RU2506583C2 - Способ акустического определения изменения состояния потока текучей среды в трубопроводе (варианты) и система повышения точности расходомера посредством акустического определения изменения состояния потока - Google Patents

Способ акустического определения изменения состояния потока текучей среды в трубопроводе (варианты) и система повышения точности расходомера посредством акустического определения изменения состояния потока Download PDF

Info

Publication number
RU2506583C2
RU2506583C2 RU2010146716/28A RU2010146716A RU2506583C2 RU 2506583 C2 RU2506583 C2 RU 2506583C2 RU 2010146716/28 A RU2010146716/28 A RU 2010146716/28A RU 2010146716 A RU2010146716 A RU 2010146716A RU 2506583 C2 RU2506583 C2 RU 2506583C2
Authority
RU
Russia
Prior art keywords
acoustic
flow
configuration
state
changes
Prior art date
Application number
RU2010146716/28A
Other languages
English (en)
Other versions
RU2010146716A (ru
Inventor
Дон ДЕЙ
Original Assignee
Дэниел Мэжэмэнт энд Кэнтроул, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дэниел Мэжэмэнт энд Кэнтроул, Инк. filed Critical Дэниел Мэжэмэнт энд Кэнтроул, Инк.
Publication of RU2010146716A publication Critical patent/RU2010146716A/ru
Application granted granted Critical
Publication of RU2506583C2 publication Critical patent/RU2506583C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/666Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by detecting noise and sounds generated by the flowing fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7082Measuring the time taken to traverse a fixed distance using acoustic detecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G1/00Weighing apparatus involving the use of a counterweight or other counterbalancing mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • G01N2291/0224Mixtures of three or more liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Oils, i.e. hydrocarbon liquids raw oil, drilling fluid or polyphasic mixtures

