RU2508158C2 - Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки - Google Patents

Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки Download PDF

Info

Publication number
RU2508158C2
RU2508158C2 RU2011105825/05A RU2011105825A RU2508158C2 RU 2508158 C2 RU2508158 C2 RU 2508158C2 RU 2011105825/05 A RU2011105825/05 A RU 2011105825/05A RU 2011105825 A RU2011105825 A RU 2011105825A RU 2508158 C2 RU2508158 C2 RU 2508158C2
Authority
RU
Russia
Prior art keywords
steam
carbon dioxide
absorbent
desorption
contaminated
Prior art date
Application number
RU2011105825/05A
Other languages
English (en)
Other versions
RU2011105825A (ru
Inventor
Ральф ЙОХ
Рюдигер ШНАЙДЕР
Хеннинг ШРАММ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2011105825A publication Critical patent/RU2011105825A/ru
Application granted granted Critical
Publication of RU2508158C2 publication Critical patent/RU2508158C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chimneys And Flues (AREA)

Abstract

Изобретение относится к способу отделения диоксида углерода от дымового газа работающей на ископаемом топливе энергоустановки. Сначала в процессе сжигания сжигается ископаемое топливо (2), причем образуется горячий, содержащий диоксид углерода отходящий газ (3). На следующем этапе в процессе абсорбции (4) содержащий диоксид углерода отходящий газ (3) приводится в контакт с абсорбентом (5), причем диоксид углерода поглощается абсорбентом (5) и образуется загрязненный абсорбент (6). На следующем этапе в процессе десорбции (7) из загрязненного абсорбента (6) термически удаляется газообразный диоксид углерода (8). При этом в процесс десорбции (7) подается пар (9), который впрыскивается в загрязненный абсорбент (6), причем высвобождающееся в результате конденсации пара (9) тепло конденсации переносится на загрязненный абсорбент (6) и в то же время понижается парциальное давление диоксида углерода в десорбционном блоке. Изобретение позволяет повысить эффективность по сравнению с традиционным устройством газоочистки работающей на ископаемом топливе энергоустановки. 2 н. и 7 з.п. ф-лы, 3 ил.

