RU2518353C1 - Способ получения термоэлектрического материала для термоэлектрических генераторных устройств - Google Patents
Способ получения термоэлектрического материала для термоэлектрических генераторных устройств Download PDFInfo
- Publication number
- RU2518353C1 RU2518353C1 RU2012152799/28A RU2012152799A RU2518353C1 RU 2518353 C1 RU2518353 C1 RU 2518353C1 RU 2012152799/28 A RU2012152799/28 A RU 2012152799/28A RU 2012152799 A RU2012152799 A RU 2012152799A RU 2518353 C1 RU2518353 C1 RU 2518353C1
- Authority
- RU
- Russia
- Prior art keywords
- carried out
- extrusion
- temperature
- thermoelectric
- hours
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 30
- 238000001125 extrusion Methods 0.000 claims abstract description 29
- 239000000956 alloy Substances 0.000 claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 22
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 17
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000003708 ampul Substances 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 12
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 12
- 239000011669 selenium Substances 0.000 claims abstract description 12
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 12
- 230000004927 fusion Effects 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims abstract description 10
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 10
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 9
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 9
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000265 homogenisation Methods 0.000 claims abstract description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 5
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 claims abstract description 5
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 5
- 239000000460 chlorine Substances 0.000 claims abstract description 5
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 3
- 238000002844 melting Methods 0.000 claims abstract description 3
- 230000008018 melting Effects 0.000 claims abstract description 3
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 3
- 238000000227 grinding Methods 0.000 claims description 10
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000002019 doping agent Substances 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 3
- 238000005275 alloying Methods 0.000 abstract description 6
- 239000008187 granular material Substances 0.000 abstract description 5
- 239000000654 additive Substances 0.000 abstract description 4
- 230000000996 additive effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 10
- 238000005245 sintering Methods 0.000 description 8
- 239000011888 foil Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 3
- 229910016339 Bi—Sb—Te Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 229910018110 Se—Te Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000641 cold extrusion Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 150000004772 tellurides Chemical class 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Extrusion Of Metal (AREA)
Abstract
Изобретение относится к способам получения термоэлектрических материалов на основе теллурида висмута с легирующими добавками, используемых в устройствах термоэлектрического генерирования энергии. Сущность: способ включает синтез материала заданного состава сплавлением исходных компонентов шихты. При этом теллур и свинец используют в виде кусков с размером 5-7 мм, а висмут, селен и сурьму - в виде гранул с размером 3-5 мм. При получении материала n-типа легирующую добавку хлора вводят в виде хлорида висмута, который при загрузке в ампулу размещают между двумя равными по массе слоями смеси остальных компонентов шихты. Процесс осуществляют в вакуумированной ампуле с гомогенизацией расплава. Перед вакуумированием ампулу с шихтой нагревают до температуры 100-120°С. Плавление ведут при температуре 710-730°С в течение 1,3-1,5 часа. Полученный сплав измельчают до получения порошка с размером частиц 500-30 мкм и брикетируют. Затем проводят экструзию при нагревании и давлении 5-7 т/см2 и поддержании скорости истечения материала 0,8-1,0 см/мин. Полученный после экструзии материал n-типа отжигают при температуре 310-315°С в течение 18-26 часов. Отжиг материала p-типа проводят до и после экструзии при температуре 330-345°С в течение 22-24 часов. Технический результат: упрощение. 5 з.п. ф-лы.
Description
Изобретение относится к области термоэлектрического преобразования энергии, а именно к способам получения термоэлектрических материалов, на основе теллурида висмута, используемых в устройствах термоэлектрического генерирования энергии.
В данном изобретении предложен способ получения одного из типов термоэлектрического полупроводника n- и p-типов проводимости, который используется в термоэлектрических генераторных устройствах, преобразующих тепловую энергию в электрическую и работающих в интервале температур 20-300°С. Это так называемые генераторы электрической энергии, используемые в области средних температур.
Традиционно используемые термоэлектрические полупроводники для таких типов генераторов изготавливают на основе соединения теллура и висмута, легированного селеном, свинцом, сурьмой и галогеном [Термоэлектрические генераторы. Под ред. А.Р.Ретеля, М., Атомиздат, 1976 г.].
