы, невозможность применения устройства для мониторинга промышленных вод из-за осаждения содержащихся в них растворенных солей в больших концентрациях на стенках узла ввода пробы и термического атомизатора вплоть до забивания газовых каналов.
Наиболее близким по технической сущности к предлагаемому изобретению является ртутный монитор дымовых газов MERCEM300Z Mercury Analyzer, фирма Sick, Германия [3], состоящий из пробоотборного зонда, газовой линии, узла ввода пробы, термического атомизатора, аналитической кюветы с возможностью подогрева, атомно-абсорбционного спектрометра и откачивающего побудителя расхода. Дымовой газ забирается пробоотборным зондом и транспортируется во входную часть монитора. Далее газ проходит термический атомизатор, где вся ртуть независимо от формы ее нахождения в дымовом газе переводится в элементную форму и попадает в аналитическую кювету, в которой определяется концентрация ртути с помощью атомно-абсорбционного спектрометра. К выходу аналитической кюветы присоединен откачивающий побудитель расхода газа, выполненный в виде эжектора. Температура термического атомизатора и аналитической кюветы составляет 1000°С.
К недостаткам прототипа следует отнести непродолжительную работу монитора без обслуживания оператором, обусловленную загрязнением окон аналитической кюветы. Дымовой газ имеет довольно сложный состав - различные газы (CO2, SO2, NO, NOx, пары воды, HCl, HF и т.д.), выделяющиеся и образующиеся при сжигании минерального топлива, а также дымовые частицы. При взаимодействии агрессивных газов с дымовыми частицами и с элементами пробоотборной системы образуются летучие соединения, которые оседают на окнах аналитической кюветы, поскольку температура газа составляет порядка 1000°С, а температура окон с внешней стороны намного ниже. Загрязнение окон приводит к значительному снижению интенсивности зондирующего излучения атомно-абсорбционного спектрометра и, как результат, к ухудшению аналитических характеристик вплоть до невозможности проводить измерения. По этим же причинам невозможно использовать прототип для определения содержания ртути в промышленных водах различных предприятий - вода содержит высокие процентные концентрации хлоридов и сульфатов металлов (соли жесткости) и при испарении и атомизации образуются пары этих солей, которые будут оседать на окнах аналитической кюветы.
Задачей предлагаемого изобретения является улучшение потребительских характеристик монитора, увеличение времени работы монитора без обслуживания оператором и обеспечение длительного функционирования монитора.
Поставленная задача решается тем, что в ртутном мониторе, включающем узел ввода пробы, термический атомизатор, аналитическую кювету с возможностью подогрева, узел газового коллектора и откачивающий побудитель расхода, причем аналитическая кювета содержит два прозрачных для резонансного излучения ртути окна, по меньшей мере, через одно из которых она оптически связана с атомно-абсорбционным спектрометром, по меньшей мере, один входной газовый порт, расположенный в центральной ее части, и, по меньшей мере, два выходных газовых порта, каждый из которых расположен между входным газовым портом и соответствующим окном, при этом с узлом ввода пробы связан нагнетающий побудитель расхода с возможностью введения анализируемой пробы в термический атомизатор, а в корпусе аналитической кюветы с двух сторон между окном и ближайшим к нему выходным газовым портом выполнены отверстия с возможностью подачи через них газа.
Сущность изобретения заключается в том, что между окном аналитической кюветы и анализируемым газом создается защитный воздушный поток, препятствующий непосредственному контакту горячего анализируемого газа, поступающего в аналитическую кювету, и холодной поверхности окна. Благодаря этому пары легколетучих соединений, находящихся в анализируемом газе, не конденсируются на окнах аналитической кюветы, и коэффициент пропускания окон для зондирующего излучения атомно-абсорбционного анализатора остается в рабочем диапазоне продолжительное время.
