RU2515730C1 - Электрохимический способ получения лигатурных алюминий-циркониевых сплавов - Google Patents

Электрохимический способ получения лигатурных алюминий-циркониевых сплавов Download PDF

Info

Publication number
RU2515730C1
RU2515730C1 RU2012148858/02A RU2012148858A RU2515730C1 RU 2515730 C1 RU2515730 C1 RU 2515730C1 RU 2012148858/02 A RU2012148858/02 A RU 2012148858/02A RU 2012148858 A RU2012148858 A RU 2012148858A RU 2515730 C1 RU2515730 C1 RU 2515730C1
Authority
RU
Russia
Prior art keywords
zirconium
aluminum
alloy
aluminium
alloys
Prior art date
Application number
RU2012148858/02A
Other languages
English (en)
Inventor
Людмила Августовна Елшина
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority to RU2012148858/02A priority Critical patent/RU2515730C1/ru
Application granted granted Critical
Publication of RU2515730C1 publication Critical patent/RU2515730C1/ru

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение относится к электрохимическому получению лигатурных алюминий-циркониевых сплавов. В способе осуществляют анодную гальваностатическую поляризацию циркония с плотностью тока 0,5-4,0 мАсм-2 в течение 1-5 часов в расплавленных хлоридах щелочных металлов или смеси хлоридов щелочных и щелочноземельных металлов, содержащих расплавленный алюминий или алюминий-магниевый сплав, при температуре 700-750°С в атмосфере аргона. Изобретение позволяет получить лигатурные алюминий-циркониевые сплавы, содержащие до 57 мас.% циркония при снижении температуры процесса, трудоемкости и обеспечении экологической безопасности. 3 пр., 6 ил.