Полупроводниковые соединения на основе теллурида висмута, которые используют для генерирования электроэнергии и получают в виде сплавов, легированных различными элементами, имеют гексагональную структуру и электрическую и тепловую анизотропию, обусловленную данной структурой.
Максимальная термоэлектрическая эффективность соответствует кристаллографическому направлению вдоль грани С гексагональной структуры и существенно меньшую термоэлектрическую эффективность, получают когда тепло или электричество передаются в направлении с-осей в гексагональной структуре кристалла.
Поэтому основным направлением в технологиях получения материалов для термоэлектрических генераторов является изыскание новых составов материалов, за счет использования разных легирующих добавок к основному полупроводниковому соединению, и приемов обработки выбранного состава получаемого сплава, обеспечивающие снижение природной анизотропии при передаче тепла и электричества.
Так известно применение легированных теллуридов свинца в качестве материалов для термоэлектрических генераторов. В описании к патенту приведен способ получения термоэлектрических материалов для термоэлектрических устройств, в том числе для термоэлектрических генераторов, на основе теллурида свинца, содержащего различные легирующие добавки, в том числе висмут, сурьму и селен, включающий сплавление смесей соответствующих элементных компонентов или их сплавов по меньшей мере с трех или четырехкомпонентными соединениями, дробление и помол полученного сплава до 10 мкм, горячее или холодное прессование или горячее или холодное экструзирование для получения формованных изделий с добавлением соединений, улучшающих уплотнение материала.
После прессования осуществляют спекание от 0,5 часа до 5 часов. Спекание осуществляют в атмосфере водорода (см. патент RU №2413042, С30В 29/Н6, H01L 35/16, опубл. 2010 г.). Данный патент предлагает в качестве легирующих добавок для получения n-типа и p-типа, 11 элементов улучшающих термоэлектрические свойства генераторного материала на основе теллурида свинца и расчетную формулу количеств легирующих компонентов, выбранных их этой группы.
В примерах, где приводятся составы получаемых генераторных материалов, таких как Pb-Ge-Ti-Te, или Pb-Ge-Zr-Te, или Pb-Ge-Al-Te, или Pb-Bi-Al-Te приведены значения термоэлектрической проводимости, коэффициент Зеебека и рассчитанной по этим значениям мощности.
Для удобства часто используется безразмерная термоэлектрическая эффективность Z·T, где Т - абсолютная температура.
В промышленности используют термоэлектрические генераторы, работающие на разных температурах. Генераторы, где применяют термоэлектрические материалы на основе Pb-Те, с наибольшей эффективностью работают в интервале выше 300°С. [Равич Ю.И., Ефимова Б.А., Смирнов И.А.; Методы исследования полупроводников в применение к халькогенидам PbTe, PbSe, PbS; M., Наука, 1968.
Нарва О.М., Жаров В.Ф., Житинская М.К., Ерасова Н.А.; Влияние диэлектрических включений на термоэлектрические свойства теллурида свинца., Изв. АНСССР «неорганические материалы», том 21, №11 1988 г., стр.1882-1884].
Известно также, что наибольшей величиной термоэлектрической эффективности в области температур от 100-150 К до 550-600 К обладают термоэлектрические материалы на основе теллурида висмута.
Известен способ получения термоэлектрического материала в том числе для термоэлектрических генераторных устройств на основе (Bi-Se-Te) n-типа проводимости и на основе (Bi-Sb-Te) p-типа проводимости, включающий получение сплава исходного состава и охлаждение расплава на поверхности охлаждающего элемента - вращающего валка с получением пластин, или фольги. При этом формируют термоэлектрический материал с толщиной не менее 30 мкм. Затем пластины наслаивают друг на друга и уплотняют слоистый материал формованием в прессовку и осуществляют приложение давления к прессовке в направлении, перпендикулярном к основному направлению наслаивания, с последующей пластической деформацией с получением термоэлектрического материала с приблизительно единообразной ориентацией кристаллических зерен гексаганальной структуры в направлении грани С и направлении с-осей кристаллических зерен. Процесс прессования совмещают с процессом спекания. Осуществляют прессование и спекание в восстановительной атмосфере, в атмосфере инертного газа или в вакууме. Спекание проводят при температуре не выше 500°С, приблизительно в интервале 420-450°С в течение от 5 сек до 5 мин при многократном нагреве до температуры спекания. Последующий процесс пластической деформации проводят в герметичном контейнере в атмосфере инертного газа, в восстановительной атмосфере или в вакууме. Пластическую деформацию проводят при температуре не выше 450°С с получением ТЭ материала в виде сплошного тела прямоугольной формы. В процессе пластической деформации прессовку расширяют в одноосевом направлении, приблизительно параллельном направлению толщины исходного материала и этот процесс может быть выполнен два и более раз. После этого материал выдерживают при температуре 350-500°С от 30 мин до 24 часов.