Description

Изобретение относится к способу эксплуатации работающей на ископаемом топливе энергоустановки и, в частности, к способу отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки. Кроме того, изобретение относится к работающей на ископаемом топливе энергоустановке с сепарирующим устройством для отделения диоксида углерода от отходящего газа.
У работающих на ископаемом топливе энергоустановок для вырабатывания электроэнергии в промышленном масштабе содержащий диоксид углерода отходящий газ возникает в большой степени за счет сжигания ископаемого топлива. Помимо диоксида углерода отходящий газ содержит другие компоненты, например газы азот, диоксид серы, оксиды азота, водяной пар, а также твердые частицы, пыли и сажу. В более современных или модернизированных энергоустановках уже находят применение сепарация твердых веществ, отделение оксидов серы и каталитическое удаление оксидов азота. Содержащийся в отходящем газе диоксид углерода до сих пор выпускался вместе с отходящим газом в атмосферу. Скапливающийся в атмосфере диоксид углерода препятствует излучению тепла от Земли и за счет так называемого парникового эффекта способствует повышению температуры ее поверхности. Для уменьшения выброса диоксида углерода в работающих на ископаемом топливе энергоустановках он может быть отделен от отходящего газа.
Для отделения диоксида углерода от газовой смеси, в частности в химической промышленности, известны различные способы. В частности, для отделения диоксида углерода от отходящего газа по окончании процесса сжигания (post-combustion CO2 separation) известен способ абсорбции-десорбции.
Отделение диоксида углерода способом абсорбции-десорбции осуществляется с помощью моющего средства. В классическом процессе абсорбции-десорбции отходящий газ в абсорбционной колонне приводится в контакт с избирательным растворителем в качестве моющего средства. При этом поглощение диоксида углерода происходит в результате химического или физического процесса. Очищенный отходящий газ покидает абсорбционную колонну для дальнейшей обработки или удаления. Загрязненный диоксидом углерода растворитель для своей регенерации и для отделения диоксида углерода направляется в десорбционную колонну. Отделение в десорбционной колонне может происходить термически. При этом из загрязненного растворителя удаляется газопаровая смесь из газообразного диоксида углерода и испарившегося растворителя. Затем испарившийся растворитель сепарируется от газообразного диоксида углерода. Диоксид углерода может быть в несколько этапов сжат, охлажден и сжижен. В жидком или замерзшем состоянии диоксид углерода может затем направляться на хранение или дальнейшую обработку. Регенерированный растворитель возвращается в абсорбционную колонну, где он снова может поглощать диоксид углерода из содержащего его отходящего газа.
Основной проблемой существующих способов отделения диоксида углерода от газовой смеси в промышленном масштабе являются, в частности, очень высокие энергозатраты, необходимые, в том числе, в виде энергии нагрева для десорбции.
Общим недостатком известных способов отделения диоксида углерода от отходящего газа, осуществляемых во время или после энергопроцесса, является, в частности, значительное, снижающее к.п.д. влияние процессов отделения на энергопроцесс. Снижение к.п.д. происходит потому, что энергию для осуществления отделения диоксида углерода приходится отбирать у энергопроцесса. Поэтому рентабельность работающей на ископаемом топливе энергоустановки заметно ниже, чем без устройства отделения диоксида углерода.
Задача изобретения состоит в создании способа отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки, благодаря которому обеспечивается высокая эффективность отделения при одновременно высоком общем к.п.д. энергопроцесса всей установки.
Другой задачей изобретения является создание работающей на ископаемом топливе энергоустановки с интегрированным сепарирующим устройством для диоксида углерода, которая обеспечивала бы высокую эффективность сепарации при ее одновременно высоком общем к.п.д.
Задача решается в части способа, согласно изобретению, посредством способа отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки, при котором в процессе сжигания сжигается ископаемое топливо, причем вырабатывается горячий, содержащий диоксид углерода отходящий газ, в процессе абсорбции содержащий диоксид углерода отходящий газ приводится в контакт с абсорбентом, причем диоксид углерода поглощается абсорбентом и образуется загрязненный диоксидом углерода абсорбент, в процессе десорбции из загрязненного абсорбента термически удаляется диоксид углерода и подается пар, который впрыскивается в загрязненный абсорбент, причем высвобождающееся в результате конденсации пара тепло конденсации передается на загрязненный абсорбент.
При этом изобретение исходит из того факта, что введенное непосредственно в загрязненный абсорбент тепло конденсации существенно способствует термическому удалению диоксида углерода. При этом, согласно изобретению, в процесс десорбции вводится пар. За счет поддержки процесса десорбции теплом конденсации пара разгружается используемое в процессе десорбции нагревательное устройство. Пар конденсируется внутри колонны, в результате чего тепло конденсации передается на загрязненный абсорбент. Поэтому можно использовать пар с низкой температурой, поскольку не возникает потерь за счет теплопередачи, как, например, при косвенной теплопередаче в теплообменном процессе.
Поскольку для непосредственного впрыска используется пар более низкого уровня давления и температуры, можно сэкономить более высококачественный пар. Он отбирается, как правило, из перепускного трубопровода турбины низкого давления. Сэкономленный более высококачественный пар имеется, тем самым, в распоряжении для процесса расширения пара на ступени низкого давления паровой турбины для вырабатывания электроэнергии. За счет этого достигается повышение общего к.п.д. работающей на ископаемом топливе энергоустановки.
