RU2510140C2 - Способ мониторинга речевого сигнала и шлюз доступа - Google Patents

Способ мониторинга речевого сигнала и шлюз доступа Download PDF

Info

Publication number
RU2510140C2
RU2510140C2 RU2011132998/08A RU2011132998A RU2510140C2 RU 2510140 C2 RU2510140 C2 RU 2510140C2 RU 2011132998/08 A RU2011132998/08 A RU 2011132998/08A RU 2011132998 A RU2011132998 A RU 2011132998A RU 2510140 C2 RU2510140 C2 RU 2510140C2
Authority
RU
Russia
Prior art keywords
data
rtp
pcm
monitoring
stream
Prior art date
Application number
RU2011132998/08A
Other languages
English (en)
Other versions
RU2011132998A (ru
Inventor
Вей КСИА
Тао Ванг
Живей ВАНГ
Original Assignee
Зте Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зте Корпорейшн filed Critical Зте Корпорейшн
Publication of RU2011132998A publication Critical patent/RU2011132998A/ru
Application granted granted Critical
Publication of RU2510140C2 publication Critical patent/RU2510140C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/026Capturing of monitoring data using flow identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

Настоящее изобретение описывает способ мониторинга речевого сигнала и шлюз доступа. Предлагаемый способ применяется для мониторинга речевого сигнала контролируемого пользователя с помощью шлюза доступа и включает в себя следующие шаги: получение дискретизованных данных импульсно-кодовой модуляции речевого сигнала прослушиваемого пользователя, упаковка полученных данных РСМ в поток данных транспортного протокола реального времени (RTP) и передача этого потока данных RTP на устройство мониторинга. Настоящее изобретение облегчает процесс прослушивания разговоров. Технический результат - улучшение мониторинга зашифрованных потоков данных RTP. 2 н. и 4 з.п. ф-лы, 5 ил., 4 табл.