Для получения ТЭ материала p-типа проводимости используют сплав Bi-Sb-Te, легированный серебром или свинцом.
Толщину ленты, фольги, пластины, которые получают из сплава заданного состава регулируют окружной скоростью вращающего охлаждаемого валка (см. патент RU №2326466, H01L 35/16, H01L 35/34, опубл. 2006 г.). Способ принят за прототип.
В примерах, представленных в в описании к патенту, приведены свойства полученных материалов только для использования в холодильных устройствах. Данные по свойствам термоэлектрических генераторных материалов в описании не приведены.
Недостатком данного способа является то, что он многооперационный и требует специального аппаратурного оформления. Исходный сплав термоэлектрического материала получают в виде фольги путем кристаллизации капли расплава на вращающемся валке, и для снижения анизотропии полученного сплава последующая технологическая цепочка операций достаточно сложна. При получении фольги необходимо вести постоянный контроль состава кристаллического материала, так как в расплаве происходит расслоение по компонентам. Осуществление контроля и предотвращение расслоения дополнительно усложняют технологию получения ТЭ генераторного материала. Операции формования, прессования, спекания, пластической деформации применяют к многослойному, специально собранному из кусков фольги материалу, и проводят эти операции в атмосфере инертного или восстановленного газа, при этом процесс спекания ведут многоразово.
Техническим результатом заявленного изобретения является получение генераторного термоэлектрического материала n- и p-типов проводимости на основе теллурида висмута существенно более простым способом, в котором исходным для обработки сплавом используют не фольгу, а слитки, и последующие операции - помол, брикетирование, прессование и пластическую деформацию (экструзию) проводят на воздухе, что существенно упрощает аппаратурное оформление процесса, при этом полученный термоэлектрический материал отличается высокими термоэлектрическими и механическими свойствами.
Технический результат достигается тем, что в способе получения термоэлектрического материала для термоэлектрических генераторных устройств на основе теллурида висмута, легированного селеном, и/или сурьмой, и/или свинцом, и/или хлором, включающем синтез материала заданного состава сплавлением исходных компонентов шихты в вакуумированной ампуле, измельчение полученного сплава, брикетирование, экструзию и отжиг с получением материала n- и p-типа проводимости, согласно изобретению сплавлению подвергают теллур и свинец в виде кусков с размером 5-7 мм, а висмут, селен и сурьму в виде гранул с размером 3-5 мм с гомогенизацией расплава, при этом перед вакуумированием ампулу с шихтой нагревают до температуры 100-120°С, сплавление ведут при температуре 710-730°С в течение 1,3-1,5 часа, измельчение ведут до получения порошка с размером частиц 500-30 мкм, брикетированию подвергают порошок, содержащий 40-50% частиц с размером от 250 до 500 мкм, 30-40% частиц с размером от 50 до 250 мкм и 10-20% частиц с размером менее 50 мкм, брикетирование и экструзию ведут на воздухе при взаимно перпендикулярном направлении приложения давления, при этом экструзию проводят при нагревании и удельном давлении 5-7 т/см2 и поддержании скорости истечения материала 0,8-1,0 см/мин, полученные после экструзии стержни материала подвергают отжигу, при этом материал n-типа отжигают при температуре 310-315°С в течение 18-26 часов, а отжиг материала p-типа проводят до и после экструзии при температуре 330-345°С в течение 22-24 часов.
А также сплавление исходных компонентов ведут в горизонтально-качающейся печи.
Кроме того, при получении материала n-типа легирующую добавку хлора вводят в виде хлорида висмута, который при загрузке в ампулу размещают между двумя равными по массе слоями смеси остальных компонентов шихты;
при экструзии поддержание постоянной скорости истечения материала осуществляют регулированием температуры нагревания для материала n-типа проводимости в интервале 400-420°С, для материала p-типа проводимости в интервале 380-400°С;
брикетирование ведут при засыпке материала в контейнер с прямоугольным отверстием с использованием двух пуансонов, двигающихся навстречу друг другу, у которых рабочие поверхности выполнены вогнутыми в виде полуцилиндров;
при экструзии используют фильеру, обеспечивающую квадратное сечение стержня получаемого термоэлектрического материала.