Ртутный монитор также содержит небулайзер с его держателем, между внутренней стенкой которого и самим небулайзером создана полость, сообщающаяся с внутренней полостью термического атомизатора, а сам держатель небулайзера содержит порт, соединяющий созданную полость со средствами подачи газа-носителя. Причем небулайзер содержит распылительное сопло, жидкостный входной порт и газовый входной порт, который связан газожидкостной коммуникацией со средствами подачи газа-носителя. При этом средства подачи газа-носителя содержат смеситель с тремя портами, первый порт которого соединен с источником газа-носителя, второй порт соединен со средствами подачи воды, а третий порт смесителя соединен со вторым портом небулайзера.
Кроме того, узел газового коллектора связан с выходными портами аналитической кюветы газожидкостной коммуникацией и включает сепаратор газ-жидкость и емкость для сбора жидкости.
Наконец, через первое окно аналитическая кювета оптически связана со спектрометром, а через второе окно - с ретрорефлектором, установленным так, чтобы зондирующее излучение спектрометра, прошедшее через первое окно во второе, возвращать через второе окно обратно в спектрометр через первое окно.
Применение в заявляемом ртутном мониторе небулайзера позволяет исключить механические средства подачи водной пробы в атомизатор, что позволяет повысить надежность подающего устройства, а также позволяет вводить пробу в виде аэрозоля, что снижает количество солей, оседающих на стенке атомизатора. Подача воды в канал сжатого воздуха небулайзера позволяет снизить количество солей, оседающих непосредственно в его сопле. Установка сепаратора газ-жидкость после аналитической кюветы позволяет удалить пары воды из выходного газового потока и тем самым исключить конденсацию воды в откачивающий побудитель расхода и обеспечить ему штатный режим работы. Применение оптической схемы, при которой излучение проходит через аналитическую кювету, попадает на ретрорефлектор, возвращается обратно в аналитическую кювету и затем направляется на фотодетектор, позволяет увеличить чувствительность анализа вдвое при тех же линейных размерах аналитической кюветы. Кроме того, такая схема обеспечивает компактность конструкции спектрометра, что повышает стабильность работы всего спектрометра.
Сущность заявленного изобретения поясняется чертежами.
Фиг.1. Блок-схема ртутного монитора.
Фиг.2. Блок-схема входного узла с небулайзером и средствами подачи газа.
Фиг.3. Блок-схема узла газового коллектора.
Фиг.4. Схема защиты окон аналитической кюветы.
Фиг.5. График зависимости чувствительности от скорости прокачки откачивающей помпы.
Фиг.6. Фотография модели распыления водного аэрозоля в термическом атомизаторе.
Фиг.7. Фотография окон аналитической кюветы с защитным воздушным потоком через 14 дней эксплуатации (А) и без него через 8 часов работы (В).
Ртутный монитор, блок-схема которого представлена на Фиг.1, содержит узел нагнетающего побудителя расхода 1, узел ввода пробы 2, термический атомизатор 3, аналитическую кювету 4 с окнами 5 и с входным 6 и выходными 7 газовыми портами, узел газового коллектора 8, откачивающий побудитель расхода 9 (далее по тексту откачивающая помпа), а также атомно-абсорбционный спектрометр 10. Между окнами и выходными портами в корпусе аналитической кюветы сделаны отверстия 11.
Узел нагнетающего побудителя расхода 1 может быть выполнен в следующем виде (Фиг.2). В держатель небулайзера 12 установлен небулайзер 13 таким образом, что его сопло направлено во внутреннюю часть термического атомизатора 3, а вся сборка установлена в узел ввода пробы 2. Жидкостный порт небулайзера 14 соединен с переключающим жидкостным краном (на фигуре не показан), который поочередно соединяет указанный порт небулайзера с резервуарами с дистиллированной водой, стандартным раствором и анализируемой пробой. Газовый порт небулайзера 15 соединен с первым портом 16 смесителя 17, второй порт которого 18 соединен со средствами подачи воды 19, а его третий порт 20 соединен со средствами подачи газа-носителя 21. Газ-носитель подается также в полость между небулайзером и его держателем через порт держателя 22.