Помимо разгрузки нагревательного устройства за счет тепла конденсации процессу десорбции способствует то, что благодаря вводимому пару снижается парциальное давление уже выделенного диоксида углерода. Это означает снижение концентрации диоксида углерода в газовой фазе, что способствует удалению связанного в загрязненном абсорбенте диоксида углерода. За счет этого приходится испарять меньше абсорбента, так что в процесс десорбции приходится вводить посредством нагревательного устройства меньше тепла. Поскольку нагревательное устройство также эксплуатируется на пару, в результате уменьшается расход пара. Поэтому сэкономленный пар имеется в распоряжении для энергопроцесса и может способствовать повышению общего к.п.д.
Согласно изобретению для термического удаления диоксида углерода из загрязненного абсорбента вводится лишь часть необходимой тепловой энергии. Другая часть необходимой тепловой энергии вводится в процесс десорбции посредством нагревательного устройства, преимущественно косвенно за счет теплообменного процесса. Таким образом, можно значительно уменьшить энергию, необходимую для удаления диоксида углерода из загрязненного абсорбента. Следовательно, сэкономленная энергия имеется в распоряжении для энергопроцесса, благодаря чему заметно повышается к.п.д. энергоустановки.
Предложенный способ обеспечивает, тем самым, существенно более эффективную эксплуатацию энергоустановки за счет повышения ее общего к.п.д. Это достигается тем, что экономится энергия для осуществления процесса десорбции. Кроме того, изобретение обеспечивает последующий монтаж устройства для отделения диоксида углерода при соблюдении экономических условий.
Предпочтительным образом за счет впрыскиваемого количества пара приблизительно компенсируется количество абсорбента, отбираемого из абсорбентного контура за счет процесса абсорбции-десорбции. Это возможно потому, что в результате конденсации пара в процессе десорбции вводится вода. Поскольку используемые абсорбенты, как правило, являются водорастворимыми, а в результате процесса возникают потери абсорбента из-за испарения, введенная вода позволяет компенсировать потери абсорбента в контуре абсорбер-десорбер. В традиционных способах для компенсации потерь абсорбента имеется поток подпиточной воды. Благодаря предложенному способу от него можно отказаться.
В одном предпочтительном варианте способа подаваемый пар вводится в процесс десорбции в нескольких местах. Этим достигается равномерное распределение в процессе десорбции.
Пар для впрыска в загрязненный абсорбент отбирается преимущественно из пароконденсатного контура энергопроцесса, предшествующего процессу сепарации. Это возможно потому, что для впрыска в загрязненный абсорбент можно использовать пар с более низкой температурой. Такой пар является горячим паром при температуре 100-120°C. Однако для процесса нагрева требуется, как правило, пар с более высокой температурой, поскольку из-за косвенной теплопередачи с теплообменником теряется тепло. Этот пар с более высокой энергией, напротив, отбирается, как правило, например, из перепускного трубопровода к ступени низкого давления паровой турбины. Этот пар имеет температуру 120-160°C.
В зависимости от режима энергопроцесса или с учетом других его параметров пар отбирается предпочтительно из процесса его вырабатывания, который не связан с процессом вырабатывания электроэнергии. За счет этого энергопроцесс разгружен, благодаря чему повышается к.п.д. энергоустановки. Этим источником пара может быть процесс его вырабатывания, который, например, предназначен специально для процесса сепарации, или другой источник пара, обычно предусмотренный, например, для вырабатывания технологического или теплофикационного пара.
Преимущественно в загрязненный абсорбент впрыскивается только часть подаваемого пара. Другая часть подаваемого пара направляется в теплообмене с загрязненным абсорбентом. За счет этого выработанный для процесса десорбции пар разделяется на два параллельных потока. Разделение на потоки регулируется посредством регулирования.
В одном предпочтительном варианте способа подаваемый пар направляется сначала в теплообмене с загрязненным абсорбентом, а затем часть пара впрыскивается в загрязненный абсорбент. Это предпочтительно, если для осуществления процесса сепарации в распоряжении имеется пар с высокой температурой. За счет теплообмена с загрязненным абсорбентом энтальпия пара уменьшается, а затем, по меньшей мере, часть пара вводится в процесс десорбции.
Задача в части работающей на ископаемом топливе энергоустановки решается, согласно изобретению, посредством подключенного к устройству для сжигания сепарирующего устройства для отделения диоксида углерода от содержащего его отходящего газа, причем сепарирующее устройство содержит абсорбционный блок для поглощения газообразного диоксида углерода и десорбционный блок для отдачи газообразного диоксида углерода, причем десорбционный блок содержит устройство впрыска пара, присоединенное к паропроводу, так что при работе сепарирующего устройства пар впрыскивается в десорбционный блок.
При этом изобретение исходит из того факта, что за счет устройства впрыска пар впрыскивается в десорбционный блок непосредственно, причем пар в десорбционном блоке конденсируется и высвобождает тепло конденсации, так что за счет введенного тепла конденсации диоксид углерода термически удаляется из загрязненного им абсорбента.
Устройство впрыска содержит паропровод, проходящий через десорбционный блок и выполненный преимущественно кольцеобразным. Также возможно располагать внутри десорбционного блока несколько кольцеобразных паропроводов на разной высоте.
В одном предпочтительном варианте энергоустановки устройство впрыска расположено в нижней части десорбционного блока. При этом последний содержит ориентированную по вертикальной оси колонну. Она имеет в верхней части впуск, а в нижней части - выпуск. При работе загрязненный абсорбент вводится в верхней части, а в нижней части выводится регенерированный абсорбент, что вызывает протекание загрязненного абсорбента через десорбционный блок. При этом удаление диоксида углерода из абсорбента происходит преимущественно термически, поскольку за счет этого можно использовать вырабатываемую в энергоустановке тепловую энергию. Десорбционный блок может содержать также несколько колонн. Такие колонны известны в химической промышленности и служат для разделения смесей веществ термическими способами. Это происходит с использованием равновесных состояний между различными фазами.