Description

Область техники
Настоящее изобретение относится к системам связи «речь по Интернет-протоколу» (далее VolP), в частности к способу мониторинга речевого сигнала с помощью VolP-шлюза доступа.
Предшествующий уровень техники
Технология VolP предназначена для передачи речи с помощью Интернет-протокола IP (по IP-сетям). После дискретизации, квантования и кодирования аналогового голосового сигнала он преобразуется в поток цифрового кода; затем выполняется упаковка потока цифрового кода в поток данных транспортного протокола реального времени (RTP) для передачи по IP-сети.
В настоящее время самой популярной технологией кодирования является G.711, кодек формы сигнала, который повсеместно используется в телефонных сетях с коммутацией каналов во всем мире. В стандарте G.711 используется неравномерное квантование данных. Для одного отсчета необходимо всего 8 битов. G.711 часто называют технологией импульсно-кодовой модуляции (РСМ). При смешивании многоканальной речи неравномерные сигналы необходимо преобразовать в сигнал равномерного квантования. Принцип технологии VolP - смешивание многоканальной речи с помощью программного обеспечения для последующей передачи по IP-сети.
Мониторинг речевого сигнала используется для контроля телефонных разговоров пользователей телефонной сети. В настоящее время для этой цели применяется способ модификации телефонного аппарата или абонентской линии, который требует добавления нового оборудования или изменения существующего. В технологии VolP для мониторинга разговоров применяется способ, в котором из потока данных RTP получают голосовые данные и передают их на шлюз доступа; однако данный способ не позволяет осуществлять мониторинг зашифрованного потока данных RTP.
Из вышесказанного ясно, что используемые на данный момент технологии мониторинга разговоров на базе VolP не предоставляют эффективного решения для мониторинга зашифрованных потоков данных RTP.
Раскрытие изобретения
Предлагаемое изобретение нацелено на решение задачи мониторинга потоков зашифрованных данных RTP в текущей технологии мониторинга разговоров на базе VolP. Следовательно, целью настоящего изобретения является создание улучшенной схемы мониторинга разговоров для решения вышеуказанной проблемы.
Согласно изобретению для достижения вышеуказанной цели предлагается способ мониторинга речевого сигнала.
Предлагаемый способ мониторинга речевого сигнала предназначен для мониторинга речевого сигнала прослушиваемого пользователя с помощью шлюза доступа, в котором: получают дискретизованные данные импульсно-кодовой модуляции речевого сигнала (данные РСМ) прослушиваемого пользователя; выполняют упаковку дискретизованных данных РСМ в поток данных транспортного протокола реального времени (данные RTP) и передают этот поток данных на устройство мониторинга.
Предпочтительно, чтобы данные РСМ представляли собой неравномерно квантованные данные; в этом случае упаковка этих данных в поток данных RTP содержит: преобразование данных РСМ в равномерно квантованные данные, при этом данные РСМ содержат передаваемые данные (T×D) и принимаемые данные (R×D) прослушиваемого пользователя; объединение принимаемых и передаваемых данных, преобразованных в равномерно квантованные данные, в набор равномерно квантованных данных и преобразование объединенных равномерно квантованных данных в неравномерно квантованные данные; упаковку неравномерно квантованных данных в поток данных RTP.
Предпочтительно, чтобы объединение передаваемых и принимаемых данных в набор равномерно квантованных данных включало в себя сложение и усреднение передаваемых и принимаемых данных для получения набора равномерно квантованных данных.
Предпочтительно, чтобы перед передачей потока данных RTP на устройство мониторинга в вышеописанном способе дополнительно выполнялось следующее: если данные РСМ представляют собой неравномерно квантованные данные G711A, то устанавливают тип данных RTP как 8; если данные РСМ представляют собой неравномерно квантованные данные G711U, то устанавливают тип данных RTP как 0.
Предпочтительно, чтобы перед передачей потока данных RTP на устройство мониторинга дополнительно выполнялось следующее: в качестве целевого IP-адреса и номера порта для потока данных RTP указывается IP-адрес и номер порта устройства мониторинга.
Для достижения вышеуказанной цели, согласно изобретению, также предлагается шлюз доступа.
Предлагаемый шлюз доступа содержит: приемный модуль, предназначенный для получения дискретизованных данных РСМ прослушиваемого пользователя; модуль обработки, предназначенный для упаковки полученного приемным модулем дискретизованных данных РСМ в поток данных RTP; а также модуль отправки, предназначенный для передачи подготовленного модулем обработки потока данных RTP на устройство мониторинга.
Предпочтительно, чтобы вышеуказанный шлюз доступа дополнительно содержал первый модуль преобразования, предназначенный для преобразования данных РСМ в равномерно квантованные данные, при этом данные РСМ представляют собой неравномерно квантованные данные и содержат принимаемые и передаваемые данные прослушиваемого пользователя; первый модуль объединения, предназначенный для объединения принимаемых и передаваемых данных, содержащихся в подготовленных первым модулем преобразования равномерно квантованных данных, в набор равномерно квантованных данных, для последующей передачи объединенных равномерно квантованных данных на второй модуль преобразования; а также второй модуль преобразования, предназначенный для преобразования набора равномерно квантованных данных в неравномерно квантованные данные для последующей передачи последних на модуль обработки.
Предпочтительно, чтобы вышеуказанный шлюз доступа дополнительно содержал первый модуль настройки, предназначенный для задания в качестве целевого IP-адреса и номера порта для потока данных RTP IP-адреса и номера порта устройства мониторинга; а также второй модуль настройки, предназначенный для установления типа данных RTP в соответствии с типом дискретизованных данных РСМ.
Использование предлагаемого в настоящем изобретении способа, согласно которому получают дискретизированные данные РСМ для прослушиваемого пользователя, упаковывают полученные данные в поток данных RTP и передают этот поток данных на устройство мониторинга, позволяет решить задачу невозможности мониторинга зашифрованных потоков данных RTP в условиях существующего способа мониторинга речевого сигнала на базе VolP, и таким образом облегчает процесс прослушивания разговоров.
Краткое описание чертежей
На Фиг.1 представлена структурная схема системы связи с VolP-шлюзом доступа для реализации вариантов осуществления настоящего изобретения;
на Фиг.2 представлена блок-схема способа мониторинга речевого сигнала в соответствии с вариантами осуществления настоящего изобретения;
на Фиг.3 представлена схема способа мониторинга речевого сигнала в соответствии с вариантами осуществления настоящего изобретения;