При определении содержания ртути в дымовых газах узел нагнетающего побудителя расхода 1 может быть выполнен в виде диафрагменной помпы, подающей анализируемый газ из пробоотборной линии (на фигуре не показана) непосредственно в термический атомизатор 3.
Термический атомизатор 3 может быть выполнен в виде кварцевой трубки, один конец которой герметично прикреплен к узлу ввода пробы 2, а второй конец герметично прикреплен к входному порту 6 аналитической кюветы 4. Причем кварцевая трубка установлена соосно с небулайзером 13 и его держателем 12, а ее внутренний диаметр не меньше, чем внутренний диаметр держателя небулайзера 12. С внешней стороны кварцевой трубки установлен нагреватель, поддерживающий температуру внутри кварцевой трубки в диапазоне 600-700°С. Весь термический атомизатор помещен в металлический защитный кожух.
Аналитическая кювета 4 может быть выполнена в виде цилиндра, к середине которого герметически приварен входной порт 6, а на его торцевых концах с двух сторон установлены окна 5 в оправах. Между окнами 5 и входным портом 6 с двух сторон ближе к окнам установлены выходные порты 7. Для формирования защитного воздушного потока между окнами 5 и выходными портами 7 изготовлены отверстия 11 или установлены дополнительные входные порты, через которые может поступать воздух в аналитическую кювету. Во внутренней части кюветы установлены нагреватели, поддерживающие температуру анализируемого газа в диапазоне 600-750°С.
Узел газового коллектора 8 может быть выполнен в следующем виде (Фиг.3). Выходные порты 7 аналитической кюветы 4 соединены парогазовыми коммуникациями 23 с сепаратором газ-жидкость 24, который может быть выполнен в виде обратного холодильника, по внешней рубашке которого протекает охлаждающая вода, а в его внутреннюю часть поступает парогазовая смесь. Один конец сепаратора 24 соединен с емкостью для сбора жидкости 25, куда попадает вода после охлаждения парогазовой смеси. Второй конец сепаратора 24 соединен с откачивающим побудителем расхода 9, выполненным в виде диафрагменной помпы.
Атомно-абсорбционный спектрометр 10 может быть выполнен в виде атомно-абсорбционного анализатора ртути с прямым эффектом Зеемана [4], характеризующегося высокой селективностью измерений.
Рассмотрим работу ртутного монитора на примере определения общего содержания ртути в технологической воде теплоэлектростанции. Специфика технологической воды, как объекта анализа, заключается в том, что она содержит растворенные соли жесткости с высокой концентрацией (1-5%). Анализируемая вода поступает в емкость, которая соединена с входом переключающего жидкостного крана. Другие входы клапана соединены с емкостями с дистиллированной водой и со стандартным раствором, необходимыми для проведения холостого измерения и калибровки монитора. Выход переключающего жидкостного крана соединен с жидкостным портом небулайзера. К газовому порту небулайзера подключен источник сжатого воздуха. Сжатый воздух, очищенный от пыли и паров масла, например, с помощью пылевого и масляного фильтра, проходя через небулайзер, создает разрежение в районе газового сопла (эффект Вентури), что приводит к всасыванию жидкости из жидкостного канала небулайзера и ее поступлению в газовое сопло. В газовом сопле медленно поступающая жидкость подвергается воздействию быстрого потока воздуха, что приводит к образованию водного аэрозоля, который далее поступает в термический атомизатор. В термическом атомизаторе, температура которого находится в диапазоне 600-700°С, вода из аэрозольных частиц испаряется, а вся содержащаяся в них ртуть при данной температуре переходит в атомную форму. При испарении воды из аэрозоля образуются мелкие твердые частицы солей (солевой аэрозоль), находящиеся во взвешенном состоянии в газе-носителе. Далее все образовавшиеся компоненты транспортируются газом-носителем в узел аналитической кюветы через ее входной порт. Одновременно в аналитическую кювету поступает атмосферный воздух через отверстия у окон, предотвращающий непосредственный