В нижней части десорбционного блока загрязненный диоксидом углерода абсорбент находится в жидкой фазе. Посредством расположенного также в нижней части десорбционного блока нагревательного устройства загрязненный абсорбент нагревается. Нижняя часть десорбционного блока называется также отстойником. Расположение соплового устройства как можно ближе к отстойнику предпочтительно сказывается при впрыске пара на парциальном давлении уже отделенного диоксида углерода. Достигаемое уменьшение парциального давления означает снижение концентрации диоксида углерода в газовой фазе, что способствует удалению связанного в загрязненном абсорбенте диоксида углерода. Благодаря этому для нагрева нагревательного устройства требуется меньше энергии. Если используется нагреваемое паром нагревательное устройство, то в энергоустановке для вырабатывания электроэнергии в распоряжении имеется сэкономленное количество пара, в результате чего возрастает ее общий к.п.д.
В одном предпочтительном варианте энергоустановки устройство впрыска содержит сопловое устройство, которое, в свою очередь, содержит несколько сопловых головок. Преимущественно эти сопловые головки распределены по сопловому устройству так, что впрыскиваемый через сопла пар равномерно подается в десорбционный блок. При этом сопловые головки ориентированы преимущественно в направлении течения загрязненного абсорбента. Это предотвращает нежелательные течения и обеспечивает целенаправленный впрыск пара в десорбционный блок, происходящий преимущественно равномерно.
Целесообразно устройство впрыска соединено посредством паропровода с местом отбора перепускного трубопровода или пароконденсатопровода паротурбинной установки. Выбор места отбора пара, с которым посредством паропровода соединено устройство впрыска, осуществляется в зависимости от требуемых и имеющихся параметров пара. При этом определенный для впрыска в десорбционный блок пар должен иметь параметры (давление и температура), лежащие выше точки конденсации. Преимущественно пар отбирается из пароконденсатопровода, который соединяет ступень низкого давления паровой турбины с конденсатором. Направляемый по пароконденсатопроводу пар имеет температуру 100-120°C.
В одном особенном варианте энергоустановки десорбционный блок содержит обогреваемое паром нагревательное устройство, которое посредством паропровода соединено с устройством впрыска, так что пар направляется из нагревательного устройства к устройству впрыска и впрыскивается в десорбционный блок. Это расположение требует использования пара более высокой температуры, который отбирается преимущественно из перепускного трубопровода между ступенями среднего и низкого давлений паровой турбины. Этот пар приводит в действие сначала нагревательное устройство за счет того, что он направляется в теплообмене с загрязненным абсорбентом. Это уменьшает температуру пара. По паропроводу, соединяющему нагревательное устройство с устройством впрыска, этот пар с более низкой температурой подается к устройству впрыска и впрыскивается им в десорбционный блок.
Другие преимущества работающей на ископаемом топливе энергоустановки следуют аналогичным образом из соответствующих вариантов описанного выше способа.
Ниже примеры осуществления изобретения более подробно поясняются с помощью схематичных чертежей, на которых изображают:
фиг.1: пример выполнения способа отделения диоксида углерода;
фиг.2: пример выполнения работающей на ископаемом топливе энергоустановки с паротурбинной установкой и устройством отделения диоксида углерода;
фиг.3: пример выполнения работающей на ископаемом топливе энергоустановки с газо- и паротурбинной установками и устройством отделения диоксида углерода.
На фиг.1 изображены пример выполнения способа отделения диоксида углерода и, в частности, ввод пара 9 в процесс десорбции 7. Способ включает в себя, в основном, процесс сжигания 1, процесс абсорбции 4 и процесс десорбции 7.
В процесс сжигания 1 вырабатывается содержащий диоксид углерода отходящий газ 3, который должен быть освобожден от него предложенным способом. Для этого отходящий газ 3 подается в процесс абсорбции 4. Кроме того, в процесс абсорбции 4 подается также абсорбент 5. В процессе абсорбции 4 содержащий диоксид углерода отходящий газ 3 вступает в контакт с абсорбентом 5, в результате чего диоксид углерода поглощается абсорбентом 5 и образуются загрязненный диоксидом углерода абсорбент 6 и освобожденный от диоксида углерода отходящий газ.
Загрязненный абсорбент 6 подается в процесс десорбции 7, где он регенерируется. Для регенерации в процесс десорбции 7 вводится пар 9. Этот пар конденсируется в воду, высвобождая при этом тепло конденсации. Это тепло конденсации поддерживает процесс регенерации. В результате регенерации образуются регенерированный абсорбент 11 и газопаровая смесь из газообразного диоксида углерода 8 и парообразного абсорбента. Газопаровая смесь разделяется в процессе разделения на конденсированный абсорбент и газообразный диоксид углерода 8. Не показан возврат конденсированного абсорбента в контур абсорбента 5. Газообразный диоксид углерода 8 может быть теперь направлен на процесс сжатия, во время которого он сжижается для дальнейшей обработки или транспортировки.
На фиг.2 изображен пример выполнения работающей на ископаемом топливе энергоустановки 14, содержащей паротурбинную установку 25 и сепарирующее устройство 16 для диоксида углерода.
Перед паротурбинной установкой 25 расположено устройство 15 сжигания. Оно включает в себя отапливаемый котел 27, к которому по подводящему топливопроводу 46 подается ископаемое топливо. В котле 27 происходит сжигание подаваемого топлива, причем вырабатываются содержащий диоксид углерода отходящий газ 3 и пар. Котел 27 посредством паропровода 40 соединен с паровой турбиной 29 паротурбинной установки 25. Паровая турбина 29 приводится в действие подаваемым паром. В свою очередь, паровая турбина 29 приводит в действие через вал генератор 30 для вырабатывания электроэнергии. Покидающий паровую турбину 29 пар подается по трубопроводу к конденсатору 37. Для возврата конденсированного пара конденсатор 37, в свою очередь, посредством пароконденсатопровода 24 соединен с котлом 27. Для подачи конденсата в пароконденсатопровод 24 встроен конденсатный насос 28.