Сущность заявленного изобретения заключается в заявленной последовательности операций и режимов их осуществления.
Операцию сплавления исходных элементов проводят при использовании разных фракций. Именно смесь кусковых фракций теллура и свинца с гранулированными висмутом, селеном или сурьмой в зависимости от заданного состава сплава при размещении легирующей добавки галогена в виде хлорида висмута в центральном слое шихты и сплавлении шихты после начального подогрева ампулы обеспечивают улучшение гомогенизации сплава, исключение фазовых включений нестехиометрического состава. Полученный сплав однороден по фазовому составу и соответствует заданной стехиометрии. Последующие операции помола, брикетирования, экструзии проводят на воздухе, что не сказывается отрицательно на свойствах получаемого конечного материала, но существенно упрощает аппаратурное оформление процессов.
Заявленный фракционный состав полученного порошка для проведения брикетирования обеспечивает получение плотного брикета, а режимы операций брикетирования, экструзии и отжига приводят к получению структуры с максимально однородной ориентацией кристаллических зерен и, следовательно, к снижению анизотропии.
Операции брикетирования и экструзии проводят во взаимно перпендикулярном приложении давления к материалу.
Проведение операций брикетирования и экструзии материала с приложением усилий давления во взаимно перпендикулярном направлении, также направлено на достижение единообразной ориентации кристаллических зерен гексагональной структуры материала как по протяженности грани С, так и по направлению с-осей гексагональной структуры зерен.
Эта однонаправленность кристаллов материала обеспечивает высокие характеристики получаемого термоэлектрического материала такие как электропроводность и термоэдс.
Заявленные параметра усилия давления и скорости истечения материала при экструзии также влияют на достижение единообразия ориентации кристаллической структуры получаемого материала и создание текстуры деформации.
Новая совокупность операций и режимов их осуществления в заявленном способе позволяет достичь более высоких значений термоэдс и электропроводности и механических свойств полученного термоэлектрического генераторного материала в заданном температурном интервале (20-300°С) и, к тому же, по технологии существенно более простой, чем способ - прототип.
Эти факторы определяют высокую экономическую эффективность заявленного изобретения.
Обоснование параметров.
На получение высоких технических характеристик: термоэдс и электропроводности, термоэлектрического материала влияют следующие факторы:
Получение материала заданного стехиометрического состава.
Получение материала однородного фазового состава.
Получение материала с единообразной ориентацией кристаллических зерен.
Получение материала с заданной текстурой деформации.
Использование для сплавления шихты, содержащей исходные элементы (Те, Pb) в виде кусков с размером 5-7 мм, а элементы (Bi, Sb, Se) в виде гранул с размером 3-5 мм, увеличивает насыпной вес шихты и положительно влияет на гомогенизацию расплава и на однородность фазового состава сплава и на его стехиометрический состав. Увеличение или уменьшение заявленного размера кусков и гранул исходных элементов отрицательно сказывается на фазовом составе, нарушая его однородность и может также привести к нарушению стехиометрии сплава.
Предварительный нагрев ампулы перед вакуумированием создает условия, препятствующие возможному прохождению процессов окисления компонентов шихты.
Заявленные интервалы температуры плавления и времени достаточны для гомогенизации расплава, которая определяет однородность фазового и стехиометрического состава сплава при последующем охлаждении.
Измельчение сплава с получением порошка заданного фракционного состава позволяет на стадии брикетирования при соблюдении заявленного процентного соотношения фракций разного размера получать плотные брикеты в виде цилиндров, в которых частицы материала имеют однонаправленное расположение кристаллов, перпендикулярное грани С кристаллов. Выход из заявленного интервала увеличивает разориентацию кристаллов.
Проведение экструзии в направлении, перпендикулярном направлению брикетирования, обеспечивает максимально возможное единообразие в ориентации гексагональной структуры кристаллов в направлении грани С и с-осей внутри кристаллических зерен.