на Фиг.4 представлена структурная схема шлюза доступа в соответствии с вариантами осуществления настоящего изобретения;
на Фиг.5 представлен вариант структурной схемы шлюза доступа в соответствии с вариантами осуществления настоящего изобретения.
Лучший вариант осуществления изобретения
Настоящее изобретение предлагает улучшенную схему осуществления мониторинга речевого сигнала для решения задачи невозможности мониторинга зашифрованных потоков данных RTP в условиях существующего способа мониторинга разговоров на базе VolP. В вариантах осуществления изобретения в процессе вызова получают данные временного мультиплексирования (TDM) получателя и отправителя, смешивают данные в одном канале связи с помощью программного обеспечения, а затем выполняют упаковку данных в поток данных RTP для отправки на устройство мониторинга. Таким образом, мониторинг речевого сигнала VolP реализуется без модификации оборудования.
Следует отметить, что описанные в заявке варианты осуществления и характеристики вариантов осуществления можно сочетать друг с другом, в случаях, когда они не противоречат друг другу. Ниже предлагаемое изобретение подробно описано со ссылками на приложенные чертежи и варианты осуществления.
На Фиг.1 изображена структурная схема системы связи с VolP-шлюзом доступа для реализации варианта осуществления настоящего изобретения. Как показано на Фиг.1, по сравнению с обыкновенным VolP-шлюзом доступа, к VolP-шлюзу доступа с функцией мониторинга добавлен модуль обработки для мониторинга на ближней стороне. Приемник мониторинга на удаленной стороне аналогичен обыкновенному декодеру потоков данных RTP, и может выполняться в виде специального VolP-шлюза доступа, а также в виде программного декодера на персональном компьютере (ПК). Данная часть не относится к объему притязаний настоящего изобретения и поэтому не будет описываться подробно.
После обработки на VolP-шлюзе доступа с функцией мониторинга прослушиваемый разговор образует три потока данных RTP: первый поток данных RTP представляет собой стандартный поток принимаемых данных RTP при поддержке связи с удаленной стороной; второй поток данных RTP - стандартный поток передаваемых данных RTP при поддержке связи с удаленной стороной; вышеуказанные первый и второй потоки данных RTP аналогичны потокам стандартного шлюза доступа. Третий поток данных RTP является потоком данных RTP прослушиваемого разговора. Третий поток отличается тем, что передаваемое и получаемое содержимое прослушиваемого разговора содержатся в одном потоке данных RTP. IP-адрес и номер порта определяют приемник мониторинга на удаленной стороне, образуя новый поток кода. Шлюз доступа на удаленной стороне и приемник мониторинга на удаленной стороне представляют собой полностью независимые устройства. Предположим, что пользователь из Шанхая звонит пользователю из Шэньчжэня. Органы государственной безопасности прослушивают этот разговор, при этом прослушиваемым пользователем является абонент из Шанхая. В соответствии с Фиг.1 шлюз доступа шанхайского пользователя является VolP-шлюзом доступа с функцией мониторинга; шлюз вызываемого абонента из Шэньчжэня является шлюзом доступа на удаленной стороне; органы государственной безопасности являются приемником мониторинга на удаленной стороне.
Варианты осуществления настоящего изобретения описывают способ мониторинга речевого сигнала для мониторинга прослушиваемого пользователя с помощью шлюза доступа. На Фиг.2 изображена блок-схема способа мониторинга в соответствии с вариантами осуществления настоящего изобретения. Как видно из Фиг.2, способ содержит следующие шаги S202-S204:
Шаг S202: получение дискретизированных данных РСМ прослушиваемого пользователя;
Шаг S204: упаковка дискретизированных данных РСМ в поток данных RTP и отправка потока данных RTP на устройство мониторинга.
На шаге S204 выполняется упаковка дискретизированных данных РСМ в поток данных RTP, при этом:
дискретизированные данные РСМ представляют собой неравномерно квантованные данные, которые преобразуются в равномерно квантованные данные, при этом данные РСМ содержат дискретизированные передаваемые (T×D) и принимаемые (R×D) данные прослушиваемого пользователя; дискретизированные передаваемые и принимаемые данные, преобразованные в равномерно квантованные данные, объединяются в набор равномерно квантованных данных, который затем преобразуется в неравномерно квантованные данные; после этого неравномерно квантованные данные упаковываются в поток данных RTP.
В вышеописанной операции объединения дискретизированных передаваемых и принимаемых данных в набор равномерно квантованных данных выполняются операции сложения и усреднения дискретизированных передаваемых и принимаемых данных для получения набора равномерно квантованных данных.
Также перед передачей потока данных RTP на устройство мониторинга можно в качестве целевого IP-адреса и номера порта для потока данных RTP указать IP-адрес и номер порта устройства мониторинга. Если дискретизированные данные РСМ представляют собой неравномерно квантованные данные стандарта G711A, то устанавливают тип данных RTP как 8; если дискретизированные данные РСМ представляют собой неравномерно квантованные данные стандарта G711U, то устанавливают тип данных RTP как 0.
С помощью данного варианта осуществления изобретения передаваемые и принимаемые двунаправленные данные, полученные для какого-либо пользователя, объединяют в голосовой поток для одновременного мониторинга передаваемого и принимаемого речевого сигнала. Это позволяет не только экономно использовать пропускную способность, но и избежать проблемы, связанной с синхронизацией двунаправленных передаваемых и принимаемых данных на устройстве мониторинга. Удаленный мониторинг выполняется посредством преобразования данных TDM в поток данных RTP и передачи потока данных RTP на устройство мониторинга с указанным IP-адресом и номером порта; мониторинг разговоров осуществляется с помощью программного обеспечения, без какой-либо модификации аппаратного обеспечения; также очень легко осуществлять многоточечный мониторинг - нужно лишь передавать потоки данных RTP на несколько целевых адресов; в качестве устройства мониторинга необязательно использовать профессиональное оборудование, например, можно использовать персональный компьютер, так как устройство мониторинга может получать поток перехваченного кода и преобразовывать его в исходную речь с помощью обычных программных средств (например, WireShark).
Далее подробно описывается процесс реализации вариантов осуществления настоящего изобретения со ссылкой на конкретные примеры.
На Фиг.3 представлена схема способа мониторинга речевого сигнала в соответствии с вариантами осуществления настоящего изобретения. Как видно из Фиг.3, телефон отправляет передаваемые данные TDM (Tx TDM) кодеру/декодеру для обработки с целью получения передаваемых данных РСМ (Tx РСМ), затем выполняет упаковку данных T×PCM в поток данных RTP и отсылает поток удаленной стороне через IP-сеть. Аналогично, кодер/декодер преобразует принимаемые данные РСМ (Rx РСМ) в принимаемые данные TDM (Rx TDM) и передает их на телефон. В соответствии с вариантами осуществления настоящего изобретения процесс обработки для потока данных мониторинга RTP состоит из следующих шагов:
Шаг 1: получение дискретизированных данных РСМ прослушиваемого пользователя со стороны абонентской линии VolP-шлюза. После дискретизации, квантования и кодирования с помощью кодера аналоговый речевой сигнал преобразуется в РСМ сигнал со скоростью 64 кбит/с.
Шаг 2: двунаправленные дискретизированные данные РСМ, как принимаемые, так и передаваемые, преобразуются в равномерно квантованные данные. В настоящее время наиболее широко распространены стандарты неравномерного квантования С711А и G711U. Перед смешиванием неравномерно квантованных данных с помощью звукового микшера их необходимо преобразовать в равномерно квантованные данные, т.е. преобразовать данные Tx РСМ и Rx РСМ в беззнаковые коды Tx и Rc, соответственно. Соотношение преобразования данных G711A в равномерно квантованные данные показано в Таблице 1.
В Таблице 1 показаны равномерно квантованные данные, соответствующие 0-255 данным G711A. В Таблице 2 показано соотношение преобразования 0-255 данных G711U в равномерно квантованные данные.
Преобразование данных G711A в равномерно квантованные данные
Таблица 1
0×6a, 0×6b, 0×68, 0×69, 0×6e,0×6f, 0×6c, 0×6d, 0×62, 0×63, 0×60, 0×61,
0×66 ,0×67, 0×64, 0×65, 0×75, 0×75, 0×74, 0×74, 0×77, 0×77, 0×76, 0×76,
0×71, 0×71, 0×70, 0×70, 0×73, 0×73, 0×72, 0×72, 0×2a, 0×2e, 0×22, 0×26,
0×3a, 0×3e, 0×32, 0×36, 0×a, 0×e, 0×2, 0×6, 0×1a, 0×1e, 0×12, 0×16,
0×55, 0×57, 0×51, 0×53, 0×5d, 0×5f, 0×59, 0×5b, 0×45, 0×47, 0×41, 0×43,
0×4d, 0×4f, 0×49, 0×4b, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e,
0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7f, 0×7f, 0×7f, 0×7f,
0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f,
0×7a, 0×7a, 0×7a, 0×7a, 0×7b, 0×7b, 0×7b, 0×7b, 0×78, 0×78, 0×78,0×78,
0×79, 0×79, 0×79, 0×79, 0×7d, 0×7d, 0×7d, 0×7d, 0×7d, 0×7d, 0×7d, 0×7d,
0×7c, 0×7c, 0×7c, 0×7c, 0×7c, 0×7c, 0×7c, 0×7c, 0×95, 0×94, 0×97, 0×96,
0×91, 0×90, 0×93, 0×92, 0×9d, 0×9c, 0×9f, 0×9e, 0×99, 0×98, 0×9b, 0×9a,
0×8a, 0×8a, 0×8b, 0×8b, 0×88, 0×88, 0×89, 0×89, 0×8e, 0×8e, 0×8f, 0×8f,
0×8c, 0×8c, 0×8d, 0×8d, 0×d6, 0×d2, 0×de, 0×da, 0×c6, 0×c2, 0×ce, 0×ca,
0×f6, 0×f2, 0×fe, 0×fa, 0×e6, 0×e2, 0×ee, 0×ea, 0×ab, 0×a9, 0×af, 0×ad,
0×a3, 0×a1, 0×a7, 0×a5, 0×bb, 0×b9, 0×bf, 0×bd, 0×b3, 0×b1, 0×b7, 0×b5,
0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81,
0×81, 0×81, 0×81, 0×81, 0×80, 0×80, 0×80, 0×80,0×80, 0×80, 0×80, 0×80,
0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×85, 0×85, 0×85, 0×85,
0×84, 0×84, 0×84, 0×84, 0×87, 0×87, 0×87, 0×87, 0×86, 0×86, 0×86, 0×86,
0×82, 0×82, 0×82, 0×82, 0×82, 0×82, 0×82, 0×82, 0×83, 0×83, 0×83, 0×83,
0×83, 0×83, 0×83, 0×83
Преобразование данных G711U в равномерно квантованные данные
Таблица 2
0×2, 0×6, 0×a,0×e, 0×12, 0×16, 0×1a, 0×1e, 0×22, 0×26, 0×2a, 0×2e,
0×32, 0×36, 0×3a, 0×3e, 0×41, 0×43, 0×45, 0×47, 0×49, 0×4b, 0×4d, 0×4f,
0×51, 0×53, 0×55, 0×57, 0×59, 0×5b, 0×5d, 0×5f, 0×61, 0×62, 0×63, 0×64,
0×65, 0×66, 0×67, 0×68, 0×69, 0×6a, 0×6b, 0×6c, 0×6d, 0×6e, 0×6f, 0×70,
0×70, 0×71, 0×71, 0×72, 0×72, 0×73, 0×73, 0×74, 0×74, 0×75, 0×75, 0×76,
0×76, 0×77, 0×77, 0×78, 0×78, 0×78, 0×79, 0×79, 0×79, 0×79, 0×7a, 0×7a,
0×7a, 0×7a,0×7b, 0×7b, 0×7b, 0×7b, 0×7c, 0×7c, 0×7c, 0×7c, 0×7c, 0×7c,
0×7d, 0×7d, 0×7d, 0×7d, 0×7d, 0×7d, 0×7d, 0×7d, 0×7e, 0×7e, 0×7e, 0×7e,
0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7e, 0×7f, 0×7f, 0×7f, 0×7f,
0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f,
0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×7f, 0×80, 0×fd, 0×f9, 0×f5, 0×f1,
0×dd, 0×d9, 0×d5, 0×d1, 0×cd, 0×c9, 0×c5, 0×c1, 0×be, 0×bc, 0×ba, 0×b8,
0×b6, 0×b4, 0×b2,0×b0, 0×ae, 0×ac, 0×aa, 0×a8, 0×a6, 0×a4, 0×a2, 0×a0,
0×9e, 0×9d, 0×9c, 0×9b, 0×9a, 0×99, 0×98, 0×97, 0×96, 0×95, 0×94, 0×93,
0×92, 0×91, 0×90, 0×8f, 0×8f, 0×8e, 0×8e, 0×8d, 0×8d, 0×8c, 0×8c, 0×8b,
0×8b, 0×8a, 0×8a, 0×89, 0×89, 0×88, 0×88, 0×87, 0×87, 0×87, 0×86, 0×86,
0×86, 0×86, 0×85, 0×85, 0×85, 0×85, 0×84, 0×84, 0×84, 0×84, 0×83, 0×83,
0×83, 0×83, 0×83, 0×83, 0×82, 0×82, 0×82, 0×82, 0×82, 0×82, 0×82, 0×82,
0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81, 0×81,
0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80,
0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80, 0×80,
0×80, 0×80, 0×80, 0×80
Шаг 3: выполняются операции сложения и усреднения для преобразованных передаваемых и принимаемых данных с целью объединения речи на стороне получателя/отправителя в речевой набор, т.е. смешиваются беззнаковые коды Tx и Rx для получения беззнакового смешанного кода. Конкретный способ вычисления соответствует следующей формуле:
Mix=(G711ToUniform(Rx)+G711ToUniform(Tx))/2
Здесь:
Mix - смешанные данные,
Rx - принимаемые дискретизированные данные прослушиваемого пользователя (данные стандарта G711);
Tx - передаваемые дискретизированные данные прослушиваемого пользователя (данные стандарта G711);
G711ToUniform(ln) - функция преобразования данных G711 в равномерно квантованные данные.
Способ преобразования изложен на шаге 2.
Шаг 4: объединенная речь преобразуется в неравномерно квантованные данные, т.е. смешанные беззнаковые коды преобразуются в смешанные данные РСМ, при этом объединенная речь представляет собой равномерно квантованные данные, которые перед упаковкой в потоки данных RTP нужно сначала преобразовать в общие данные G711. В Таблице 3 показано соотношение данных G711A и равномерно квантованных данных 0-255. В Таблице 4 показано соотношение данных G711U и равномерно квантованных данных 0-255.
Преобразование равномерно квантованных данных в данные G711A
Таблица 3
0×2a, 0×2a, 0×2a, 0×2a, 0×2a, 0×2b, 0×2b, 0×2b, 0×2b, 0×28, 0×28, 0×28,
0×28, 0×29, 0×29, 0×29, 0×29, 0×2e, 0×2e, 0×2e, 0×2e, 0×2f, 0×2f, 0×2f,
0×2f, 0×2c, 0×2c, 0×2c, 0×2c, 0×2d, 0×2d, 0×2d, 0×2d, 0×22, 0×22, 0×22,
0×22, 0×23, 0×23, 0×23, 0×23, 0×20, 0×20, 0×20, 0×20, 0×21, 0×21, 0×21,
0×21, 0×26, 0×26,0×26, 0×26, 0×27, 0×27, 0×27, 0×27, 0×24, 0×24, 0×24,
0×24, 0×25, 0×25, 0×25, 0×25, 0×3a, 0×3a, 0×3b, 0×3b, 0×38, 0×38, 0×39,
0×39, 0×3e, 0×3e, 0×3f, 0×3f, 0×3c, 0×3c, 0×3d, 0×3d, 0×32, 0×32, 0×33,
0×33, 0х30, 0×30, 0×31, 0×31, 0×36, 0×36, 0×37, 0×37, 0×34, 0×34, 0×35,
0×35, 0×a, 0×b, 0×8, 0×9, 0×e, 0×f, 0×c, 0×d, 0×2,0×3, 0×0,
0×1, 0×6, 0×7, 0×4, 0×5, 0×1b, 0×19, 0×1f, 0×1d, 0×13, 0×11, 0×17,
0×15, 0×69, 0×6d, 0×61, 0×65, 0×7d, 0×75, 0×45, 0×d5, 0×c5, 0×f5, 0×fd,
0×e5, 0×e1, 0×ed, 0×e9, 0×95, 0×97, 0×91, 0×93, 0×9d, 0×9f, 0×99, 0×9b,
0×85, 0×84, 0×87, 0×86, 0×81, 0×80, 0×83, 0×82, 0×8d, 0×8c, 0×8f, 0×8e,
0×89, 0×88, 0×8b, 0×8a, 0×b5, 0×b5, 0×b4, 0×b4, 0×b7, 0×b7, 0×b6, 0×b6,
0×b1, 0×b1, 0×b0, 0×b0, 0×b3, 0×b3, 0×b2, 0×b2, 0×bd, 0×bd, 0×bc, 0×bc,
0×bf, 0×bf, 0×be, 0×be, 0×b9, 0×b9, 0×b8, 0×b8, 0×bb, 0×bb, 0×ba, 0×ba,
