RU2507291C1 - Способ получения лигатуры алюминий-скандий - Google Patents

Способ получения лигатуры алюминий-скандий Download PDF

Info

Publication number
RU2507291C1
RU2507291C1 RU2013105680/02A RU2013105680A RU2507291C1 RU 2507291 C1 RU2507291 C1 RU 2507291C1 RU 2013105680/02 A RU2013105680/02 A RU 2013105680/02A RU 2013105680 A RU2013105680 A RU 2013105680A RU 2507291 C1 RU2507291 C1 RU 2507291C1
Authority
RU
Russia
Prior art keywords
scandium
aluminum
fluoride
temperature
initial charge
Prior art date
Application number
RU2013105680/02A
Other languages
English (en)
Inventor
Алексей Борисович Шубин
Константин Юрьевич Шуняев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН)
Priority to RU2013105680/02A priority Critical patent/RU2507291C1/ru
Application granted granted Critical
Publication of RU2507291C1 publication Critical patent/RU2507291C1/ru

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

Изобретение относится к области металлургии цветных металлов, в частности к получению сплавов алюминия с редкоземельными металлами. Способ получения лигатуры алюминий-скандий включает расплавление алюминия, алюминотермическое восстановление скандия из исходной шихты, содержащей фторид скандия, хлорид калия и фторид натрия под покровным флюсом и последующую выдержку полученного расплава. Перед алюминотермическим восстановлением исходную шихту помещают в тигель и предварительно нагревают до температуры 790ºС, а затем вводят в расплавленный алюминий и осуществляют алюминотермическое восстановление при температуре не менее 830ºС. После выдержки расплава производят отдельно разливку солевого и металлического расплава. Используют исходную шихту, содержащую компоненты в следующем соотношении, мас.%: фторид скандия - 40-45; хлорид калия - 40-45; фторид натрия - остальное. Предварительный нагрев исходной шихты может быть проведен в графитовом тигле, предварительно пропитанном криолитом, или тигле из стеклоуглерода. Обеспечивается улучшение технологических характеристик шихты, сокращается оборот солей, увеличивается выход скандия в расплав алюминия. 1 з.п. ф-лы, 3 пр.