контакт анализируемого газа с поверхностью окон. Из выходных портов аналитической кюветы парогазовая смесь через газовый тройник поступает в сепаратор газ-жидкость, выполненный в виде обратного холодильника, во внешней рубашке которого протекает вода для охлаждения. Второй конец газового тройника соединен трубопроводом с емкостью для сбора жидкости, в которой собирается сконденсированная в обратном холодильнике вода. Трубопровод установлен таким образом, что его второй конец находится в емкости для сбора жидкости всегда ниже уровня воды (при запуске монитора вода дополнительно заливается в эту емкость), таким образом, он выполняет функцию водного затвора для газовой части схемы. Второй конец обратного холодильника соединен с откачивающей помпой, побуждающей откачивающий поток газа после аналитической кюветы.
При образовании водного аэрозоля внутри небулайзера часть образовавшегося аэрозоля оседает на внутренней стенке газового сопла. Поскольку анализируемая вода содержит высокую концентрацию солей жесткости, то при испарении воды из осевшего аэрозоля происходит накопление солей на внутренней поверхности газового сопла, что приводит к изменению геометрии сопла и к быстрому засорению небулайзера. Для устранения засорения небулайзера в канал сжатого воздуха дополнительно вводится дистиллированная вода, которая непрерывно промывает сопло и удаляет из него осевшие соли.
При введении водного аэрозоля в термический атомизатор (Фиг.6) часть аэрозоля испаряется непосредственно в газе-носителе, а часть (без полного испарения воды) успевает достичь нагретых стенок атомизатора - кварцевой трубки 26, помещенной в нагреватель 27, что обусловлено конечным углом распыления 28 водного аэрозоля 29. Для увеличения времени нахождения водного аэрозоля в газе-носителе дополнительно вводится воздушный поток 30 между небулайзером и его держателем. Далее этот дополнительный воздушный поток распространяется вдоль стенок термического атомизатора и тем самым удерживает основной поток аэрозоля в осевой зоне атомизатора, где собственно и происходит испарение воды из аэрозольной частицы с образованием солевого аэрозоля 31. Увеличение траектории движения водного аэрозоля 32 приводит к увеличению доли испарившегося водного аэрозоля в газе-носителе, к снижению скорости оседания соли 33 на стенке термического атомизатора и тем самым к увеличению срока службы термического атомизатора без обслуживания оператором.
В процессе транспортировки солевого аэрозоля в атомизаторе и в самой подогреваемой кювете (температура аналитической кюветы составляет 650-750°С) солевые соединения частично испаряются с поверхности аэрозольной частицы и переходят в газ-носитель в виде пара. Аналогично, осевшие на поверхности атомизатора солевые соединения при нагреве частично испаряются и переходят в газ-носитель. Наконец, при взаимодействии солевых частиц с поверхностью нагревателей аналитической кюветы материал нагревательных спиралей частично испаряется, и его пары поступают в газ-носитель. Чтобы устранить эффект оседания паров легколетучих соединений из газа-носителя на поверхности окон аналитической кюветы, она имеет конструкцию, при которой окна обдуваются чистым воздухом, и отсутствует непосредственный контакт газа-носителя с окнами кюветы. Схема защиты окон аналитической кюветы представлена на Фиг.4. Газ откачивается из аналитической кюветы через выходные порты 7 с объемной скоростью V1=V11+V12. Через входной порт 6 анализируемый газ подается с объемной скоростью V2. Откачивающая помпа 9 создает разрежение в выходных портах и, соответственно, в аналитической кювете, причем давление в кювете ниже атмосферного. За счет разрежения в аналитической кювете возникает поток воздуха из окружающей атмосферы в аналитическую кювету. Поскольку отверстия расположены в непосредственной близости от выходных портов, создаваемый воздушный поток входит в отверстия и сразу выходит через выходные порты, не распространяясь вдоль оси аналитической кюветы. Скорость откачивающей помпы V1 больше скорости подачи анализируемого газа в