0×a5, 0×a5, 0×a5, 0×a5, 0×a4, 0×a4, 0×a4, 0×a4, 0×a7, 0×a7, 0×a7, 0×a7,
0×a6, 0×a6, 0×a6, 0×a6, 0×a1, 0×a1, 0×a1, 0×a1, 0×a0, 0×a0, 0×a0, 0×a0,
0×a3, 0×a3, 0×a3, 0×a3, 0×a2, 0×a2, 0×a2, 0×a2, 0×ad, 0×ad, 0×ad, 0×ad,
0×ac, 0×ac, 0×ac, 0×ac, 0×af, 0×af, 0×af, 0×af, 0×ae, 0×ae, 0×ae, 0×ae,
0×a9, 0×a9, 0×a9, 0×a9, 0×a8, 0×a8, 0×a8, 0×a8, 0×ab, 0×ab, 0×ab, 0×ab,
0×aa, 0×aa, 0×aa, 0×aa
Преобразование равномерно квантованных данных в данные G711U
Таблица 4
0×0, 0×0, 0×0, 0×0, 0×0, 0×1, 0×1, 0×1, 0×1, 0×2, 0×2, 0×2,
0×2, 0×3, 0×3, 0×3, 0×3, 0×4, 0×4, 0×4, 0×4, 0×5, 0×5, 0×5,
0×5, 0×6, 0×6, 0×6, 0×6, 0×7, 0×7, 0×7, 0×7, 0×8, 0×8, 0×8,
0×8, 0×9, 0×9, 0×9, 0×9, 0×a, 0×a, 0×a, 0×a, 0×b, 0×b, 0×b,
0×b, 0×c, 0×c, 0×c, 0×c, 0×d, 0×d, 0×d, 0×d, 0×e, 0×e, 0×e,
0×e, 0×f, 0×f, 0×f, 0×f, 0×10, 0×10, 0×11, 0×11, 0×12, 0×12, 0×13,
0×13, 0×14, 0×14, 0×15, 0×15, 0×16, 0×16, 0×17, 0×17, 0×18, 0×18, 0×19,
0×19, 0×1a, 0×1a, 0×1b, 0×1b, 0×1c, 0×1c, 0×1d, 0×1d, 0×1e, 0×1e, 0×1f,
0×1f, 0×20, 0×21, 0×22, 0×23, 0×24, 0×25, 0×26, 0×27, 0×28, 0×29, 0×2a,
0×2b, 0×2c, 0×2d, 0×2e, 0×2f, 0×30, 0×32, 0×34, 0×36, 0×38, 0×3a, 0×3c,
0×3е, 0×41, 0×45, 0×49, 0×4d, 0×53, 0×5b, 0×67, 0×ff, 0×e7, 0×db, 0×d3,
0×cd, 0×c9, 0×c5, 0×c1, 0×be, 0×bc, 0×ba, 0×b8, 0×b6, 0×b4, 0×b2, 0×b0,
0×af, 0×ae, 0×ad, 0×ac, 0×ab, 0×aa, 0×a9, 0×a8, 0×a7, 0×a6, 0×a5, 0×a4,
0×a3, 0×a2, 0×a1, 0×a0, 0×9f, 0×9f, 0×9e, 0×9e, 0×9d, 0×9d, 0×9c, 0×9c,
0×9b, 0×9b, 0×9a, 0×9a, 0×99, 0×99, 0×98,0×98, 0×97, 0×97, 0×96, 0×96,
0×95, 0×95, 0×94, 0×94, 0×93, 0×93, 0×92, 0×92, 0×91, 0×91, 0×90, 0×90,
0×8f, 0×8f, 0×8f, 0×8f,0×8e, 0×8e, 0×8e, 0×8e, 0×8d, 0×8d, 0×8d, 0×8d,
0×8c, 0×8c, 0×8c, 0×8c, 0×8b, 0×8b, 0×8b, 0×8b, 0×8a, 0×8a, 0×8a, 0×8a,
0×89, 0×89, 0×89, 0×89, 0×88, 0×88, 0×88, 0×88, 0×87, 0×87, 0×87, 0×87,
0×86, 0×86, 0×86, 0×86, 0×85, 0×85, 0×85, 0×85, 0×84, 0×84, 0×84, 0×84,
0×83, 0×83, 0×83, 0×83, 0×82, 0×82, 0×82, 0×82, 0×81, 0×81, 0×81, 0×81,
0×80, 0×80, 0×80, 0×80
Шаг 5: выполняется упаковка объединенных неравномерно квантованных данных в поток данных RTP. При упаковке в качестве целевого IP-адреса и номера порта указываются IP-адрес и номер порта устройства удаленного мониторинга; если используется G711A, то устанавливают тип данных RTP как 8, если G711U, - то 0.
Шаг 6: поток данных RTP передается через IP-сеть на устройство мониторинга (а именно на указанные IP-адрес и порт мониторинга).
В вариантах осуществления настоящего изобретения также предлагается шлюз доступа. На Фиг.4 показана структурная схема шлюза доступа в соответствии с вариантами осуществления изобретения.
Как видно из Фиг.4, шлюз доступа содержит приемный модуль 42, модуль 44 обработки и модуль 46 отправки. Ниже описана их структура.
Приемный модуль 42 предназначен для получения дискретизированных данных РСМ для прослушиваемого пользователя; модуль 44 обработки соединен с приемным модулем 42 и предназначен для упаковки дискретизированных данных РСМ, полученных приемным модулем 42, в поток данных RTP; модуль 46 отправки соединен с модулем 44 обработки и предназначен для передачи обработанного модулем 44 обработки потока данных RTP на устройство мониторинга.
На Фиг.5 изображен вариант структурной схемы шлюза доступа в соответствии с вариантами осуществления настоящего изобретения.
Как видно из Фиг.5, шлюз доступа дополнительно содержит первый модуль 52 преобразования, первый модуль 54 объединения, второй модуль 56 преобразования, первый модуль 58 настройки и второй модуль 50 настройки. Ниже описана их структура.
Первый модуль 52 преобразования соединен с приемным модулем 42 и предназначен для преобразования дискретизированных данных РСМ, полученных приемным модулем 42, в равномерно квантованные данные, при этом дискретизированные данные РСМ представляют собой неравномерно квантованные данные и содержат дискретизированные принимаемые и передаваемые данные контролируемого пользователя; первый модуль 54 объединения соединен с первым модулем 52 преобразования и предназначен для объединения дискретизированных принимаемых и передаваемых данных прослушиваемого пользователя, содержащихся в преобразованных первым модулем 52 преобразования равномерно квантованных данных, в набор равномерно квантованных данных, для последующей передачи этого набора данных на второй модуль 56 преобразования; второй модуль 56 преобразования соединен с первым модулем 54 объединения и предназначен для преобразования набора равномерно квантованных данных, объединенного первым модулем 54 объединения, в данные РСМ, для последующей передачи этих данных РСМ на модуль 44 обработки.
Первый модуль 58 настройки предназначен для указания в качестве целевого IP-адреса и номера порта IP-адреса и номера порта устройства мониторинга; второй модуль 50 настройки предназначен для задания формата полезной нагрузки RTP в соответствии с типом дискретизированных данных РСМ. Т.е. если дискретизированные данные РСМ представляют собой неравномерно квантованные данные G711A, то второй модуль 50 настройки устанавливает тип данных RTP как 8; если же дискретизированные данные РСМ представляют собой неравномерно квантованные данные G711U, то второй модуль 50 настройки устанавливает тип данных RTP как 0.
Из вышеизложенных вариантов осуществления настоящего изобретения следует, что способ, согласно которому получают дискретизированные данные РСМ для прослушиваемого пользователя и упаковывают эти данных РСМ в поток данных RTP для последующей передачи на устройство мониторинга, позволяет решить задачу невозможности мониторинга зашифрованных потоков RTP-данных в условиях существующего способа мониторинга разговоров на базе VolP, и таким образом облегчает процесс прослушивания разговоров.
Специалисту в данной области должно быть ясно, что все вышеупомянутые модули и шаги в настоящем изобретении могут быть реализованы на практике с помощью обычных вычислительных устройств. Они могут быть объединены в одном вычислительном устройстве или могут быть распределены в сети, состоящей из нескольких вычислительных устройств. Также они могут быть реализованы с помощью программного кода, исполняемого вычислительным устройством, т.е. они могут сохраняться на запоминающих устройствах для исполнения вычислительными устройствами, или могут быть индивидуально встроены в отдельные интегральные схемы, или же сразу несколько модулей и шагов могут быть реализованы в виде единой интегральной схемы. Таким образом, настоящее изобретение не ограничивается какой-либо определенной комбинацией аппаратных средств и программного обеспечения.
Приведенные выше описания представляют собой лишь предпочтительные варианты осуществления настоящего изобретения, и не должны рассматриваться как ограничение настоящего изобретения. Специалист в данной области может выполнять любые модификации и изменения настоящего изобретения. Любые модификации, эквивалентные замены, усовершенствования и т.д., выполненные без отклонения от сути и принципов настоящего изобретения, входят в объем правовой охраны настоящего изобретения.