Содержащий диоксид углерода отходящий газ 3 покидает котел 27 и по трубопроводу 39 для дымового газа подается к содержащему сепарирующее устройство 16 абсорбционному блоку 17. В трубопровод 39 для дымового газа встроены система очистки 31 дымового газа, охладитель 32 дымового газа и вентилятор 33. Система очистки 31 может включать в себя, например, обессеривающую установку или другие системы очистки дымового газа. Посредством охладителя 32 дымового газа от содержащего диоксид углерода отходящего газа 3 отбирается тепло. Необходимость охлаждения дымового газа зависит при этом от требуемого температурного уровня в абсорбционном блоке 17. Система 31, охладитель 32 и вентилятор 33 являются опциональными и могут располагаться также в другом порядке.
Сепарирующее устройство 16 содержит, в основном, абсорбционный 17 и десорбционный 18 блоки. Абсорбционный блок 17 может состоять из нескольких колонн, снабженных, в свою очередь, встроенными элементами, так называемыми насадками. Насадки служат для увеличения поверхности, что является предпочтительным для абсорбции диоксида углерода. Помимо содержащего диоксид углерода отходящего газа 3 в абсорбционный блок 17 по трубопроводу 48 подается регенерированный абсорбент 11. За счет подачи отходящего газа 3 и абсорбента достигается очистка отходящего газа, так что по трубопроводу 39 для дымового газа отводится в значительной степени освобожденный от диоксида углерода отходящий газ. Возникающий в абсорбционном блоке 17 в результате очистки загрязненный абсорбент 6 подается по трубопроводу 47 к десорбционному блоку 18.
В трубопровод 47 для загрязненного абсорбента 6 встроены насос 34 и перекрестноточный теплообменник 35. Насос 34 служит для подачи загрязненного абсорбента 6. В теплообменнике 35 загрязненный абсорбент 6 течет в направлении, встречном направлению горячего регенерированного абсорбента 11. Этим достигается подогрев загрязненного абсорбента 6.
Десорбционный блок 18 может состоять из нескольких колонн, снабженных, в свою очередь, встроенными элементами, так называемыми насадками. Насадки служат для увеличения поверхности, что является предпочтительным для десорбции загрязненного абсорбента 6. Десорбционный блок 18 содержит также устройство впрыска 19, расположенное в его нижней части. Устройство 19 впрыска состоит из трубопровода, по которому подается пар, и соплового устройства 20, имеющего несколько сопловых головок 21, посредством которых направляемый через устройство 19 впрыска пар впрыскивается в десорбционный блок 18. Впрыск происходит преимущественно в направлении течения абсорбента, т.е. сверху вниз. Устройство 19 впрыска посредством паропровода 22 соединено с местом отбора перепускного трубопровода 23 паровой турбины 29. Здесь не показан альтернативный паропровод, соединяющий устройство 19 впрыска с пароконденсатопроводом 24. Отбор пара для подачи в устройство 19 впрыска также возможен из другого паропровода.
В десорбционном блоке 18 происходит дальнейшее отделение диоксида углерода от загрязненного абсорбента 6, в результате чего образуются газообразный диоксид углерода 8 и регенерированный абсорбент 11. Одна часть покидающего Десорбционный блок 18 регенерированного абсорбента 11 нагревается посредством нагревательного устройства 26 и снова подается в Десорбционный блок 18. В качестве нагревательного устройства здесь используется ребойлер. Другая часть покидающего десорбционный блок 18 регенерированного абсорбента 11 подается по трубопроводу 48 в абсорбционный блок 17. В трубопровод 48 встроен насос 34' для абсорбента, перекрестноточный теплообменник 35 и охладитель 36 абсорбента. За счет теплообменника 35 и охладителя 36 от регенерированного абсорбента отбирается тепло. Использование охладителя 36 является опциональным.
Кроме того, десорбционный блок 18 соединен посредством газопровода 49 с устройством разделения 38. В устройстве разделения, так называемом стрипперном конденсаторе, происходит разделение парообразного абсорбента и газообразного диоксида углерода за счет конденсации абсорбента. Конденсированный абсорбент возвращается по конденсатопроводу 50 в Десорбционный блок 18. Газообразный диоксид углерода используется для дальнейшей обработки, например сжижения.
Изображенная на фиг.3 работающая на ископаемом топливе энергоустановка 14 содержит газопаротурбинную энергоустановку 51 с сепарирующим устройством 16 для диоксида углерода. Сепарирующее устройство 16 расположено перед энергоустановкой 51. Последняя содержит газо- и паротурбинный блоки. Газотурбинный блок состоит, в основном, из газовой турбины 43, которая посредством вала соединена с воздушным компрессором 41 и генератором 30. Воздушный компрессор 41 соединен с камерой 42 сгорания. Также с камерой 42 сгорания соединен подводящий топливопровод 46. Образующийся в результате сжигания, содержащий диоксид углерода отходящий газ подается по трубопроводу для дымового газа к газовой турбине 43. Покидающий ее содержащий диоксид углерода отходящий газ подается по трубопроводу для дымового газа к паротурбинному блоку. Последний состоит из парогенератора-утилизатора 45, паровой турбины 29, генератора 30 и конденсатора 37. Трубопровод для дымового газа соединен с парогенератором-утилизатором 45 паротурбинного блока. Парогенератор-утилизатор 45 предназначен для вырабатывания пара и снабжает паровую турбину 29 по паропроводу паром. Паровая турбина 29 соединена посредством вала с генератором 30 для вырабатывания электроэнергии. Подключенное сепарирующее устройство 16 выполнено, в основном, аналогично такому же устройству, представленному на фиг.2.
Благодаря изобретению с высокой эффективностью возможна эксплуатация электростанции с уменьшенным выбросом диоксида углерода. За счет непосредственного впрыска пара в десорбционный блок разгружается испаритель и экономится высококачественный пар за счет подачи низкокачественного пара. Благодаря этому экономится энергия для процесса десорбции. Устройство для отделения диоксида углерода от содержащего его отходящего газа является составной частью работающей на ископаемом топливе энергоустановки. За счет схемотехнического усовершенствования достигается существенное повышение эффективности по сравнению с традиционным устройством газоочистки работающей на ископаемом топливе энергоустановки.