аналитическую кювету V2, поэтому скорость защитного воздушного потока V3=V31+V32 составит величину V3=V1-V2. На Фиг.5 приведена зависимость чувствительности измерений от скорости откачивающей помпы V1 при постоянной скорости подачи анализируемого газа V2=2 л/мин. При скоростях откачки, меньших скорости подачи (0-2 л/мин), анализируемый газ занимает всю кювету, включая области между выходными портами и окнами кюветы, при этом чувствительность максимальна (при данных условиях эксперимента чувствительность пропорциональна эффективной длине анализируемого слоя газа). По мере увеличения скорости откачки (2-4 л/мин) анализируемый газ из области между окнами и выходными портами замещается на атмосферный воздух, и, соответственно, чувствительность измерений падает. Дальнейшее увеличение скорости откачки (4-9 л/мин) приводит к незначительному изменению чувствительности, т.е. увеличение скорости прокачки приводит лишь к увеличению защитного воздушного потока при незначительном уменьшении эффективной длины анализируемого слоя газа. Концентрация ртути в воздухе должна быть такой, что попавший в аналитическую кювету воздух (с ртутью) не должен оказывать влияние на результаты измерения ртути в водной пробе. В нашем случае, концентрация ртути не должна превышать значение 6 мкг/м3 (при 1-часовой стабильности уровня 10%), что практически равно ПДК рабочей зоны (10 мкг/м3). Разработанная конструкция узла аналитической кюветы была испытана при анализе реальных проб воды. На Фиг.7 приведена фотография окон с защитным воздушным потоком А и без него В. Из приведенной фигуры следует, что окна с защитным потоком через 14 дней остаются работоспособными (зондирующее излучение атомно-абсорбционного спектрометра проходит через центральную часть окон), в то время как без защитного потока окна приходят в нерабочее состояние уже через 8 часов работы.
Другой пример работы ртутного монитора - определение содержания ртути в дымовых газах. Дымовой газ имеет довольно сложный состав: дымовые частицы, пары воды, O2, CO2, NO, NO2, SO2, HCl, HF, Hg и ее соединения и т.д. При этом температура газа в точке пробоотбора составляет 100-200°С. Пробоотборный зонд соединен с узлом нагнетающего побудителя расхода подогреваемыми газовыми линиями. В качестве нагнетающего побудителя расхода используется диафрагменная помпа с тефлоновым покрытием на всех элементах, соприкасающихся с газовым потоком. Выход нагнетающей помпы соединен с узлом ввода пробы, после которого анализируемый газ поступает в термический атомизатор, температура которого составляет величину 800-950°С. Этой температуры достаточно для конверсии связанной ртути в элементную форму, а также для значительного снижения скорости окисления элементной ртути. Газ из термического атомизатора транспортируется в аналитическую кювету, нагретую до 850-950°С, через ее входной газовый порт. Для защиты окон от осаждения летучих соединений, находящихся в анализируемом газе, аналитическая кювета имеет конструкцию, при которой окна обдуваются наружным чистым воздухом, что предотвращает прямой контакт окна с анализируемым газом. Выходной газовый порт аналитической кюветы соединен с узлом газового коллектора, в котором температура анализируемого газа снижается до уровня, допустимого для работы откачивающего побудителя расхода, выполненного в виде диафрагменной помпы. Поскольку расход откачивающей помпы выше расхода нагнетающей помпы, то возникает разностный поток через отверстия в районе окон аналитической кюветы, защищающий окна от загрязнения.
Таким образом, данное изобретение позволяет увеличить интервал работы ртутного монитора без обслуживания его оператором по крайней мере в 40 раз.
Список литературы
1. http://www.mercury-instruments.de/EN/products/downloads/Mercury-lnstruments-PA-2-en.pdf.
2. Патент US №5679957.
3. http://www.sick.com MERCEM300Z Mercury Analyzer.
4. А.А. Ганеев, С.Е. Шолупов, М.Н. Сляднев. «Зеемановская модуляционная поляризационная спектрометрия как вариант атомно-абсорбционного анализа: возможности и ограничения», ЖАХ, 1996, т.51, №8, с.855-864.