Description

Изобретение относится к области металлургии цветных металлов, в частности к способам получения сплавов алюминия с редкоземельными металлами. Алюминий-скандиевые лигатуры предназначены для получения деформируемых и литых промышленных сплавов алюминия и содержат, обычно, около 2 масc.% скандия.
Известен способ получения алюминий-скандиевых лигатур алюмотермическим восстановлением фторида скандия алюминием в вакууме при 865-930ºС с выдержкой при этой температуре 7-8 мин (Звиададзе Г.Н. и др. «Изучение кинетики взаимодействия в системе ScF3-Аl», Всесоюзный симпозиум по химии неорганических фторидов. Тез. докл., М.: Наука, 1978).
Основными недостатками этого способа являются относительно высокая температура процесса, необходимость вакуумирования реакционной среды, а также наличие остаточного содержания фтора в лигатуре в результате неполного восстановления трифторида скандия.
Известен способ получения лигатур Al-Sc также с использованием шихты ScF3:Аl при массовом соотношении трифторида скандия и алюминия 1:1,6-8 в три ступени с постепенным повышением температуры (А.с. 873692, МКИ С22С 1/03, 1983 г.).
Недостатками известного способа также являются высокая (до 1300ºС) температура, необходимая для полного восстановления ScF3, длительность процесса, необходимость вакуумирования.
Указанные недостатки преодолены в другом известном способе получения алюминий-скандиевых лигатур, в котором шихта, контактирующая с жидким алюминием, состоит из оксида скандия, а также солевой среды, включающей фторирующие агенты (фториды натрия и алюминия), и основу солевого флюса (хлорид калия). Процесс восстановления скандия алюминием проводят на воздухе, под слоем флюса (Пат. РФ 2124574, Кл. С22С 1/03, опубл. 10.01.99).
Основной недостаток такого способа состоит в использовании оксида скандия, который подвергается взаимодействию с фторсодержащими реагентами лишь в процессе реакции восстановления. Это снижает выход скандия в лигатуру, приводит к образованию трудноперерабатываемых отходов, содержащих скандий.
Известен также способ получения алюминий-скандиевой лигатуры, включающий приготовление двух порций расплава алюминия (например, в вакуумных печах), в одну из которых вводится шихта, содержащая фторид скандия, фторид магния и хлорид калия. После этого производится смешивание обеих порций металла с одновременной подачей инертного газа (Заявка 2009134930, С22С 1/03, публикация заявки 27.03.2011).
К недостаткам данного способа можно отнести его технологическую сложность, необходимость порционирования алюминия, использование вакуума и/или инертной атмосферы.
Наиболее близким техническим решением является способ получения лигатуры алюминий-скандий (с содержанием скандия, близким к 2 масс.%) (Пат. РФ 2213795, МКИ С22С 1/00, С22С 21/00, С22С 35/00, опубл. 10.10.2003). Данный способ включает алюминотермическое восстановление галогенида или оксида скандия в присутствии хлорида калия и фторида натрия при температуре 850-1050ºС под слоем покровного флюса. При этом после восстановления проводят выдержку полученного расплава в течение 15-30 минут, а скандийсодержащая шихта состоит из, масс.%: фторид скандия - 10-23, хлорид калия 49-76, фторид натрия 13-28.
Основные недостатки указанного способа, выбранного в качестве прототипа, следующие. При его использовании нет возможности существенно повысить относительное содержание скандийсодержащего реагента в шихте (из-за ее реологических особенностей), что приводит к избыточному расходу и увеличению объема реагентов (хлорид калия, фторид натрия), которые впоследствии направляются на доизвлечение скандия. Это же обстоятельство снижает технологичность процесса введения скандий-содержащей шихты в жидкий алюминий, приводит к нежелательным процессам, включающим образование трудновосстановимых оксифторидов скандия.
Техническим результатом, на получение которого направлено настоящее изобретение, является упрощение технологии получения лигатуры алюминий-скандий за счет улучшения технологических характеристик скандийсодержащей шихты, удобство ее использования при введении в алюминиевый расплав и сокращение оборота солей. При этом выход скандия в расплав алюминия не уменьшается, а несколько увеличивается по сравнению с прототипом.
Указанный технический результат достигается в способе получения лигатуры алюминий-скандий, включающем алюминотермическое восстановление скандия из исходной шихты, содержащей фторид скандия, хлорид калия и фторид натрия под покровным флюсом, последующую выдержку полученного расплава, причем согласно изобретению перед проведением процесса алюминотермического восстановления исходную шихту помещают в тигель и предварительно нагревают до температуры 790ºС, а затем вводят в расплавленный алюминий, восстановление осуществляют при температуре не менее 830ºС, после выдержки расплава производят разливку отдельно солевого и металлического расплава, при этом исходная шихта содержит компоненты в следующем соотношении (масс.%):