Claims (9)

1. Способ отделения диоксида углерода от дымового газа работающей на ископаемом топливе энергоустановки, в котором в процессе (1) сжигания сжигают ископаемое топливо (2), причем образуется горячий, содержащий диоксид углерода отходящий газ (3); в процессе (4) абсорбции содержащий диоксид углерода отходящий газ (3) приводят в контакт с абсорбентом (5), причем диоксид углерода поглощается абсорбентом (5) и образуется загрязненный абсорбент (6); в процессе (7) десорбции из загрязненного абсорбента (6) термически удаляют газообразный диоксид (8) углерода, отличающийся тем, что пар (9), который отбирают из пароконденсатного контура работающей на ископаемом топливе энергоустановки, впрыскивают в загрязненный абсорбент (6), так что высвобождающееся в результате конденсации пара (9) тепло конденсации переносится на загрязненный абсорбент (6).
2. Способ по п.1, в котором абсорбент (5) является водоростворимым и за счет количества впрыскиваемого пара (9) примерно компенсируется количество воды, отбираемое из абсорбентного контура (12) в результате процесса абсорбции (4)/процесса десорбции (7).
3. Способ по п.2, в котором пар (9) вводят в процесс десорбции (7) в нескольких местах.
4. Способ по п.2, в котором пар (9) для впрыска отбирают из процесса вырабатывания пара, который не связан с процессом вырабатывания электроэнергии электростанции.
5. Способ по любому из пп.1-4, в котором в загрязненный абсорбент (6) впрыскивают только часть подаваемого пара (9), а другую часть подаваемого пара (9) направляют в теплообменник с загрязненным абсорбентом (6).
6. Способ по п.1, в котором подаваемый пар (9) направляют в теплообменник с загрязненным абсорбентом (6), причем образуется пар (13) с уменьшенной энтальпией, а часть пара (13) с уменьшенной энтальпией впрыскивают в загрязненный абсорбент (6).
7. Энергоустановка (14), работающая на ископаемом топливе, содержащая расположенное за устройством (15) сжигания сепарирующее устройство (16) для отделения диоксида углерода от отходящего газа (3), содержащего диоксид углерода, и паротурбинной установки (25), причем сепарирующее устройство (16) содержит абсорбционный блок (17) для поглощения газообразного диоксида углерода и десорбционный блок (18) для выдачи газообразного диоксида углерода, отличающаяся тем, что десорбционный блок (18) содержит устройство (19) впрыска пара, присоединенное к пароконденсатопроводу (24) паротурбинной установки (25), так что при работе сепарирующего устройства (16) пар впрыскивается в десорбционный блок (18).
8. Энергоустановка по п.7, отличающаяся тем, что сопловое устройство (20) расположено в нижней части десорбционного блока (18).
9. Энергоустановка по п.7 или 8, отличающаяся тем, что устройство (19) впрыска содержит сопловое устройство (20), причем сопловое устройство (20) имеет несколько сопловых головок (21), ориентированных в направлении течения загрязненного абсорбента (6).
RU2011105825/05A 2008-07-17 2009-05-14 Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки RU2508158C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08012961A EP2145667A1 (de) 2008-07-17 2008-07-17 Verfahren und Vorrichtung zum Abtrennen von Kohlendioxid aus einem Abgas einer fossilbefeuerten Kraftwerksanlage
EP08012961.2 2008-07-17
PCT/EP2009/055792 WO2010006825A1 (de) 2008-07-17 2009-05-14 Verfahren und vorrichtung zum abtrennen von kohlendioxid aus einem abgas einer fossilbefeuerten kraftwerksanlage