Abstract

Описан способ акустического определения изменения состояния потока текучей среды в трубопроводе, снабженном расходомером. Способ включает установку, по меньшей мере, одного акустического датчика в трубопроводе измерительной станции, запись базовой акустической конфигурации с акустического датчика посредством контролируемого пропускания текучей среды через измерительную станцию, при идеальных условиях. Способ также включает запись акустической конфигурации с акустического датчика в реальном времени посредством пропускания текучей среды через измерительную станцию, при нормальных условиях, сравнение базовой акустической конфигурации с акустической конфигурацией, полученной в реальном времени, определение разницы между базовой акустической конфигурацией и акустической конфигурацией, полученной в реальном времени, для определения изменения состояния потока и регистрацию изменения состояния потока. Система включает акустические датчики, установленные в трубопроводе, расходомер, компьютер для сбора акустической информации от акустических датчиков и сравнения акустической информации с базовыми значениями для определения отклонения от нормального состояния потока текучей среды. Технический результат - повышение точности и надежности измерительной станции и передачи продукта потребителю, а также выявление эксплуатационных проблем. 2 н. и 6 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области расходомеров. Более конкретно, изобретение описывает способы акустического определения изменения состояния потока текучей среды в трубопроводе, снабженном расходомером, и систему повышения точности расходомера посредством акустического определения изменения состояния потока.
Уровень техники
После извлечения углеводородов из земли поток текучей среды (такой как сырая нефть или природный газ) транспортируется по трубопроводам из одного места в другое. Желательным является точное определение количества текучей среды, перемещаемой в потоке, причем особая точность требуется при передаче текучей среды другому владельцу или передаче потребителю. Передача потребителю может происходить на фискальной измерительной станции или раме, которая может включать основные элементы для передачи, такие как измерительное устройство или расходомер, проверочное устройство, соответствующие трубопроводы и клапаны, а также электрические элементы управления. Измерение потока текучей среды, проходящей через всю транспортную трубопроводную систему, начинается в расходомере, который может включать турбинный расходомер, объемный расходомер, ультразвуковой расходомер, расходомер Кориолиса или вихревой расходомер.
В потоке текучей среды обычно происходят изменения давления, температуры и расхода. Эти изменения отражаются в изменениях характеристик потока и влияют на точность измерения доставляемого продукта. Изменения характеристик потока текучей среды обычно контролируются оператором по воздействию данных изменений на измерительное устройство. Данный контроль осуществляется за счет снабжения расходомера поверочным устройством или прувером, в случае жидких углеводородов. Берутся образцы из калиброванного прувера, установленного в зоне измерительного устройства, на раме и гидравлически связанного с измерительным устройством, затем объемы взятых образцов сравниваются с объемным расходом через измерительное устройство. Если между сравниваемыми объемами имеются статистически значимые различия, объемный расход измерительного устройства корректируется для отражения реального объемного расхода, определенного прувером.
Однако, помимо только что описанных изменений, замеряемых приборами, изменения потока могут проявляться также и в других формах. Так, принципы настоящего изобретения направлены на устранение одного или большего числа ограничений существующих процессов для обеспечения точности и надежности измерительной станции и передачи продукта потребителю, а также выявления эксплуатационных проблем.
Изобретение раскрывает способ акустического определения изменения состояния потока текучей среды в трубопроводе расходомера, который может включать установку, по меньшей мере, одного акустического датчика в трубопроводе, связанном с расходомером, сбор акустических данных от проходящей в трубопроводе текучей среды посредством акустического датчика, определение изменения состояния потока текучей среды посредством акустических данных и регистрацию изменения состояния потока.
Способ дополнительно может включать определение изменения состояния потока как отклонение от нормального состояния потока текучей среды и предупреждение оператора о наличии отклонения.
Дополнительно способ может включать установление базовой акустической конфигурации посредством пропускания контролируемой текучей среды через расходомер, при идеальных условиях.
Также способ может включать создание акустической конфигурации посредством пропускания текучей среды через расходомер в реальном времени, при нормальных условиях, сравнение базовой акустической конфигурации с акустической конфигурацией, полученной в реальном времени, определение разницы между базовой акустической конфигурацией и акустической конфигурацией, полученной в реальном времени, для определения изменения состояния потока.
Способ дополнительно может включать внесение нормальных изменений состояния потока в базовую акустическую конфигурацию и определение зафиксированного изменения состояния потока как отклонения от нормального состояния потока, а также настройку, по меньшей мере, одного акустического датчика, акустических данных и изменения состояния потока, при замене проходящей текучей среды другой текучей средой.
Согласно способу он может дополнительно включать корректировку измерений расходомера на основании изменения состояния потока.
Способ дополнительно может включать определение участка изменения состояния потока, а также корректировку входящего в расходомер потока для устранения изменения состояния потока и дополнительно может включать регулировку клапана управления давлением для устранения изменения состояния потока.
Кроме того, способ дополнительно может включать использование группы акустических датчиков, установленных в группе участков трубопровода.
Способ дополнительно может включать определение ухудшения характеристик компонента, связанного с расходомером.