фторид скандия - 40-45; хлорид калия - 40-45; фторид натрия - остальное.
Кроме того, предварительный нагрев исходной шихты проводят в графитовом тигле, предварительно пропитанном криолитом, или в тигле из стеклоуглерода.
За счет того, что в предлагаемом способе лигатуру алюминий-скандий получают путем взаимодействия смеси трифторида скандия, хлорида калия и фторида натрия, предварительно подогретых до температуры 790ºС (до температуры выше температуры плавления хлорида калия), жидкий хлорид калия пропитывает капилляры и поры компонентов смеси, которые остаются в твердом состоянии. При этом происходит частичное взаимодействие порошкообразных компонентов шихты, уменьшение объема смеси на 30-40% (за счет увеличения насыпной плотности и заполнения пор расплавом КСl). При подогреве шихта также дополнительно обезвоживается.
В результате процесса подогрева, проводимого в отдельных конических тиглях (например, выполненных из графита, пропитанного криолитом, или стеклоуглерода), образуются компактные шихтовые агломераты, пригодные к немедленной загрузке в расплав металлического алюминия. Это приводит к ускорению процесса восстановления скандия, так как агломераты достаточно глубоко погружаются в жидкий алюминий и, вследствие собственной высокой температуры (≤776ºС, температура плавления КСl), практически не снижают общей температуры реакционной среды (как это происходит в прототипе).
Предлагаемый способ подготовки шихты дает возможность увеличить относительное содержание в ней трифторида скандия в 2-4 раза относительно прототипа. В способе-прототипе оно не превышает 23 масс.% (независимо от того, вводится ли ScF3 непосредственно или в виде фторскандиата другого металла). В заявляемом способе шихта содержит 40-45 масс.% трифторида скандия, что дает оптимальные результаты при восстановлении. Другие компоненты берутся в следующих количествах: хлорид калия - 40-45 масс.%, фторид натрия - остальное.
Предлагаемое техническое решение было обосновано путем строгого термодинамического моделирования процесса восстановления трифторида скандия алюминием (Шубин А.Б., Шуняев К.Ю. Термодинамические расчеты взаимодействия галогенидов скандия с алюминием. // Журнал физ. химии, 2010, т.84, №12, с.2205-2210). Указанные термодинамические расчеты показали, что трифторид скандия должен восстанавливаться жидким алюминием уже при достаточно низких температурах (менее 800ºС). Этому процессу мешают лишь кинетические затруднения, которые и устраняются введением относительно легкоплавких солевых компонентов. При этом доля таких компонентов должна быть достаточной для смачивания трифторида скандия и дальнейшего «усвоения» продуктов реакции восстановления.
Концентрационные пределы содержания основного (трифторид скандия) и легкоплавкого (хлорид калия) компонентов в шихте обусловлены тем, чтобы, с одной стороны, задать высокую концентрацию ScF3, а с другой стороны, обеспечить при предварительном нагреве образование компактных агломератов с оптимальными реологическими характеристиками. Фторид натрия задается как компенсатор. Он обуславливает введение дополнительного количества фтор-ионов (что сдвигает электрохимический потенциал алюминия в более отрицательную область) и способствует образованию комплексных соединений (фторскандиатов), чем улучшает характеристики шихты.
При содержании трифторида скандия в шихте менее 40 масс.% эффективность процесса снижается. Это обусловлено ростом относительного содержания хлорида калия и фторида натрия. При расплавлении хлорида калия происходит оседание трифторида скандия и неравномерное его распределение по высоте агломерата. Кроме того, избыточное количество натриевой соли приводит к ее металлотермическому восстановлению и частичному выделению натрия на стенках тиглей, что загрязняет продукт.
Если содержание трифторида скандия превышает 45 масс.%, это приводит, наоборот, к излишней «сухости» и рассыпанию агломератов, полученных после предварительного нагрева. Чрезмерное уменьшение относительного содержания легкоплавкого компонента (КСl) и фторида натрия также снижает металлургическую эффективность процесса.
Опытные плавки показали необходимость поддержания количества легкоплавкого компонента (хлорида калия) в шихте в пределах 40-45 масс.%. При задании хлорида калия менее 40 масс.% шихта после нагрева получается излишне пористой, в ней не полностью происходит смачивание основного (ScF3) и вспомогательного (NaF) компонентов. Это понижает металлургический выход скандия в лигатуру. При задании в шихту избыточного (более 45 масс.%) количества хлорида калия агломераты, полученные после предварительного нагрева, становятся излишне «жидкими», расплываются и налипают на стенки тиглей. Нарушается равномерность распределения компонентов в агломератах. Все это снижает эффективность использования технологии и выход конечного продукта.