Publications (2)

Publication Number Publication Date
RU2011105825A RU2011105825A (ru) 2012-08-27
RU2508158C2 true RU2508158C2 (ru) 2014-02-27

Family

ID=39798171

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011105825/05A RU2508158C2 (ru) 2008-07-17 2009-05-14 Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки

Country Status (9)

Country Link
US (1) US8834609B2 (ru)
EP (2) EP2145667A1 (ru)
JP (1) JP5465246B2 (ru)
CN (1) CN102089062A (ru)
AU (1) AU2009270451B2 (ru)
BR (1) BRPI0915754A2 (ru)
CA (1) CA2730865A1 (ru)
RU (1) RU2508158C2 (ru)
WO (1) WO2010006825A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2790286C1 (ru) * 2019-10-30 2023-02-16 Мицубиси Хеви Индастриз Энджиниринг, Лтд. Система извлечения диоксида углерода и способ извлечения диоксида углерода

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542190B1 (ja) * 2009-03-11 2010-09-08 月島環境エンジニアリング株式会社 廃棄物の燃焼発電方法及びその燃焼設備
DK2255897T3 (da) * 2009-05-26 2012-03-19 Ibc Robotics Ab System, redskab og fremgangsmåde til rengøring af en fragtcontainers indre
JP5638262B2 (ja) * 2010-02-23 2014-12-10 三菱重工業株式会社 Co2回収装置およびco2回収方法
DE102010003676A1 (de) * 2010-04-07 2011-10-13 Siemens Aktiengesellschaft Abscheidevorrichtung für CO2 und Kraftwerk
EP2425887A1 (de) * 2010-09-03 2012-03-07 Siemens Aktiengesellschaft Fossilbefeuerte Kraftwerksanlage mit Abscheideeinrichtung für Kohlendioxid und Verfahren zum Abtrennen von Kohlendioxid aus einem Abgas einer fossilbefeuerten Kraftwerksanlage
JP5843464B2 (ja) 2011-04-06 2016-01-13 三菱重工業株式会社 二酸化炭素の回収システム及び方法
EP2559476A1 (de) * 2011-08-18 2013-02-20 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Abzug von leicht flüchtigen Degradationsprodukten aus dem Absorptionsmittelkreislauf eines CO2 Abscheideprozesses
DE102012208221A1 (de) * 2012-02-22 2013-08-22 Siemens Aktiengesellschaft Verfahren zum Nachrüsten eines Gasturbinenkraftwerks
US9157369B2 (en) * 2012-03-01 2015-10-13 Linde Aktiengesellschaft Waste heat utilization for energy efficient carbon capture
EP2703607A1 (en) 2012-09-04 2014-03-05 Alstom Technology Ltd A method of increasing electricity output during high demand
DE102013202596B4 (de) * 2013-02-19 2014-11-06 Siemens Aktiengesellschaft Gasturbinenkraftwerk mit CO2-Abscheidung
JP6107695B2 (ja) * 2014-02-10 2017-04-05 日立化成株式会社 二酸化炭素回収装置及び二酸化炭素回収方法
JP5988285B1 (ja) * 2015-10-21 2016-09-07 株式会社島川製作所 アンモニアを含む排ガスの処理装置および処理方法
CN105435581A (zh) * 2015-12-28 2016-03-30 天津大学 一种太阳能光伏驱动变压吸附空气碳捕集系统及控制方法
CN105582782A (zh) * 2015-12-28 2016-05-18 天津大学 一种太阳能光伏驱动变电吸附空气碳泵系统及控制方法
CN106076073B (zh) * 2016-07-28 2019-01-11 天津大学 一种太阳能与地热能联合电厂低碳排放的能量利用系统
CN109395536A (zh) * 2018-12-14 2019-03-01 安徽海螺集团有限责任公司 一种用于碳捕捉、封存及利用技术的二氧化碳解吸设备
CN114345079B (zh) * 2022-02-25 2024-06-18 中国电力工程顾问集团西北电力设计院有限公司 一种用于烟气二氧化碳捕集的变温变压吸附装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1754182A1 (ru) * 1990-06-04 1992-08-15 Чебоксарское производственное объединение "Химпром" Способ очистки отход щих газов от паров хлористых алкилов
RU2090247C1 (ru) * 1991-07-01 1997-09-20 Дзе Юниверсити оф Коннектикут Способ удаления летучего органического соединения из загрязненного им газового потока
EP1688173A2 (en) * 2005-02-07 2006-08-09 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery and power generation
US20070148068A1 (en) * 2005-12-23 2007-06-28 Burgers Kenneth L Reclaiming amines in carbon dioxide recovery