Параметры проведения экструзии - давление и скорость истечения материала необходимы для достижения требуемой ориентации кристаллов термоэлектрического. материала, и создания текстуры деформации. Изменение заявленных параметров и выход из заявленного интервала давления и скорости истечения увеличивает анизотропию получаемого материала.
Параметры отжига стержней n-типа обеспечивают изменение концентрации дефектов и управление электропроводностью и коэффициентом термоэдс.
Параметры отжига материала p-типа и проведения отжига до и после экструзии обеспечивают растворение теллуридной фазы, что также способствует изменению концентрации дефектов и управлению электропроводностью и коэффициентом термоэдс.
Сущность способа иллюстрируется примерами.
Пример 1. Получение термоэлектрического генераторного материала на основе теллурида висмута n-типа проводимости.
В качестве исходных компонентов используют Bi, Те, Se, галоген, в виде соединения BiCl3 в количествах, обеспечивающих требуемый состав сплава.
Сплавление компонентов шихты проводят в ампулах, установленных в горизонтально-качающуюся муфельную печь. В ампулу загружают теллур в виде кусков металла размером 5-7 мм, висмут, селен - в виде гранул размером 3-4 мм. Хлорид висмута в виде порошка помещают в ампулу между двух слоев с одинаковой массой, содержащих смесь Те, Se и Bi.
Открытую ампулу устанавливают в печь и нагревают до температуры 110°С, вакуумируют ампулы после выдержки при этой температуре в течение 30 мин, затем проводят расплавление шихты и ее гомогенезацию при температуре 720°С в течение 1,3-1,5 часов. Ампулы с расплавом охлаждают, извлекают полученный сплав и измельчают в порошок, содержащий фракции от 30 до 500 мкм. Порошок рассеивают по фракциям от 250 до 500 мкм, от 50 до 250 мкм и фракции менее 50 мкм.
Брикетированию подвергают порошок следующего фракционного состава 50% фракции от 250 до 500 мкм, 40% фракции от 50 до 250 мкм, 10% фракции до 50 мкм.
В контейнер для брикетирования, имеющий засыпное отверстие прямоугольной формы, загружают порошок и брикетируют с помощью двух пуансонов, движущихся навстречу друг другу и имеющих вогнутую поверхность давления.
Получают брикеты цилиндрической круглой или овальной формы. Брикеты подвергают экструзии в направлении давления, перпендикулярном направлению давления при брикетировании. Экструзию проводят при нагревании и удельном давлении 5-7 т/см2 и при поддержании скорости истечения материала 0,8-1,0 см/мин. Скорость истечения регулируют температурой нагрева, поддерживая ее в интервале 400-420°С.
Брикеты продавливают через фильеру квадратной формы. Помол, брикетирование и экструзию ведут на воздухе. Полученные после экструзии стержни отжигают в инертной атмосфере при температуре 315°С в течение 20 часов для изменения концентрации дефектов и управления электропроводностью и коэффициентом термоэдс.
Полученный материал имеет следующие характеристики:
- термоэдс 150-170 мкВ/°С;
- электропроводность 1500-1300 Ом-1·см-1.
Пример 2. Получение термоэлектрического генераторного материала p-типа проводимости.
В качестве исходных компонентов используют висмут, теллур, сурьму, свинец в количествах, обеспечивающих требуемый состав сплава.
Процесс сплавления, измельчения, брикетирования ведут так же, как и в Примере 1.
Полученные брикеты подвергают отжигу в инертной атмосфере при температуре 330-345°С в течение 22-24 часов и затем проводят экструзию также как в Примере 1, но скорость истечения материала регулируют температурой нагрева, поддерживая ее в интервале температур 380-400°С. Полученные стержни отжигают в инертной атмосфере при температуре 330-345°С в течение 22-24 часов для изменения концентрации дефектов и управления электропроводностью и коэффициентом термоэдс.
Полученный генераторный материал p-типа проводимости имеет следующие характеристики:
- термоэдс 150-160 мкВ/°С;
- электропроводность 1800-1600 Ом-1·см-1.
