RU2157020C2 - СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ - Google Patents
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ Download PDFInfo
- Publication number
- RU2157020C2 RU2157020C2 RU98121600/28A RU98121600A RU2157020C2 RU 2157020 C2 RU2157020 C2 RU 2157020C2 RU 98121600/28 A RU98121600/28 A RU 98121600/28A RU 98121600 A RU98121600 A RU 98121600A RU 2157020 C2 RU2157020 C2 RU 2157020C2
- Authority
- RU
- Russia
- Prior art keywords
- tem
- tese
- thermoelectric
- chlorine
- thermoelectric materials
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 title description 3
- 239000000460 chlorine Substances 0.000 claims abstract description 17
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 13
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000006104 solid solution Substances 0.000 claims description 6
- 238000005275 alloying Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 2
- 238000004870 electrical engineering Methods 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 9
- 239000003708 ampul Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000004857 zone melting Methods 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 bismuth chalcogenides Chemical class 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 125000003748 selenium group Chemical group *[Se]* 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Изобретение относится к области термоэлектрического преобразования энергии, в частности к изготовлению термоэлектрических материалов (ТЭМ) n-типа проводимости, используемых в термоэлектрических устройствах (ТЭУ). Сущность изобретения: для получения термоэлектрического материала на основе твердых растворов Bi2(ТеSе)3 электронного типа проводимости путем легирования хлорсодержащим соединением в качестве хлорсодержащего соединения используют Bi11Se12Cl9. Технический результат: улучшение воспроизводимости легирования ТЭМ, достижение воcпроизводимо высокого уровня термоэлектрической эффективности Z и увеличения выхода годного ТЭМ с высоким значением термоэлектрической эффективности (Z≥3,0•10-3 К-1). 1 табл.
Description
Изобретение относится к области термоэлектрического преобразования энергии, в частности к изготовлению термоэлектрических материалов (ТЭМ) n-типа, используемых в термоэлектрических устройствах (ТЭУ).
Известно, что основные энергетические характеристики ТЭУ определяются термоэлектрической эффективностью Z ТЭМ, из которых изготовлены термоэлементы ТЭУ. Величина Z = α2σ/χ, где α - коэффициент Зеебека, σ - удельная электропроводность, χ - удельная теплопроводность ТЭМ, зависит от концентрации носителей тока, причем для каждого интервала рабочих температур ТЭУ существует оптимальная концентрация носителей тока, при которой величина Z ТЭМ достигает максимума.
В n-ветвях термоэлементов используются твердые растворы Bi2(TeSe)3, в которых оптимальную концентрацию носителей тока создают легированием галогенами. Обычно вводятся соединения типа BiCl3 или CdCl2 [1].
Основные недостатки легирующих добавок типа BiCl3 и CdCl2 - их низкая термостойкость и сильная гигроскопичность, то есть способность поглощать воду по реакции
BiCl3 + H2O = BiOCl + 2HCl
При этом происходит неконтролируемый уход галогена в газовую фазу, что приводит к неконтролируемому легированию и не позволяет получать воспроизводимые результаты при легировании в промышленных условиях. Кроме того из-за высокой упругости паров HCl создаются условия, при которых возможен взрыв ампул.
BiCl3 + H2O = BiOCl + 2HCl
При этом происходит неконтролируемый уход галогена в газовую фазу, что приводит к неконтролируемому легированию и не позволяет получать воспроизводимые результаты при легировании в промышленных условиях. Кроме того из-за высокой упругости паров HCl создаются условия, при которых возможен взрыв ампул.