Claims (6)

1. Ртутный монитор, включающий узел ввода пробы, термический атомизатор, аналитическую кювету с возможностью подогрева, узел газового коллектора и откачивающий побудитель расхода, причем аналитическая кювета содержит два прозрачных для резонансного излучения ртути окна, по меньшей мере, через одно из которых она оптически связана с атомно-абсорбционным спектрометром, по меньшей мере, один входной газовый порт, расположенный в центральной ее части, и, по меньшей мере, два выходных газовых порта, каждый из которых расположен между входным газовым портом и соответствующим окном, отличающийся тем, что с узлом ввода пробы связан нагнетающий побудитель расхода с возможностью введения анализируемой пробы в термический атомизатор, а в корпусе аналитической кюветы с двух сторон между окном и ближайшим к нему выходным газовым портом выполнены отверстия с возможностью подачи через них газа.
2. Монитор по п.1, отличающийся тем, что нагнетающий побудитель расхода включает небулайзер с распылительным соплом, жидкостным входным портом и газовым входным портом, который связан газожидкостной коммуникацией со средствами подачи газа-носителя.
3. Монитор по п.2, отличающийся тем, что средства подачи газа-носителя содержат смеситель с тремя портами, первый порт которого соединен с источником газа-носителя, второй порт соединен со средствами подачи воды, а третий порт смесителя соединен со вторым портом небулайзера.
4. Монитор по п.1, отличающийся тем, что в узел ввода пробы установлен держатель небулайзера, между внутренней стенкой которого и небулайзером создана полость, сообщающаяся с внутренней полостью термического атомизатора, а сам держатель небулайзера содержит порт, соединяющий созданную полость со средствами подачи газа-носителя.
5. Монитор по п.1, отличающийся тем, что узел газового коллектора связан с выходными портами аналитической кюветы газожидкостной коммуникацией и включает сепаратор газ-жидкость и емкость для сбора жидкости.
6. Монитор по п.1, отличающийся тем, что через первое окно аналитическая кювета оптически связана с атомно-абсорбционным спектрометром, а через второе окно - с ретрорефлектором, установленным так, чтобы зондирующее излучение атомно-абсорбционного спектрометра, прошедшее через первое окно во второе, возвращать через второе окно обратно в атомно-абсорбционный спектрометр через первое окно.
RU2013107775/28A 2013-02-15 2013-02-15 Ртутный монитор RU2521719C1 (ru)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2013107775/28A RU2521719C1 (ru) 2013-02-15 2013-02-15 Ртутный монитор
UAA201507348A UA113115C2 (xx) 2013-02-15 2014-01-20 Ртутний монітор
CA2901103A CA2901103C (en) 2013-02-15 2014-01-20 Mercury monitor
CN201480008675.9A CN105008897B (zh) 2013-02-15 2014-01-20 汞监控器
EA201500771A EA028028B1 (ru) 2013-02-15 2014-01-20 Ртутный монитор
EP14751714.8A EP2957891B1 (en) 2013-02-15 2014-01-20 Mercury monitor
US14/768,142 US9389168B2 (en) 2013-02-15 2014-01-20 Mercury monitor
PCT/RU2014/000031 WO2014126507A1 (ru) 2013-02-15 2014-01-20 Ртутный монитор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013107775/28A RU2521719C1 (ru) 2013-02-15 2013-02-15 Ртутный монитор