Таким образом, оптимальные реологические характеристики шихты после ее предварительного нагрева достигаются при содержании трифторида скандия 40-45 масс.%, хлорида калия - 40-45 масс.%, фторида натрия - остальное (10-20 масс.%). Достижение наилучших свойств агломератов (нет излишней «рассыпчатости» и чрезмерного ожижения) совпадает в заявляемом способе с наиболее эффективным соотношением компонентов с точки зрения протекания реакции алюминотермического восстановления скандия и образования лигатуры Al-Sc.
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1. Готовят шихту следующего состава (масс.%): трифторид скандия - 40; хлорид калия - 40; фторид натрия - 20. Все компоненты в порошкообразном состоянии тщательно перемешивают. Общая масса шихты составляет 0,4 кг. Исходную шихту загружают в отдельный многократно используемый конический тигель из стеклоуглерода. После этого шихту нагревают в атмосфере воздуха до 790ºС, выдерживают при этой температуре в течение 5-7 минут. Одновременно в графитовом тигле, предварительно пропитанном криолитом (для защиты от окисления) расплавляют металлический алюминий в количестве 3300 г под тонким слоем покровного флюса (50 г эквимольной смеси NaCl-KCl). Температуру металла доводят до 830ºС. Затем производят загрузку подогретой шихты в виде агломерата. После загрузки реакционную ванну выдерживают при заданной температуре (830ºС) в течение 20 минут, что обеспечивает полное протекание реакции восстановления. В то же время достаточно высокая температура не дает образовываться кристаллам интерметаллида Аl3Sс, сохраняя расплав однородным.
Далее производят отдельно разливку солевого и металлического расплавов, причем металл разливается в охлаждаемые изложницы. Это обеспечивает отсутствие ликвации и однородную структуру слитка.
По результатам количественного химического анализа содержание скандия в лигатуре составляет 1,97 масс.%. Выход в расчете на полное содержание скандия в шихте равен 93,0%.
Пример 2. Готовят шихту следующего состава (масс.%): трифторид скандия - 42,5; хлорид калия - 42,5; фторид натрия - 15. Все компоненты в порошкообразном состоянии тщательно перемешивают. Общая масса шихты составляет 0,385 кг. Исходную шихту загружают в отдельный многократно используемый конический тигель из стеклоуглерода. После этого шихту нагревают в атмосфере воздуха до 790ºС, выдерживают при этой температуре в течение 7 минут. Одновременно в графитовом тигле, предварительно пропитанном криолитом, расплавляют металлический алюминий в количестве 3300 г под тонким слоем покровного флюса (50 г эквимольной смеси NaCl-KCl). Температуру металла доводят до 830ºС. Затем производят загрузку подогретой шихты в виде агломерата. После загрузки реакционную ванну выдерживают при заданной температуре (830ºС) в течение 20 минут, что обеспечивает полное протекание реакции восстановления. Далее производят отдельно разливку солевого и металлического расплавов, причем металл разливается в охлаждаемые изложницы.
По результатам количественного химического анализа содержание скандия в лигатуре составляет 2,03 масс.%. Выход в расчете на полное содержание скандия в шихте равен 93,7%.
Пример 3. Готовят шихту следующего состава (масс.%): трифторид скандия - 45,0; хлорид калия - 45,0; фторид натрия - 10. Все компоненты в порошкообразном состоянии тщательно перемешивают. Общая масса шихты составляет 0,365 кг. Исходную шихту загружают в отдельный многократно используемый конический тигель из стеклоуглерода. После этого шихту нагревают в атмосфере воздуха до 790ºС, выдерживают при этой температуре в течение 7 минут. Одновременно в графитовом тигле, предварительно пропитанном криолитом, расплавляют металлический алюминий в количестве 3300 г под тонким слоем покровного флюса (50 г эквимольной смеси NaCl-KCl). Температуру металла доводят до 830ºС. Затем производят загрузку подогретой шихты в виде агломерата. После загрузки реакционную ванну выдерживают при заданной температуре (830ºС) в течение 20 минут, что обеспечивает полное протекание реакции восстановления. Далее производят отдельно разливку солевого и металлического расплавов, причем металл разливается в охлаждаемые изложницы.
По результатам количественного химического анализа содержание скандия в лигатуре составляет 2,01 масс.%. Выход в расчете на полное содержание скандия в шихте равен 92,4%.
Химический анализ производили по стандартной методике на атомно-эмиссионном спектрометре с индуктивно-связанной плазмой Spectro Flame Modula S.
Таким образом, предлагаемый способ позволяет достичь заявленного технического результата за счет повышения относительного содержания скандия в шихтовом материале и уменьшения объема солей, направляемых в дальнейшем на доизвлечение этого ценного компонента, а также несколько увеличить выход скандия в конечный продукт - лигатуру (на 0,4-1,7%).