Claims (6)

1. Способ мониторинга речевого сигнала, в котором:
получают дискретизованные данные импульсно-кодовой модуляции речевого сигнала (данные РСМ) прослушиваемого пользователя;
выполняют упаковку дискретизованных данных РСМ в поток данных транспортного протокола реального времени (данные RTP) и передают этот поток данных на устройство мониторинга;
при этом если данные РСМ представляют собой неравномерно квантованные данные, то упаковка этих данных в поток данных RTP содержит:
преобразование данных РСМ в равномерно квантованные данные, при этом данные РСМ содержат передаваемые данные (T×D) и принимаемые данные (R×D) прослушиваемого пользователя;
объединение принимаемых и передаваемых данных, преобразованных в равномерно квантованные данные, в набор равномерно квантованных данных, и преобразование объединенных равномерно квантованных данных в неравномерно квантованные данные;
упаковка неравномерно квантованных данных в поток данных RTP.
2. Способ мониторинга речевого сигнала по п.1, характеризующийся тем, что объединение принимаемых и передаваемых данных в набор равномерно квантованных данных включает:
сложение и усреднение принимаемых и передаваемых данных для получения набора равномерно квантованных данных.
3. Способ мониторинга речевого сигнала по п.1 или 2, характеризующийся тем, что перед передачей потока данных RTP на устройство мониторинга дополнительно выполняют следующее:
если данные РСМ представляют собой неравномерно квантованные данные стандарта G711A, то устанавливают тип данных RTP как 8;
если данные РСМ представляют собой неравномерно квантованные данные стандарта G711U, то устанавливают тип данных RTP как 0.
4. Способ мониторинга речевого сигнала по п.1 или 2, характеризующийся тем, что перед передачей потока данных RTP на устройство мониторинга дополнительно выполняют следующее:
в качестве целевого IP-адреса и номера порта для потока данных RTP указывают IP-адрес и номер порта устройства мониторинга.
5. Шлюз доступа, содержащий:
приемный модуль, предназначенный для получения дискретизованных данных РСМ прослушиваемого пользователя;
модуль обработки, предназначенный для упаковки полученного приемным модулем дискретизованных данных РСМ в поток данных RTP;
модуль отправки, предназначенный для передачи подготовленного модулем обработки потока данных RTP на устройство мониторинга;
первый модуль преобразования, предназначенный для преобразования данных РСМ в равномерно квантованные данные, при этом данные РСМ представляют собой неравномерно квантованные данные и содержат принимаемые и передаваемые данные прослушиваемого пользователя;
первый модуль объединения, предназначенный для объединения принимаемых и передаваемых данных, содержащихся в подготовленных первым модулем преобразования равномерно квантованных данных, в набор равномерно квантованных данных, для последующей передачи объединенных равномерно квантованных данных на второй модуль преобразования; а также
второй модуль преобразования, предназначенный для преобразования набора равномерно квантованных данных в неравномерно квантованные данные для последующей передачи последних на модуль обработки.
6. Шлюз доступа по п.5, отличающийся тем, что он дополнительно содержит:
первый модуль настройки, предназначенный для задания в качестве целевого IP-адреса и номера порта для потока данных RTP IP-адреса и номера порта устройства мониторинга; а также
второй модуль настройки, предназначенный для установления типа данных RTP в соответствии с типом дискретизованных данных РСМ.
RU2011132998/08A 2009-01-09 2009-11-30 Способ мониторинга речевого сигнала и шлюз доступа RU2510140C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200910000141.2 2009-01-09
CNA2009100001412A CN101488954A (zh) 2009-01-09 2009-01-09 语音监听方法以及接入网关
PCT/CN2009/075223 WO2010078782A1 (zh) 2009-01-09 2009-11-30 语音监听方法以及接入网关