Publications (1)

Publication Number Publication Date
RU2521719C1 true RU2521719C1 (ru) 2014-07-10

Family

ID=51217056

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013107775/28A RU2521719C1 (ru) 2013-02-15 2013-02-15 Ртутный монитор

Country Status (8)

Country Link
US (1) US9389168B2 (ru)
EP (1) EP2957891B1 (ru)
CN (1) CN105008897B (ru)
CA (1) CA2901103C (ru)
EA (1) EA028028B1 (ru)
RU (1) RU2521719C1 (ru)
UA (1) UA113115C2 (ru)
WO (1) WO2014126507A1 (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10576514B2 (en) 2013-11-04 2020-03-03 Loci Controls, Inc. Devices and techniques relating to landfill gas extraction
US10029290B2 (en) 2013-11-04 2018-07-24 Loci Controls, Inc. Devices and techniques relating to landfill gas extraction
US10365214B2 (en) * 2014-01-14 2019-07-30 The Regents Of The University Of California Method and device for detection and spatial mapping of mercury concentration in water samples
WO2017151766A1 (en) 2016-03-01 2017-09-08 Loci Controls, Inc. Designs for enhanced reliability and calibration of landfill gas measurement and control devices
US10705063B2 (en) 2016-03-01 2020-07-07 Loci Controls, Inc. Designs for enhanced reliability and calibration of landfill gas measurement and control devices
CN107144671B (zh) * 2017-06-23 2022-04-19 中国电建集团贵阳勘测设计研究院有限公司 一种高压条件下页岩气水锁效应评价装置及方法
WO2019173132A1 (en) 2018-03-06 2019-09-12 Loci Controls, Inc. Landfill gas extraction control system
CA3109081A1 (en) 2018-10-01 2020-04-09 Loci Controls, Inc. Landfill gas extraction systems and methods
WO2021154523A1 (en) 2020-01-29 2021-08-05 Loci Controls, Inc. Automated compliance measurement and control for landfill gas extraction systems
US11623256B2 (en) 2020-07-13 2023-04-11 Loci Controls, Inc. Devices and techniques relating to landfill gas extraction
US12090532B2 (en) * 2020-07-13 2024-09-17 Loci Controls, Inc. Devices and techniques relating to landfill gas extraction
EP4255645A1 (en) 2020-12-03 2023-10-11 Loci Controls, Inc. Greenhouse gas emissions control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679957A (en) * 1996-01-04 1997-10-21 Ada Technologies, Inc. Method and apparatus for monitoring mercury emissions
RU2110060C1 (ru) * 1995-10-03 1998-04-27 Ганеев Александр Ахатович Способ определения ртути в органических средах
US5939648A (en) * 1995-12-22 1999-08-17 Instruments S.A. System and method of introducing a sample for analytical atomic spectrometry allowing concomitant analysis of mercury
RU2145082C1 (ru) * 1998-03-23 2000-01-27 Общество с ограниченной ответственностью "ВИНТЕЛ" Способ определения элементов в растворах и устройство для его реализации
US6589795B2 (en) * 2000-03-08 2003-07-08 Perkinelmer Bodenseewerk Zweigniederlassung Der Berthold Gmbh & Co. Kg Method and device for detecting mercury
RU2010117689A (ru) * 2010-05-04 2011-11-10 Александр Михайлович Аниканов (RU) Атомно-абсорбционный анализатор ртути

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071375A (en) * 1997-12-31 2000-06-06 Lam Research Corporation Gas purge protection of sensors and windows in a gas phase processing reactor
US6368560B1 (en) * 1999-03-06 2002-04-09 Trace Analytical, Inc. Photometric gas detection system and method
EP1469299B1 (de) * 2003-04-16 2008-11-05 Abb Ag Messküvette für ein Fotometer, sowie Verfahren zum Betrieb derselben
CN100574905C (zh) * 2004-05-31 2009-12-30 三菱重工业株式会社 光学性能恢复设备及恢复方法
US7454952B2 (en) * 2005-05-02 2008-11-25 Thermo Fisher Scientific Inc. Method and apparatus for monitoring mercury in a gas sample
WO2008115606A2 (en) * 2007-03-21 2008-09-25 Verity Instruments, Inc. Method and apparatus for reducing the effects of window clouding on a viewport window in a reactive environment
US8779374B2 (en) * 2009-03-11 2014-07-15 Murray J. Thomson Apparatus for continuous in situ monitoring of elemental mercury vapour, and method of using same
JP5606056B2 (ja) * 2009-12-17 2014-10-15 三菱重工業株式会社 ガス計測セル及びこれを用いたガス濃度計測装置
CN102564986B (zh) * 2011-12-30 2014-08-27 北京雪迪龙科技股份有限公司 一种烟气汞排放监测系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2110060C1 (ru) * 1995-10-03 1998-04-27 Ганеев Александр Ахатович Способ определения ртути в органических средах
US5939648A (en) * 1995-12-22 1999-08-17 Instruments S.A. System and method of introducing a sample for analytical atomic spectrometry allowing concomitant analysis of mercury
US5679957A (en) * 1996-01-04 1997-10-21 Ada Technologies, Inc. Method and apparatus for monitoring mercury emissions
RU2145082C1 (ru) * 1998-03-23 2000-01-27 Общество с ограниченной ответственностью "ВИНТЕЛ" Способ определения элементов в растворах и устройство для его реализации
US6589795B2 (en) * 2000-03-08 2003-07-08 Perkinelmer Bodenseewerk Zweigniederlassung Der Berthold Gmbh & Co. Kg Method and device for detecting mercury
RU2010117689A (ru) * 2010-05-04 2011-11-10 Александр Михайлович Аниканов (RU) Атомно-абсорбционный анализатор ртути