Claims (2)

1. Способ получения лигатуры алюминий-скандий, включающий расплавление алюминия, алюминотермическое восстановление скандия из исходной шихты, содержащей фторид скандия, хлорид калия и фторид натрия под покровным флюсом, и последующую выдержку полученного расплава, отличающийся тем, что перед алюминотермическим восстановлением исходную шихту помещают в тигель и предварительно нагревают до температуры 790ºС, а затем вводят в расплавленный алюминий и осуществляют алюминотермическое восстановление при температуре не менее 830ºС, после выдержки расплава производят отдельно разливку солевого и металлического расплава, при этом используют исходную шихту, содержащую компоненты в следующем соотношении, мас.%: фторид скандия - 40-45; хлорид калия - 40-45; фторид натрия - остальное.
2. Способ по п.1, отличающийся тем, что предварительный нагрев исходной шихты проводят в графитовом тигле, предварительно пропитанном криолитом, или тигле из стеклоуглерода.
RU2013105680/02A 2013-02-11 2013-02-11 Способ получения лигатуры алюминий-скандий RU2507291C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013105680/02A RU2507291C1 (ru) 2013-02-11 2013-02-11 Способ получения лигатуры алюминий-скандий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013105680/02A RU2507291C1 (ru) 2013-02-11 2013-02-11 Способ получения лигатуры алюминий-скандий

Publications (1)

Publication Number Publication Date
RU2507291C1 true RU2507291C1 (ru) 2014-02-20

Family

ID=50113294

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013105680/02A RU2507291C1 (ru) 2013-02-11 2013-02-11 Способ получения лигатуры алюминий-скандий

Country Status (1)

Country Link
RU (1) RU2507291C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680330C1 (ru) * 2018-05-28 2019-02-19 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения лигатуры на основе алюминия
RU2704681C2 (ru) * 2017-11-13 2019-10-30 Акционерное общество "Далур" Способ получения лигатуры "алюминий-скандий" (варианты)
CN111378853A (zh) * 2020-03-13 2020-07-07 重庆大学 一种冰晶石体系铝热还原钒氧化物制备钒或钒铝合金的方法
US10988830B2 (en) 2018-01-16 2021-04-27 Scandium International Mining Corporation Scandium master alloy production
US11384412B2 (en) 2018-01-16 2022-07-12 Scandium International Mining Corporation Direct scandium alloying

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786319A (en) * 1986-08-19 1988-11-22 Treibacher Chemische Werke Ag Proces for the production of rare earth metals and alloys
RU2124574C1 (ru) * 1997-10-16 1999-01-10 Институт химии твердого тела Уральского Отделения РАН Способ получения лигатуры скандий-алюминий (его варианты)
RU2213795C1 (ru) * 2001-11-12 2003-10-10 Махов Сергей Владимирович Способ получения лигатуры алюминий-скандий (варианты)
RU2421537C2 (ru) * 2009-02-02 2011-06-20 Институт химии твердого тела Уральского отделения Российской Академии наук Способ получения алюмоскандийсодержащей лигатуры и шихта для получения алюмоскандийсодержащей лигатуры