Publications (2)

Publication Number Publication Date
RU2011132998A RU2011132998A (ru) 2013-02-20
RU2510140C2 true RU2510140C2 (ru) 2014-03-20

Family

ID=40891631

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011132998/08A RU2510140C2 (ru) 2009-01-09 2009-11-30 Способ мониторинга речевого сигнала и шлюз доступа

Country Status (4)

Country Link
CN (1) CN101488954A (ru)
BR (1) BRPI0919369A2 (ru)
RU (1) RU2510140C2 (ru)
WO (1) WO2010078782A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488954A (zh) * 2009-01-09 2009-07-22 中兴通讯股份有限公司 语音监听方法以及接入网关
JP5321966B2 (ja) * 2009-06-17 2013-10-23 株式会社村田製作所 亜酸化銅ナノ粒子分散溶液の製造方法
CN101741639A (zh) * 2009-12-01 2010-06-16 中兴通讯股份有限公司 实现信令监测的方法、装置和信令网关
CN102316487A (zh) * 2011-09-26 2012-01-11 中兴通讯股份有限公司南京分公司 通讯监听方法、装置及其系统
CN103188403B (zh) * 2011-12-30 2016-08-03 迈普通信技术股份有限公司 语音网关在线监听方法
CN104144086B (zh) * 2013-12-04 2018-09-11 腾讯科技(深圳)有限公司 通信方法和系统及信息发送和接收装置
CN105873029B (zh) * 2015-01-21 2019-05-10 中国移动通信集团公司 一种通话监听方法及装置
CN105100086B (zh) * 2015-07-07 2018-02-13 上海斐讯数据通信技术有限公司 一种基于对称型NAT的VoIP语音监听方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2214057C2 (ru) * 1996-11-14 2003-10-10 Эрикссон Инк. Сжатие сигналов связи с расширенным спектром прямой последовательности
WO2007006237A1 (fr) * 2005-07-14 2007-01-18 Huawei Technologies Co., Ltd. Système de surveillance d’appel vidéo
RU2314641C2 (ru) * 2003-09-02 2008-01-10 Самсунг Электроникс Ко., Лтд. Способ обеспечения информации о состоянии мобильной станции в системе мобильной связи
CN101123641A (zh) * 2007-09-14 2008-02-13 东南大学 基于分布式架构的无线网络电话监听装置的监听方法
CN101237486A (zh) * 2008-02-26 2008-08-06 中兴通讯股份有限公司 Tdm媒体转换ip媒体的装置和使用该装置的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462129A (zh) * 2002-05-30 2003-12-17 深圳市威信智能技术有限公司 多媒体智能监控方法和系统
CN100486145C (zh) * 2003-08-15 2009-05-06 华为技术有限公司 实现空中监听的方法和监听设备
CN1266885C (zh) * 2004-07-07 2006-07-26 华为技术有限公司 一种基于软交换实现监听的方法
CN1331324C (zh) * 2004-08-18 2007-08-08 华为技术有限公司 语音监听方法及系统
ATE451685T1 (de) * 2005-09-01 2009-12-15 Ericsson Telefon Ab L M Verarbeitung von codierten echtzeitdaten
CN101242448B (zh) * 2007-02-05 2011-01-26 深圳市东进通讯技术股份有限公司 一种漏话监测系统及方法
CN101188525B (zh) * 2007-11-27 2011-10-26 成都市华为赛门铁克科技有限公司 一种语音流的处理方法及装置
CN101478771B (zh) * 2009-01-06 2011-09-21 中兴通讯股份有限公司 一种语音监听的系统及方法
CN101488954A (zh) * 2009-01-09 2009-07-22 中兴通讯股份有限公司 语音监听方法以及接入网关