При легировании добавками типа CdCl2, помимо хлора вводятся еще и атомы электрически активного металла (кадмия), которые могут изменять уровень легирования, а также снижать подвижность носителей тока, и следовательно электропроводность кристалла. Улучшить воспроизводимость легирования ТЭМ можно, используя в качестве легирующей добавки соединение BiSeCl, способы получения которого описаны в [2]. Однако полученное этим способом соединение оказалось неоднофазным (т.е. в нем присутствуют и другие хлорсодержащие соединения), что также приводит к невозможности достаточно воспроизводимо контролировать содержание легирующей примеси (хлора) в ТЭМ, чтобы получать кристаллы ТЭМ с термоэлектрической эффективностью Z>3.0•10-3К-1. Воспроизводимость легирования достигается применением в качестве легирующей добавки соединения Bi11Se12Gl9, синтез и кристаллическая структура которого описаны в работе Трифонова В.А., Шевелькова А.В., Дикарева Е.В., Поповкина Б.А. [3] (прототип). Это тройное соединение удается синтезировать однофазным. Оно обладает достаточной термостойкостью, не разлагаясь до температуры плавления, а также хорошей растворимостью в расплаве твердого раствора Bi2(TeSe)3 и не гигроскопично.
Целью изобретения является достижение воспроизводимо высокого уровня термоэлектрической эффективности Z и увеличение выхода ТЭМ n-типа проводимости с высоким значением Z. В результате при легировании ТЭМ соединением Bi11Se12Cl9, точно контролируется количество вводимого хлора, вводятся только атомы висмута и селена, которые входят в состав ТЭМ и не оказывают побочных влияний на уровень легирования хлором и на рассеяние носителей тока. При этом способе легирования исключаются условия, которые могут приводит к взрыву ампул при синтезе лигатуры, что улучшает экологические условия производства.
Устраняется также одна технологическая операция - сушка и обезвоживание лигатуры.
Примеры.
Ниже приводятся примеры легирования тройного твердого раствора Bi2(TeSe)3 хлором путем введения в него по отдельности различных хлорсодержащих соединений. Например, BiCl3 (0.53 г/на 1 кг ТЭМ), CdCl2(0.463 г/1 кг ТЭМ); BISECl (1.63 г/на 1 кг ТЭМ) или Bi11Se12Cl9 (2.0 г/1 кг ТЭМ). В скобках указаны количества лигатуры (навески), обеспечивающие одинаковое содержание донорной примеси - хлора в кристаллах ТЭМ во всех экспериментах.
Процедура получения термоэлектрических кристаллов Bi2(TeSe)3 с заданными термоэлектрическими свойствами состояла в следующем:
- В кварцевую ампулу диаметром порядка 20 мм, защищенную изнутри слоем пиролитического углерода, загружали основные компоненты: висмут, теллур и селен из расчета образования тройного твердого раствора Bi2(TeSe)3 и указанное выше количество (навеску) каждой в отдельности хлорсодержащей лигатуры. При этом лигатуру в виде бинарных соединений BiCl3 и CdCl2 подвергали предварительной вакуумной сушке при температуре порядка 150-180oC для ее обезвоживания.
- В кварцевую ампулу диаметром порядка 20 мм, защищенную изнутри слоем пиролитического углерода, загружали основные компоненты: висмут, теллур и селен из расчета образования тройного твердого раствора Bi2(TeSe)3 и указанное выше количество (навеску) каждой в отдельности хлорсодержащей лигатуры. При этом лигатуру в виде бинарных соединений BiCl3 и CdCl2 подвергали предварительной вакуумной сушке при температуре порядка 150-180oC для ее обезвоживания.
- После загрузки всех необходимых компонентов, ампулу вакуумировали до остаточного давления в ней на уровне порядка 1.33•10-2 - 1.33•10-2 Па, а затем напускали в нее и инертный газ (осушенный аргон или азот) до остаточного давления, равного порядка 0,8 атмосферы (0.8•105Па) с последующей запайкой.
- Подготовленную кварцевую ампулу с исходными компонентами устанавливали в горизонтальную печь сопротивления и синтезировали тройной твердый раствор Bi2(TeSe)3 при температуре порядка 750oC в течение 2 часов в условиях непрерывного покачивания около горизонтального положения.
- После этого ампулу переводили в вертикальное положение и расплав ТЭМ кристаллизовали.