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786319A (en) * 1986-08-19 1988-11-22 Treibacher Chemische Werke Ag Proces for the production of rare earth metals and alloys
RU2124574C1 (ru) * 1997-10-16 1999-01-10 Институт химии твердого тела Уральского Отделения РАН Способ получения лигатуры скандий-алюминий (его варианты)
RU2213795C1 (ru) * 2001-11-12 2003-10-10 Махов Сергей Владимирович Способ получения лигатуры алюминий-скандий (варианты)
RU2421537C2 (ru) * 2009-02-02 2011-06-20 Институт химии твердого тела Уральского отделения Российской Академии наук Способ получения алюмоскандийсодержащей лигатуры и шихта для получения алюмоскандийсодержащей лигатуры

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2704681C2 (ru) * 2017-11-13 2019-10-30 Акционерное общество "Далур" Способ получения лигатуры "алюминий-скандий" (варианты)
US10988830B2 (en) 2018-01-16 2021-04-27 Scandium International Mining Corporation Scandium master alloy production
US11384412B2 (en) 2018-01-16 2022-07-12 Scandium International Mining Corporation Direct scandium alloying
RU2680330C1 (ru) * 2018-05-28 2019-02-19 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения лигатуры на основе алюминия
CN111378853A (zh) * 2020-03-13 2020-07-07 重庆大学 一种冰晶石体系铝热还原钒氧化物制备钒或钒铝合金的方法

Similar Documents

Publication Publication Date Title
RU2507291C1 (ru) Способ получения лигатуры алюминий-скандий
RU97117983A (ru) Металлические композиционные материалы на основе алюминиевых сплавов, армированных керамическими частицами tib2
CA2983108C (en) Method for producing aluminium-scandium alloy and reactor for implementing the method
CN104328299A (zh) 一种铝及铝合金熔体精炼用的熔剂及其制备方法
Kuz'min et al. Obtaining of Al–Si foundry alloys using amorphous microsilica–Crystalline silicon production waste
BR112017009373B1 (pt) Processos para produção de ligas, e, ligas
Rajagopalan et al. Production of Al–Zr master alloy starting from ZrO2
RU2587700C1 (ru) Способ получения лигатуры алюминий-скандий-иттрий
RU2124574C1 (ru) Способ получения лигатуры скандий-алюминий (его варианты)
RU2426807C2 (ru) Способ получения алюминиево-скандиевой лигатуры для сплавов на основе алюминия
RU2683176C1 (ru) Способ получения силуминов
RU2394927C2 (ru) Способ получения титансодержащего алюминиевого сплава
RU2637545C1 (ru) Способ получения модифицирующей лигатуры Al - Ti
RU2621207C1 (ru) Способ получения сплава на основе алюминия и устройство для осуществления способа
RU2697127C1 (ru) Способ получения лигатуры магний-неодим
RU2218436C1 (ru) Способ получения алюминий-скандиевой лигатуры
CN109593994A (zh) 添加稀土Ce元素降低铝基复合材料热裂倾向性的方法
RU2515730C1 (ru) Электрохимический способ получения лигатурных алюминий-циркониевых сплавов
CN112609095A (zh) 一种铸造添加用镁铝铍中间合金的制备方法
EP1466038A1 (en) Magnesium-zirconium alloying
AU2003201396A1 (en) Magnesium-zirconium alloying
JP2021110026A (ja) 金属除去方法および金属回収方法
JP2021110025A (ja) 金属除去剤
RU2654222C1 (ru) Способ получения лигатуры алюминий-эрбий
Kuz et al. Possibilities and prospects for producing silumins with different silicon contents using amorphous microsilica

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190212