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2214057C2 (ru) * 1996-11-14 2003-10-10 Эрикссон Инк. Сжатие сигналов связи с расширенным спектром прямой последовательности
RU2314641C2 (ru) * 2003-09-02 2008-01-10 Самсунг Электроникс Ко., Лтд. Способ обеспечения информации о состоянии мобильной станции в системе мобильной связи
WO2007006237A1 (fr) * 2005-07-14 2007-01-18 Huawei Technologies Co., Ltd. Système de surveillance d’appel vidéo
CN101123641A (zh) * 2007-09-14 2008-02-13 东南大学 基于分布式架构的无线网络电话监听装置的监听方法
CN101237486A (zh) * 2008-02-26 2008-08-06 中兴通讯股份有限公司 Tdm媒体转换ip媒体的装置和使用该装置的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Протокол передачи видео- и аудиоинформации в реальном масштабе времени - RTP", 08.01.2005 на 5 л., [on-line], [найдено 11.04.2013]. Найдено в Интернет по адресу: URL:http://web.archive.org/web/20050108125300/http://edo.bseu.by/library/ibs1/net_l/tcp_ip/net/rtp.htm, с.2 *
"Протокол передачи видео- и аудиоинформации в реальном масштабе времени - RTP", 08.01.2005 на 5 л., [on-line], [найдено 11.04.2013]. Найдено в Интернет по адресу: URL:http://web.archive.org/web/20050108125300/http://edo.bseu.by/library/ibs1/net_l/tcp_ip/net/rtp.htm, с.2 второй-третий абзацы. VoIP Foro-Codec-G.711 a law and μ or u law - PCM, 19.12.2008 на 3 л., [on-line], [найдено 30.11.2012]. Найдено в Интернет по адресу: URL:http://web.archive.org/web/20081219094504/http://www.en.voipforo.com/codec/codecs-g711-alaw.php, с.2 раздел “ G.711 A Law (a-law) and μ Law (u-law) encoding scheme”, первый абзац. *
второй-третий абзацы. VoIP Foro-Codec-G.711 a law and μ or u law - PCM, 19.12.2008 на 3 л., [on-line], [найдено 30.11.2012]. Найдено в Интернет по адресу: URL:http://web.archive.org/web/20081219094504/http://www.en.voipforo.com/codec/codecs-g711-alaw.php, с.2 раздел " G.711 A Law (a-law) and μ Law (u-law) encoding scheme", первый абзац. *

Also Published As

Publication number Publication date
BRPI0919369A2 (pt) 2016-01-05
CN101488954A (zh) 2009-07-22
RU2011132998A (ru) 2013-02-20
WO2010078782A1 (zh) 2010-07-15

Similar Documents

Publication Publication Date Title
RU2510140C2 (ru) Способ мониторинга речевого сигнала и шлюз доступа
US9838062B2 (en) Wireless headset system with two different radio protocols
CN100556043C (zh) 支持网络中至少两个设备之间协同操作的方法及系统
EP2011320A1 (en) System and method of conferencing endpoints
US8767687B2 (en) Method and system for endpoint based architecture for VoIP access points
US20110235625A1 (en) Communication terminal and relay station using local wireless communication and service providing method thereof
US20080279177A1 (en) Conjoined Telephony Communication System
US20060067266A1 (en) Radio control over internet protocol system
US20080089356A1 (en) VoIP device and service switching method thereof
WO2018113742A1 (zh) 一种信号传输方法及网络系统
US7710948B2 (en) PCM-based data transmission system and voice/data communication switching method
US20100091796A1 (en) Selecting An Adaptor Mode and Communicating Data Based on the Selected Adaptor Mode
US20060153108A1 (en) VoIP terminal capable of facsimile communication and communication method thereof
JP4492516B2 (ja) 音声ipパケット交換装置
US20050286549A1 (en) Secured peer-to-peer wireless telecommunications apparatus and method
CN113891339B (zh) 一种通信系统及近端机
CN107566368B (zh) 用于地面指挥节点的语音通信系统及其利用方法
JP2005045741A (ja) 通話装置、通話方法及び通話システム
CN101110751A (zh) 基于p2p技术的ip pbx
JP6464971B2 (ja) 無線端末装置
JP4256201B2 (ja) 無線電話システム、ip対応無線基地局装置およびip−pbx
Mehmood et al. Simfree Communication using Rasberry Pi+ Based Base-station for Disaster Mitigation
JP5831095B2 (ja) 音声通信システム、音声通信装置及びプログラム
CN102740489B (zh) 一种实现无绳电话通话的方法和装置
US7065057B2 (en) Method and apparatus for improving the transmission quality in a packet-oriented data transmission network