Так как ТЭМ на основе халькогенидов висмута кристаллизуется в ромбоэдрической (слоистой структуре), то кристаллы ТЭМ электронного типа проводимости проявляют достаточно сильную анизотропию, особенно по величине электропроводности, вдоль и перпендикулярно оси (В гексагональной установке ось С перпендикулярна плоскости слоев базиса (0001). соответственно электропроводность вдоль и перпендикулярно оси С). Поэтому легированные хлором кристаллы должны иметь столбчатоориентированную вдоль оси слитка текстуру, при которой ось С перпендикулярна оси слитка. Это достигается методом вертикальной зонной плавки в условиях плоского фронта кристаллизации и определенной величине осевого градиента температуры. Для этого в качестве нагревателя расплавленной зоны использовали нагреватель сопротивления с соответствующий экранировкой. С помощью этой экранировки подавлялась радиальная составляющая теплового потока. Высота расплавленной зоны практически была равна диаметру слитка. Формирование заданных термоэлектрических и структурных параметров осуществлялось за один проход расплавленной зоны снизу в верх со скоростью 0.1-0.2 мм/мин. После зонной плавки кристаллы ТЭМ извлекали из кварцевой ампулы и проводили измерения термоэлектрических параметров, зависящих от уровня легирования: электропроводности ( σ Ом-1•см-1) и коэффициента термоЭДС ( α, мкВ/град) при 300 К. Готовой продукцией считали кристаллы ТЭМ, имеющие электропроводность σ ≅ 950 -1100 Oм-1•см-1, коэффициент термоЭДС α ≅ 220-205 мкВ/град и термоэлектрическую эффективность Z ≥ 3.0•10-3К-1 при 300 К.
Все экспериментальные данные, полученные при использовании различных лигатур, и рассчитанные по ним значения Z (расчет Z проводили с учетом анизотропии ТЭМ), среднеарифметические эначения и ошибка в нахождении Z приведены в таблице.
Литература
1. Гольцман Б.М., Кудинов В.А., Смирнов И.А. Полупроводниковые тэрмоэлектрические материалы на основе Bi2Te3. M.: Наука, 1972. - 320 с.
1. Гольцман Б.М., Кудинов В.А., Смирнов И.А. Полупроводниковые тэрмоэлектрические материалы на основе Bi2Te3. M.: Наука, 1972. - 320 с.
2. Donges Е. Z.f.anorg, allg.Chemie, 1950, B.263, p.280-291.
3. Трифонов В.А., Шевельков А.В., Дикарев Е.В., Поповкин Б.А. Синтез и кристаллическая структура Bi11Se12Cl9"//Журнал "Неорганическая химия", 1997, т. 42, N 8, с. 1237-1241.
Claims (1)
- Способ получения термоэлектрических материалов на основе твердых растворов Bi2(TeSe)3 электронного типа проводимости путем легирования их хлорсодержащим соединением, отличающийся тем, что в качестве хлорсодержащего соединения используют Bi11Se12Cl9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU98121600/28A RU2157020C2 (ru) | 1998-11-27 | 1998-11-27 | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU98121600/28A RU2157020C2 (ru) | 1998-11-27 | 1998-11-27 | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ |
Publications (2)
Publication Number | Publication Date |
---|---|
RU98121600A RU98121600A (ru) | 2000-08-27 |
RU2157020C2 true RU2157020C2 (ru) | 2000-09-27 |
Family
ID=20212834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU98121600/28A RU2157020C2 (ru) | 1998-11-27 | 1998-11-27 | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2157020C2 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2470414C1 (ru) * | 2011-06-28 | 2012-12-20 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА p-ТИПА НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2Te3-Sb2Te3 |
RU2518353C1 (ru) * | 2012-12-07 | 2014-06-10 | Общество С Ограниченной Ответственностью "Адв-Инжиниринг" | Способ получения термоэлектрического материала для термоэлектрических генераторных устройств |
RU2567972C1 (ru) * | 2014-07-01 | 2015-11-10 | Общество с ограниченной ответственностью "ТЕРМОИНТЕХ" | Способ получения гранул термоэлектрических материалов |