Claims (6)
1. Способ получения термоэлектрического материала для термоэлектрических генераторных устройств на основе теллурида висмута, легированного селеном, и/или сурьмой, и/или свинцом, и/или хлором, включающий синтез материала заданного состава сплавлением исходных компонентов шихты в вакуумированной ампуле, измельчение полученного сплава, брикетирование, экструзию и отжиг с получением материала n- или p-типа проводимости, отличающийся тем, что сплавлению подвергают теллур и свинец в виде кусков с размером 5-7 мм, а висмут, селен и сурьму в виде гранул с размером 3-5 мм с гомогенизацией расплава, при этом перед вакуумированием ампулу с шихтой нагревают до температуры 100-120°С, плавление ведут при температуре 710-730°С в течение 1,3-1,5 часа, измельчение ведут до получения порошка с размером частиц 500-30 мкм, брикетированию подвергают порошок, содержащий 40-50% частиц с размером от 250 до 500 мкм, 10-20% частиц с размером менее 50 мкм, брикетирование и экструзию ведут на воздухе при взаимно перпендикулярном направлении приложения давления, при этом экструзию проводят при нагревании и давлении 5-7 т/см2 и поддержании скорости истечения материала 0,8-1,0 см/мин, полученные после экструзии стержни материала подвергают отжигу, при этом материал n-типа отжигают при температуре 310-315°С в течение 18-26 часов, а отжиг материала p-типа проводят до и после экструзии при температуре 330-345°С в течение 22-24 часов.
2. Способ по п.1, отличающийся тем, что сплавление исходных компонентов ведут в горизонтально-качающейся печи.
3. Способ по п.1, отличающийся тем, что при получении n-типа материала легирующую добавку хлора вводят в виде хлорида висмута, который при загрузке в ампулу размещают между двумя равными по массе слоями смеси остальных компонентов шихты.
4. Способ по п.1, отличающийся тем, что при экструзии поддержание постоянной скорости истечения материала осуществляют регулированием температуры нагревания для материала n-типа проводимости в интервале 400-420°С, для материала p-типа проводимости в интервале 380-400°С.
5. Способ по п.1, отличающийся тем, что брикетирование ведут при засыпке материала в контейнер с прямоугольным отверстием с использованием двух пуансонов, двигающихся навстречу друг другу, у которых рабочие поверхности выполнены вогнутыми в виде полуцилиндров.
6. Способ по п.1, отличающийся тем, что при экструзии используют фильеру, обеспечивающую квадратное сечение стержня получаемого термоэлектрического материала.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012152799/28A RU2518353C1 (ru) | 2012-12-07 | 2012-12-07 | Способ получения термоэлектрического материала для термоэлектрических генераторных устройств |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012152799/28A RU2518353C1 (ru) | 2012-12-07 | 2012-12-07 | Способ получения термоэлектрического материала для термоэлектрических генераторных устройств |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2518353C1 true RU2518353C1 (ru) | 2014-06-10 |
RU2012152799A RU2012152799A (ru) | 2014-06-20 |
Family
ID=51213430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012152799/28A RU2518353C1 (ru) | 2012-12-07 | 2012-12-07 | Способ получения термоэлектрического материала для термоэлектрических генераторных устройств |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2518353C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2683807C1 (ru) * | 2017-11-03 | 2019-04-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" | Способ получения термоэлектрического материала р-типа проводимости на основе твердых растворов Bi2Te3-Sb2Te3 |
CN112310268A (zh) * | 2020-10-30 | 2021-02-02 | 中国电子科技集团公司第十八研究所 | 一种新型中温温差电材料的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2157020C2 (ru) * | 1998-11-27 | 2000-09-27 | Московский государственный институт стали и сплавов (технологический университет) | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ |
WO2001017034A1 (en) * | 1999-08-27 | 2001-03-08 | Simard Jean Marc | Process for producing thermoelectric material and thermoelectric material thereof |