Description

Изобретение относится к электрохимическому получению лигатурных алюминий-циркониевых сплавов в расплавленных хлоридах щелочных металлов или смеси хлоридов щелочных и щелочноземельных металлов и может быть использовано для получения новых термостойких алюминиевых сплавов в металлургической и электротехнической промышленности.
Получение лигатурных алюминий-циркониевых сплавов обычными металлургическими способами крайне затруднительно вследствие большой разницы в температурах плавления алюминия и модифицирующего металла (662°С у алюминия и 1855°С - у циркония), а также плотных оксидных слоев, покрывающих поверхности обоих этих металлов.
Известно получение лигатурного алюминий-циркониевого, сплава, содержащего до 1 мас.% циркония, импульсной атомизацией на экспериментальных установках Университета Альберты (Канада) (Yuan, et al., US Patent 5,609,919, March 11, 1997), (J.B.Wiskel, H.Henein, E.Maire, Can. Metall. Q.41 (2002) 97) [1]. Известный способ характеризуется высокими энергозатратами при том, что получают алюминиевые сплавы с низкими концентрациями циркония.
Известно электрохимические получение алюминий-циркониевой лигатуры, содержащей до 6 мас.% циркония, взаимодействием расплавленного солевого электролита NaCl-KCl, содержащим криолит и до 3 мас.% K2ZrF6, с расплавленным алюминием или алюмомагниевым сплавом при 950°С (С.В.Александровский, А.Р.Эрданов. Влияние технологических факторов на получение алюминиевых лигатур с цирконием и скандием, Металлург, 07, 2007, 70-73) [2]. Известный способ неэкологичен, энергозатратен и не позволяет получать высоких концентраций циркония в алюминиевом сплаве.
Известно получение лигатурного алюминий-циркониевого сплава, содержащего 5 мас.% циркония, в полупромышленных масштабах восстановлением диоксида циркония “in situ” избытком расплавленного алюминия в криолитном расплаве при температурах 1100-1200°С в течение 1 ч (P.K.Rajagopalan, I.G.Sharma, T.S.Krishnan, Production of Al-Zr master alloy starting from ZrO2, J. Alloys and Compounds, 285, 1999, 212-215) [3]. Данный способ энергозатратен и неэкологичен, вследствие использования криолита, образующего токсичные газы при нагревании.
Известен способ получения алюминий-циркониевой лигатуры обменной реакцией расплавленного алюминия с тетрахлоридом циркония, входящим в состав хлоридно-фторидного флюса, при температурах 800-900°С (С.П.Яценко, Н.А.Хохлова, Л.А.Пасечник, Н.А.Сабирзянов. Получение лигатур на основе алюминия методом высокотемпературных обменных реакций в расплавах солей. III. Многокомпонентные модифицирующие лигатуры алюминия со скандием, цирконием и гафнием // Расплавы. 2010. №2. С.89-94) [4]. К очевидным недостаткам известного способа следует отнести высокую летучесть (температура возгонки 333°С) и стоимость чрезвычайно гигроскопичного тетрахлорида циркония, что делает невозможным получение сплавов, содержащих более 2 мас.% циркония. Кроме того, использование в известном решении хлоридно-фторидный флюса, крайне летучего при указанных температурах процесса, отрицательно сказывается на его экологичности.
Задача настоящего изобретения заключается в получении лигатурных сплавов алюминия с высоким содержанием циркония в них при снижении энергозатрат, экономических затрат, трудоемкости и повышении экологичности данного процесса.
Для решения поставленной задачи заявлен электрохимический способ получения лигатурных алюминий-циркониевых сплавов, характеризующийся анодной гальваностатической поляризацией циркония “in situ” с плотностью тока 0,5-4,0 мА см-2 в течение 1-5 ч в расплавленных хлоридах щелочных металлов или смеси хлоридов щелочных и щелочноземельных металлов, содержащих расплавленный алюминий или алюминий-магниевый сплав, при температуре 700-750°С в атмосфере аргона.
Сущность заявляемого решения заключается в следующем. Заявляемый электрохимический способ получения алюминий-циркониевого сплава основан на введении ионов циркония в солевой хлоридный расплав “in situ” - при непосредственном их контакте с расплавленным алюминием или алюминий-магниевым сплавом в температурном интервале 700-750°С по реакции контактного обмена 4Alж+3Zr4+pacп→4Al3+pacп+3Zrмет (1). Это позволяет избежать большого уноса тетрахлорида циркония и получать сплавы алюминия с высоким содержанием циркония в них. При этом процесс идет в одну стадию, необходимости в дополнительном окислителе нет.
Анодное растворение циркония проводят в тигле с расплавленным хлоридным электролитом, на дно которого помещают расплавленный алюминий или алюминий-магниевый сплав, т.е. осуществляют процесс “in situ”. Цирконий растворяется в хлоридном электролите до четырехвалентного иона циркония, который тут же восстанавливается на поверхности жидкого алюминия или алюминий-магниевого сплава до мелкодисперсного циркония, после чего порошкообразный цирконий растворяется в расплавленной алюминиевой матрице с образованием алюминий-циркониевого сплава. Алюминий-магниевый сплав является электрохимически более активным, чем чистый алюминий, вследствие высокой электроотрицательности входящего в состав сплава магния. Следовательно, при использовании алюминий-магниевого сплава сначала проходит реакция 2Mgж+Zr4+расп→2Mg2+расп+Zrмет (2), в результате чего расходуется весь магний, а только затем протекает реакция (1). При контактной реакции ионов циркония с алюминий-магниевым сплавом восставновителем является не алюминий, как в реакции (1), а магний. Процессы взаимодействия жидкого алюминий-магниевого сплава с электрохимически введенными в солевой хлоридный электролит ионами циркония происходят более интенсивно. При взаимодействии алюминий-магниевого сплава с ионами циркония удается получать более высокие содержания циркония в лигатурном сплаве, чем при использовании чистого алюминиевого расплава, при этом получаемый алюминиевый сплав не содержит магния.