Also Published As

Publication number Publication date
EP2957891B1 (en) 2018-03-07
WO2014126507A1 (ru) 2014-08-21
UA113115C2 (xx) 2016-12-12
CA2901103C (en) 2021-03-02
US9389168B2 (en) 2016-07-12
CN105008897B (zh) 2017-11-14
CN105008897A (zh) 2015-10-28
EA028028B1 (ru) 2017-09-29
EP2957891A1 (en) 2015-12-23
EA201500771A1 (ru) 2016-01-29
US20160033391A1 (en) 2016-02-04
CA2901103A1 (en) 2014-08-21
EP2957891A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
RU2521719C1 (ru) Ртутный монитор
EP1877770B1 (en) Method and apparatus for monitoring mercury in a gas sample
US7454952B2 (en) Method and apparatus for monitoring mercury in a gas sample
CA2635004C (en) Controlled humidification calibration checking of continuous emissions monitoring system
Zellweger et al. NOy speciation with a combined wet effluent diffusion denuder–aerosol collector coupled to ion chromatography
JP5925211B2 (ja) 原油設備腐食低減のためのシステム・パラメータ決定のための方法及び装置
Baxter et al. Determination of mercury by atomic absorption spectrometry using a platinum-lined graphite furnace for in situ preconcentration
RU2594659C2 (ru) Способ и устройство для определения параметров системы в целях уменьшения коррозии в установке первичной обработки нефти
EP2526414B1 (en) An auto-cleaning and auto-zeroing system used with a photo-ionization detector
Sipin et al. Recent advances and some remaining challenges in analytical chemistry of the atmosphere
CN109342284A (zh) 一种用于烟气中有害物质的检测系统及检测方法
JP2004233061A (ja) ネブライザ・デニューダ連結による連続濃縮気体採取装置及び当該気体採取装置を組み込んだ気体分析装置並びに分析方法
US20080198382A1 (en) Method And Assembly For Determining Soot Particles In A Gas Stream
JP2009080105A (ja) 地下水の汚染物質を監視するための方法およびシステム
JP4542930B2 (ja) 排ガス分析装置
JP4206592B2 (ja) So3濃度計
JP4164972B2 (ja) So3濃度計
Huynh et al. In-stack dilution technique for the sampling of polycyclic organic compounds. Application to effluents of a domestic waste incineration plant
JP2001188040A (ja) So3濃度計
CN117990622A (zh) 一种汞的在线多点监测系统
Girvin et al. DISTRIBUTION OF As, Cd, Hg, Pb, Sb, AND Se DURING SIMULATED IN-SITU OIL SHALE RETORTING. QUARTERLY PROGRESS REPORT FOR PERIOD APRIL-JUNE 30, 1979
PL152321B2 (pl) Urządzenie do wykrywania zanieczyszczeń chemicznych w skroplinach z wyparki

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160216

NF4A Reinstatement of patent

Effective date: 20170309

PD4A Correction of name of patent owner