JP2005085873A (ja) * | 2003-09-05 | 2005-03-31 | Spetsialnoe Konstruktorsko-Tekhnologicheskoe Bjuro Norudo | 熱電半導体組成物の製造方法 |
CN1804078A (zh) * | 2006-01-13 | 2006-07-19 | 宁波工程学院 | Bi-Te基热电材料及制备工艺 |
JP4292809B2 (ja) * | 2003-01-24 | 2009-07-08 | 株式会社Ihi | 合金インゴットの製造方法及び装置、並びに、熱電半導体材料及びその製造方法 |
RU2010103684A (ru) * | 2010-02-03 | 2011-11-27 | Общество с ограниченной ответственностью "Сибмаш" Курганский метизный завод (RU) | Способ получения термоэлектрических материалов на основе теллуридов висмута и сурьмы |
-
2012
- 2012-12-07 RU RU2012152799/28A patent/RU2518353C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2157020C2 (ru) * | 1998-11-27 | 2000-09-27 | Московский государственный институт стали и сплавов (технологический университет) | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ |
WO2001017034A1 (en) * | 1999-08-27 | 2001-03-08 | Simard Jean Marc | Process for producing thermoelectric material and thermoelectric material thereof |
JP4292809B2 (ja) * | 2003-01-24 | 2009-07-08 | 株式会社Ihi | 合金インゴットの製造方法及び装置、並びに、熱電半導体材料及びその製造方法 |
JP2005085873A (ja) * | 2003-09-05 | 2005-03-31 | Spetsialnoe Konstruktorsko-Tekhnologicheskoe Bjuro Norudo | 熱電半導体組成物の製造方法 |
CN1804078A (zh) * | 2006-01-13 | 2006-07-19 | 宁波工程学院 | Bi-Te基热电材料及制备工艺 |
RU2010103684A (ru) * | 2010-02-03 | 2011-11-27 | Общество с ограниченной ответственностью "Сибмаш" Курганский метизный завод (RU) | Способ получения термоэлектрических материалов на основе теллуридов висмута и сурьмы |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2683807C1 (ru) * | 2017-11-03 | 2019-04-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" | Способ получения термоэлектрического материала р-типа проводимости на основе твердых растворов Bi2Te3-Sb2Te3 |
CN112310268A (zh) * | 2020-10-30 | 2021-02-02 | 中国电子科技集团公司第十八研究所 | 一种新型中温温差电材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2012152799A (ru) | 2014-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Processing of advanced thermoelectric materials | |
Su et al. | Microstructure and thermoelectric properties of CoSb2. 75Ge0. 25− xTex prepared by rapid solidification | |
Xiao et al. | Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying | |
US6440768B1 (en) | Thermoelectric semiconductor material and method of manufacturing the same | |
CN108238796B (zh) | 铜硒基固溶体热电材料及其制备方法 | |
CN106571422B (zh) | 一种碲化铋基n型热电材料及其制备方法 | |
CN106449957B (zh) | 一种碲化铋基p型热电材料及其制备方法 | |
KR20090026667A (ko) | Sn 충진 및 Te 도핑된 스커테루다이트계 열전재료 및그 제조방법 | |
US9461226B2 (en) | Thermoelectric material and method of preparing the same | |
JP6608961B2 (ja) | P型スクッテルダイト熱電材料、その製造方法およびこれを含む熱電素子 | |
CN109851360B (zh) | 一种P型碲化铋基块体热电材料(Bi1-xSbx)2Te3的制备方法 | |
Li et al. | Thermoelectric properties of p-type (Bi2Te3) x (Sb2Te3) 1− x prepared by spark plasma sintering | |
US20160343930A1 (en) | Thermoelectric composite material and method for producing same | |
JP4479628B2 (ja) | 熱電材料及びその製造方法、並びに熱電モジュール | |
JP2000106460A (ja) | 熱電半導体材料および熱電半導体材料の製造方法 | |
RU2518353C1 (ru) | Способ получения термоэлектрического материала для термоэлектрических генераторных устройств | |
KR101323319B1 (ko) | 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법 | |
Cheng et al. | Self-propagating high-temperature synthesis and thermoelectric performances of Cu2SnSe3 | |
CN105990510B (zh) | 一种铜硒基高性能热电材料及其制备方法 | |
KR101264311B1 (ko) | 외생삽입을 통한 AgSbTe₂나노돗이 형성된 Te계 열전재료의 제조방법 | |
Ranganayakulu et al. | Boosting the thermoelectric performance of GeTe via vacancy control and engineering sintering parameters | |
RU2470414C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА p-ТИПА НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2Te3-Sb2Te3 | |
US20150020862A1 (en) | Oxide Nanoparticle-Dispersed, Chalcogenide-Based, and Phase-Separated Composite Thermoelectric Material | |
US8986566B2 (en) | Thermoelectric material, thermoelectric device using the same, and method of manufacturing thereof | |
KR20160077628A (ko) | 균일한 열전특성을 갖는 열전소재 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20141208 |