Т.к. ввод ионов циркония в заявленном способе осуществляется непосредственно в солевой плав, в котором они сразу же контактируют с алюминием, не наблюдается существенного уноса тетрахлорида циркония, как это обычно происходит при анодном растворении циркония в хлоридах, не содержащих расплавленный металлический алюминий или его сплав. Это существенным образом улучшает экологичность заявленного способа. Другим преимуществом данного решения перед известными способами является работа только с индивидуальными металлами или сплавами - цирконием, алюминием или алюминий-магниевым сплавом - без использования чрезвычайно гигроскопичных, трудных в практическом применении хлоридов и фторидов указанных металлов, что в значительной степени снижает трудоемкость получения алюминий-циркониевого сплава. Содержание циркония в хлоридном расплаве, а как следствие, и в лигатурном алюминий-циркониевом сплаве зависит от плотности анодного тока растворения циркония. Это позволяет получать сплавы алюминия с высоким содержанием циркония - до 57 мас.%, т.е. образуются чистые интерметаллиды циркония либо твердые растворы циркония в алюминии в виде сплава в зависимости от плотностей прикладываемого анодного тока, который позволяет тонко регулировать состав образующегося сплава.
Нижний предел температурного интервала получения лигатурного алюминий-циркониевого сплава определен исходя из температуры плавления алюминия (662°С) - 700°С с тем, чтобы весь объем алюминия или алюминиево-магниевого сплава были расплавлены в ходе эксперимента. Верхний предел температурного интервала составляет 750°С, т.к. при повышении температуры выше указанного значения наблюдается значительный солеунос (более 7 г на 50 г солевого электролита), что ухудшает экологичность и технологичность процесса. Плотность анодного тока растворения циркония 0,5-4,0 мА см-2 и время взаимодействия 1-5 ч подбирались таким образом, чтобы обеспечить высокую скорость процесса образования алюминиево-циркониевого сплава, а также, чтобы все образующиеся при анодном растворении ионы циркония успевали провзаимодействовать с расплавленным алюминием или алюминий-магниевым расплавом, а не уходили из зоны реакции в газовую фазу, приводя к большому уносу тертрахлорида циркония. Это позволяет улучшить экономические показатели образования сплава.
Новый технический результат, достигаемый заявленным изобретением, заключается в одностадийном получении лигатурного алюминий-циркониевого сплава с высоким содержанием циркония без использования дополнительного окислителя при высокой скорости процесса образования сплава.
Заявленное изобретение иллюстрируется следующим. На фиг.1 представлено SEM-изображение скола алюминий-циркониевого сплава, полученного при взаимодействии алюминиевого расплава с ионами циркония, содержащего 47,03 мас.% циркония, на фиг.2 - EDS спектр обозначенного сплава. На фиг.3 представлено SEM-изображение поперечного шлифа алюминий-циркониевого сплава, полученного при взаимодействии алюминий-магниевого сплава АМГ6 с ионами циркония, содержащего 57,79 мас.% циркония, на фиг.4 - рентгенограмма вышеуказанного сплава. На фиг.5 представлено SEM-изображение поверхности алюминий-циркониевого сплава, полученного при взаимодействии алюминиевого расплава с ионами циркония, содержащего 29.28 мас.% циркония, на фиг.6 - EDS спектр обозначенного сплава.
Пример 1.
В высокотемпературную кварцевую ячейку поместили алундовый тигель, на его дно - алюминиевый диск чистотой А999, на который насыпали 40 г мелкораздробленной смеси хлоридов лития, калия и кальция. Ячейку, закрытую вакуумной пробкой, вакуумировали, нагрели до температуры 700°С при непрерывной откачке воздуха. После этого газовое пространство ячейки наполнили аргоном марки «вч». Образец циркония с площадью 4 см2 на молибденовом токоподводе опустили в расплав и немедленно начинали анодную поляризацию в гальваностатическом режиме с плотностью тока 2.0 мА см-2 в течение 2 ч. При этом цирконий перешел в алюминиевый расплав с образованием алюминий-циркониевого сплава. Изображение скола полученного алюминий-циркониевого сплава представлено на фиг.1. Данные EDS спектроскопии, представленные на фиг.2, свидетельствуют о получении лигатурного алюминий-циркониевого сплава с содержанием 47,03 мас.% циркония.
Пример 2.
В высокотемпературную кварцевую ячейку поместили алундовый тигель, на его дно - диск алюмомагниевого сплава АМГ6, на который насыпали 40 г мелкораздробленной смеси хлоридов бария, калия и натрия. Ячейку закрыли вакуумной пробкой, вакуумировали, нагрели до температуры 750°С при непрерывной откачке воздуха. После этого газовое пространство ячейки наполнили аргоном марки «вч». Образец циркония с площадью 4 см2 на молибденовом токоподводе опустили в расплав и немедленно начинали анодную поляризацию в гальваностатическом режиме с плотностью тока 1.6 мА см-2 в течение 3 ч. При этом цирконий перешел в алюмомагниевый расплав с образованием алюминий-циркониевого сплава, в котором зафиксировано нулевое содержание магния. Изображение поперечного шлифа образованного алюминий-циркониевого сплава - на фиг.3. Данные рентгенограммы, представленные на фиг.4, свидетельствуют о получении лигатурного алюминий-циркониевого сплава с содержанием 57,79 мас.% циркония, в котором нет даже примесей магния.
Пример 3.
В высокотемпературную кварцевую ячейку поместили алундовый тигель, на его дно - алюминиевый диск чистотой А999, на который насыпали 40 г мелкораздробленной смеси хлоридов натрия, калия и цезия. Ячейку, закрытую вакуумной пробкой, вакуумировали, нагрели до температуры 700°С при непрерывной откачке воздуха. После этого газовое пространство ячейки наполнили аргоном марки «вч». Образец циркония с площадью 4 см2 на молибденовом токоподводе опустили в расплав и немедленно начинали анодную поляризацию в гальваностатическом режиме с плотностью тока 0.7 мА см-2 в течение 1.5 ч. При этом цирконий перешел в алюминиевый расплав с образованием алюминий-циркониевого сплава. Изображение поверхности полученного алюминий-циркониевого сплава представлено на фиг.5. Данные EDS спектроскопии, представленные на фиг.6, свидетельствуют о получении лигатурного алюминий-циркониевого сплава с содержанием 29.28 мас.%.
Таким образом, заявленный электрохимический способ, связанный с относительно невысокими энергозатратами и трудоемкостью при обеспечении экологичности процесса, позволяет получать лигатурные алюминий-циркониевых сплавы, содержащие до 57 мас.% циркония. Это позволит создавать алюминиевые сплавы сложного состава с высоким содержанием циркония.