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528811A (en) 1983-06-03 1985-07-16 General Electric Co. Closed-cycle gas turbine chemical processor
NL8402282A (nl) 1984-07-19 1985-06-03 Rolco Int Bv Transportinrichting.
US4702898A (en) 1986-10-17 1987-10-27 Union Carbide Corporation Process for the removal of acid gases from gas mixtures
JPH0751537A (ja) * 1993-06-30 1995-02-28 Mitsubishi Heavy Ind Ltd Co2 含有ガス中のco2 を除去する方法
US6592829B2 (en) * 1999-06-10 2003-07-15 Praxair Technology, Inc. Carbon dioxide recovery plant
ES2316817T3 (es) * 2002-07-03 2009-04-16 Fluor Corporation Equipo divisor de flujo mejorado.
NO321817B1 (no) * 2003-11-06 2006-07-10 Sargas As Renseanlegg for varmekraftverk
FR2863910B1 (fr) * 2003-12-23 2006-01-27 Inst Francais Du Petrole Procede de capture du dioxyde de carbone contenu dans des fumees
NO20044456L (no) * 2004-10-20 2005-03-03 Norsk Hydro As Fremgangsmate for fjerning og gjenvinning av C02 fra eksosgass
CN1887407A (zh) * 2005-06-27 2007-01-03 成都华西化工研究所 从混合气中脱除二氧化碳的溶剂
DE112006002198T9 (de) * 2005-08-16 2009-02-26 CO2CRC Technologies Pty. Ltd., Parkville Anlage und Verfahren zum Entfernen von Kohlendioxid aus Gasströmen
US20090205946A1 (en) * 2005-12-19 2009-08-20 Fluor Technologies Corporation Integrated Compressor/Stripper Configurations And Methods
NO332159B1 (no) * 2006-01-13 2012-07-09 Nebb Technology As Fremgangsmate og anlegg for energieffektiv oppfanging og utskillelse av CO2 fra en gassfase
US8062408B2 (en) * 2006-05-08 2011-11-22 The Board Of Trustees Of The University Of Illinois Integrated vacuum absorption steam cycle gas separation
WO2008009049A1 (en) * 2006-07-17 2008-01-24 Commonwealth Scientific And Industrial Research Organisation Co2 capture using solar thermal energy
JP2008023438A (ja) 2006-07-20 2008-02-07 Toshiba Corp 二酸化炭素回収システムおよび二酸化炭素回収方法
JP2008029976A (ja) 2006-07-31 2008-02-14 Petroleum Energy Center 二酸化炭素回収システムおよび二酸化炭素回収方法
CN101778663B (zh) * 2007-05-29 2015-01-07 里贾纳大学 从气流中回收气体组分的方法和吸收剂成分

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1754182A1 (ru) * 1990-06-04 1992-08-15 Чебоксарское производственное объединение "Химпром" Способ очистки отход щих газов от паров хлористых алкилов
RU2090247C1 (ru) * 1991-07-01 1997-09-20 Дзе Юниверсити оф Коннектикут Способ удаления летучего органического соединения из загрязненного им газового потока
EP1688173A2 (en) * 2005-02-07 2006-08-09 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery and power generation
US20070148068A1 (en) * 2005-12-23 2007-06-28 Burgers Kenneth L Reclaiming amines in carbon dioxide recovery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2790286C1 (ru) * 2019-10-30 2023-02-16 Мицубиси Хеви Индастриз Энджиниринг, Лтд. Система извлечения диоксида углерода и способ извлечения диоксида углерода

Also Published As

Publication number Publication date
RU2011105825A (ru) 2012-08-27
US20110139003A1 (en) 2011-06-16
JP2011527936A (ja) 2011-11-10
JP5465246B2 (ja) 2014-04-09
CA2730865A1 (en) 2010-01-21
AU2009270451A1 (en) 2010-01-21
CN102089062A (zh) 2011-06-08
AU2009270451B2 (en) 2014-09-04
BRPI0915754A2 (pt) 2015-11-03
WO2010006825A1 (de) 2010-01-21
EP2307121A1 (de) 2011-04-13
US8834609B2 (en) 2014-09-16
EP2145667A1 (de) 2010-01-20

Similar Documents

Publication Publication Date Title
RU2508158C2 (ru) Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки
RU2495707C2 (ru) Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции
US9399939B2 (en) Combustion exhaust gas treatment system and method of treating combustion exhaust gas
AU2012213152B2 (en) Apparatus and system for NOX reduction in wet flue gas
JP5964842B2 (ja) Co2捕捉における熱統合
CA2877852C (en) Exhaust gas treatment system
KR20120112604A (ko) 포집 매질의 재생방법
JP2013533426A (ja) 炭素捕捉を有するジェットエンジン
KR20120110122A (ko) 포집 매질의 재생방법
US20160193561A1 (en) Systems and methods for reducing the energy requirements of a carbon dioxide capture plant
CA2810138C (en) Exhaust gas treatment system
KR20200109327A (ko) 이젝터에 의한 비용효율적인 가스 정제 방법 및 시스템
EP2943267B1 (en) Systems and methods for reducing the energy requirements of a carbon dioxide capture plant
US20140366720A1 (en) Method and system for removing carbon dioxide from flue gases
RU2575519C2 (ru) Интегрирование тепла при захвате со2
GB2616649A (en) Biomass energy generation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150515