RU2570607C1 (ru) * | 2014-05-21 | 2015-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курганский государственный университет" | Способ получения длинномерного слитка постоянного сечения из термоэлектрических бинарных сплавов типа висмут-сурьма |
RU2765275C1 (ru) * | 2021-07-30 | 2022-01-27 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения термоэлектрического материала на основе теллурида висмута |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD323Z (ru) * | 2009-12-29 | 2011-08-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Термоэлектрический микропровод в стеклянной изоляции |
-
1998
- 1998-11-27 RU RU98121600/28A patent/RU2157020C2/ru active
Non-Patent Citations (1)
Title |
---|
Гольцман Б.М. и др. Полупроводниковые материалы на основе Bi 2 Te 3 - М.: Наука, 1972, с.56-58. * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2470414C1 (ru) * | 2011-06-28 | 2012-12-20 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА p-ТИПА НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2Te3-Sb2Te3 |
RU2518353C1 (ru) * | 2012-12-07 | 2014-06-10 | Общество С Ограниченной Ответственностью "Адв-Инжиниринг" | Способ получения термоэлектрического материала для термоэлектрических генераторных устройств |
RU2570607C1 (ru) * | 2014-05-21 | 2015-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курганский государственный университет" | Способ получения длинномерного слитка постоянного сечения из термоэлектрических бинарных сплавов типа висмут-сурьма |
RU2567972C1 (ru) * | 2014-07-01 | 2015-11-10 | Общество с ограниченной ответственностью "ТЕРМОИНТЕХ" | Способ получения гранул термоэлектрических материалов |
RU2765275C1 (ru) * | 2021-07-30 | 2022-01-27 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения термоэлектрического материала на основе теллурида висмута |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Parkes et al. | The fabrication of p and n type single crystals of CuInSe2 | |
Brebrick et al. | Composition stability limits of PbTe. II | |
Brebrick et al. | Composition limits of stability of PbTe | |
Albers et al. | Preparation and properties of mixed crystals SnS (1− x) Sex | |
Masumoto et al. | The preparation and properties of ZnSiAs2, ZnGeP2 and CdGeP2 semiconducting compounds | |
Bailey | Preparation and properties of silicon telluride | |
US20040003495A1 (en) | GaN boule grown from liquid melt using GaN seed wafers | |
Harman et al. | Horizontal unseeded vapor growth of IV-VI compounds and alloys | |
RU2157020C2 (ru) | СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ Bi2(TeSe)3 ЭЛЕКТРОННОГО ТИПА ПРОВОДИМОСТИ | |
Taguchi et al. | Growth of high-purity ZnTe single crystals by the sublimation travelling heater method | |
Fischer | Techniques for Melt‐Growth of Luminescent Semiconductor Crystals under Pressure | |
Shin et al. | Thermoelectric properties of 25% Bi2Te3-75% Sb2Te3 solid solution prepared by hot-pressing method | |
US6273969B1 (en) | Alloys and methods for their preparation | |
Matsushita et al. | Thermal Analysis of Chemical Reaction Process Forming CuInSe 2 Crystal | |
Sizov et al. | Homogeneity range and nonstoichiometric defects in IV–VI narrow-gap semiconductors | |
Glatz et al. | The preparation and electrical properties of bismuth trisulfide | |
Wang et al. | Thermoelectric properties of indium-filled skutterudites prepared by combining solvothermal synthesis and melting | |
Crocker | Phase equilibria in PbTe/CdTe alloys | |
CN101613846B (zh) | 快速凝固制备Mg-Si-Sn基热电材料的方法 | |
Kalinnikov et al. | Physical chemistry of the magnetic semiconductor CdCr 2 Se 4 | |
Savitsky et al. | Relaxation processes in CdTeCl crystals | |
US3925108A (en) | Method for preparing decomposable materials with controlled resistivity | |
Yin et al. | Effect of Mg-Doping on the Thermal Stability of Thermoelectric Zn4Sb3 | |
Chu et al. | Crystal Growth of Silicon Arsenide | |
Das et al. | Cu2ZnSnSe4 photovoltaic absorber grown by vertical gradient freeze technique |