Claims (1)

  1. Способ электрохимического получения лигатурных алюминий-циркониевых сплавов, характеризующийся тем, что осуществляют анодную гальваностатическую поляризацию циркония с плотностью тока 0,5-4,0 мА см-2 в течение 1-5 часов в расплавленных хлоридах щелочных металлов или смеси хлоридов щелочных и щелочноземельных металлов, содержащих расплавленный алюминий или алюминий-магниевый сплав, при температуре 700-750°С в атмосфере аргона.
RU2012148858/02A 2012-11-16 2012-11-16 Электрохимический способ получения лигатурных алюминий-циркониевых сплавов RU2515730C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012148858/02A RU2515730C1 (ru) 2012-11-16 2012-11-16 Электрохимический способ получения лигатурных алюминий-циркониевых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012148858/02A RU2515730C1 (ru) 2012-11-16 2012-11-16 Электрохимический способ получения лигатурных алюминий-циркониевых сплавов

Publications (1)

Publication Number Publication Date
RU2515730C1 true RU2515730C1 (ru) 2014-05-20

Family

ID=50778735

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012148858/02A RU2515730C1 (ru) 2012-11-16 2012-11-16 Электрохимический способ получения лигатурных алюминий-циркониевых сплавов

Country Status (1)

Country Link
RU (1) RU2515730C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658556C1 (ru) * 2017-08-24 2018-06-21 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ получения лигатур алюминия с цирконием
RU2716727C1 (ru) * 2019-08-16 2020-03-16 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Электролитический способ получения лигатур алюминия из оксидного сырья

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010893C1 (ru) * 1991-12-09 1994-04-15 Малое научно-производственное предприятие "ММС" Способ получения лигатуры алюминий - стронций и электролизер для его осуществления
US5609919A (en) * 1994-04-21 1997-03-11 Altamat Inc. Method for producing droplets
RU2401875C2 (ru) * 2008-03-28 2010-10-20 Анатолий Евгеньевич Волков Способ производства химически активных металлов и восстановления шлаков и устройство для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010893C1 (ru) * 1991-12-09 1994-04-15 Малое научно-производственное предприятие "ММС" Способ получения лигатуры алюминий - стронций и электролизер для его осуществления
US5609919A (en) * 1994-04-21 1997-03-11 Altamat Inc. Method for producing droplets
RU2401875C2 (ru) * 2008-03-28 2010-10-20 Анатолий Евгеньевич Волков Способ производства химически активных металлов и восстановления шлаков и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЯЦЕНКО С.П. и др. Получение лигатур на основе алюминия методом высокотемпературных обменных реакций в расплавах солей. III Многокомпонентные модифицирующие лигатуры алюминия со скандием и гафнием. Журнал "Расплавы", N2, Металлургия, 2010, с.89-94. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658556C1 (ru) * 2017-08-24 2018-06-21 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ получения лигатур алюминия с цирконием
RU2716727C1 (ru) * 2019-08-16 2020-03-16 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Электролитический способ получения лигатур алюминия из оксидного сырья

Similar Documents

Publication Publication Date Title
Claux et al. Electrochemical reduction of cerium oxide into metal
Filatov et al. Synthesis of Al-Zr master alloys via the electrolysis of KF-NaF-AlF3-ZrO2 melts
JP7361058B2 (ja) アルミニウム-スカンジウム合金の製造方法
CN107532317B (zh) 生产铝钪合金的方法和实施该方法的反应器
Suzdaltsev et al. Synthesis of aluminum master alloys in oxide-fluoride melts: A review
Suzdaltsev et al. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide–fluoride melts
JP5445725B1 (ja) Al−Sc合金の製造方法
Chen et al. Solubility and dissolution behavior of ZrO2 in KF–AlF3 molten salts
RU2515730C1 (ru) Электрохимический способ получения лигатурных алюминий-циркониевых сплавов
ZHANG et al. Preparation of Mg–Li—La alloys by electrolysis in molten salt
Cai et al. Investigation on the reaction progress of zirconium and cuprous chloride in the LiCl–KCl melt
RU2507291C1 (ru) Способ получения лигатуры алюминий-скандий
Mukherjee et al. CSLM study on the interaction of Nd 2 O 3 with CaCl 2 and CaF 2–LiF molten melts
JP4763169B2 (ja) 金属リチウムの製造方法
Wang et al. Electrochemical co-reduction of holmium and magnesium ions in eutectic LiCl–KCl salts
RU2537676C1 (ru) Способ электрохимического получения алюминий-титановой лигатуры для коррозионностойких алюминиевых сплавов
RU2716727C1 (ru) Электролитический способ получения лигатур алюминия из оксидного сырья
RU2394927C2 (ru) Способ получения титансодержащего алюминиевого сплава
Wang et al. Electrochemical separation of Fe (III) impurity from molten MgCl2-NaCl-KCl for magnesium electrolytic production
Han et al. Electrochemical codeposition of quaternary Mg-Li-Ce-La alloys from molten salt
RU2697127C1 (ru) Способ получения лигатуры магний-неодим
Filatov et al. Extraction of zirconium from its oxide during electrolysis of the KF–AlF3–Al2O3–ZrO2 melts
RU2658556C1 (ru) Способ получения лигатур алюминия с цирконием
RU2811340C1 (ru) Способ электролитического получения сплавов алюминия с иттрием
CA3043850C (en) Method of aluminium alloys production