Также раскрывается способ акустического определения изменения состояния потока текучей среды в измерительной станции, содержащей расходомер, который может включать установку, по меньшей мере, одного акустического датчика в трубопроводе измерительной станции, запись базовой акустической конфигурации с акустического датчика посредством контролируемого пропускания текучей среды через измерительную станцию, при идеальных условиях, запись акустической конфигурации с акустического датчика в реальном времени посредством пропускания текучей среды через измерительную станцию, при нормальных условиях, сравнение базовой акустической конфигурации с акустической конфигурацией, полученной в реальном времени, определение разницы между базовой акустической конфигурацией и акустической конфигурацией, полученной в реальном времени, для определения изменения состояния потока и регистрацию изменения состояния потока.
Дополнительно способ может включать корректировку показаний расходомера на основании изменений состояния потока для повышения точности расходомера.
Также способ может дополнительно включать изменение конфигурации измерительной станции для согласования изменений состояния потока.
Согласно варианту осуществления изобретения способ дополнительно может включать объединение изменений потока с обновленной базовой акустической конфигурацией, определение разницы между обновленной акустической конфигурацией и акустической конфигурацией, полученной в реальном времени, для определения отклонений в состоянии потока текучей среды.
Изобретение также раскрывает систему повышения точности расходомера посредством акустического определения изменения состояния потока, которая может включать раму измерения расхода, по меньшей мере, один акустический датчик, установленный на указанной раме, микрофон, компьютер, связанный с микрофоном и выполненный с возможностью получения акустической информации о потоке текучей среды от акустического датчика и ее сравнения с предварительно определенными базовыми значениями для определения изменения состояния потока.
Базовые значения системы могут определяться при вводе рамы в эксплуатацию, при идеальных условиях.
Компьютер может быть выполнен с возможностью предупреждения оператора о наличии отклонений в состоянии потока текучей среды на основании изменений состояния потока.
Также компьютер может быть выполнен с возможностью корректировки показаний расходомера на основании изменений состояния потока.
Краткое описание чертежей
Для подробного описания примеров вариантов осуществления изобретения приводятся ссылки на прилагаемые чертежи, на которых:
Фиг.1 - система, снабженная измерительной станцией, содержащей расходомер, согласно изложенным в данном документе принципам;
Фиг.2 - схема системы, являющейся альтернативой системы, показанной на Фиг.1;
Фиг.3 - блок-схема способа, соответствующего приведенным в данном документе принципам.
Осуществление изобретения
На нижеприведенных чертежах и в описании подобные детали, как правило, имеют одинаковые обозначения. Фигуры чертежей не обязательно выполнены в масштабе. Некоторые признаки изобретения могут быть показаны в увеличенном масштабе или в несколько схематизированной форме, а некоторые детали стандартных элементов могут быть условно не показаны для упрощения восприятия. Настоящее описание может применяться для разных форм вариантов осуществления изобретения. Описание и чертежи конкретных вариантов осуществления изобретения приводятся с учетом того, что настоящее описание рассматривается в качестве примера реализации принципов изобретения и не ставит своей целью ограничение изобретения вариантами, приведенными на иллюстрациях и в описании. Следует понимать, что различные положения вариантов осуществления изобретения, описанные ниже, могут применяться отдельно или в любом подходящем сочетании для достижения требуемого эффекта.
В нижеследующем описании и в пунктах формулы изобретения термины "включающий" и "содержащий" используются в расширительном смысле и, таким образом, должны интерпретироваться как "включающий, но не ограничивающийся". За исключением особо оговоренных случаев любое использование любой формы терминов "соединять", "входить в контакт", "связывать", "прикреплять" или любого другого термина, описывающего взаимодействие элементов, не имеет целью ограничивать взаимодействие непосредственным взаимодействием элементов и может также включать косвенное взаимодействие между описываемыми элементами. Термин "текучая среда" может относиться к жидкости или к газу и не связан с каким-либо конкретным типом текучей среды, таким как углеводороды. Различные характеристики, упомянутые выше, а также прочие признаки и характеристики, более подробно описанные ниже, станут понятны специалистам в данной области техники из нижеследующего подробного описания вариантов осуществления изобретения и прилагаемых чертежей.
Изменения потока в трубопроводе и измерительной станции могут выражаться в виде акустических явлений, ощутимых в трубопроводе. Например, изменения потока могут быть вызваны колебаниями насоса и связанными с ними гармониками, возвратным давлением выше по потоку, а также газификацией протекающего продукта. Другие явления, которые могут вызвать изменения акустических свойств потока, включают изменения скорости текучей среды, изменения плотности текучей среды, изменения вязкости текучей среды, изменения температуры, изменения давления, изменения содержания в трубопроводе твердых частиц или загрязнений, а также изменения содержания воды. Акустические изменения в трубопроводе могут использоваться для сигнализации оператору о необходимости принятия мер для возвращения измерительной станции в состояние нормального потока. В связи с этим определение акустических, звуковых или различимых в звуковом спектре сигналов в трубопроводах измерительной станции и связанные с этим устройство и способы, представленные в данном документе, могут использоваться в качестве еще одного средства повышения точности и надежности измерительной станции и передачи продукта потребителю.
Настоящий документ описывает сбор акустических или другим образом регистрируемых звуковых сигналов от подающего трубопровода, такого как трубопровод измерительной станции, при помощи акустических датчиков для определения изменения состояния потока текучей среды. Определяемые изменения состояния потока могут сравниваться с заранее установленным базовым нормальным состоянием потока. В некоторых вариантах осуществления изобретения процесс включает определение характеристик потока в нормальном состоянии, а также изменения в возмущенном состоянии при нормальном процессе передачи продукта потребителю на измерительных рамах. В ряде вариантов осуществления изобретения на измерительных рамах используется покупное программное обеспечение для акустического анализа и соответствующее приборное обеспечение для высокоточного сбора данных. В других вариантах осуществления изобретения после завершения анализа нормального состояния потока и неустановившегося состояния потока интерфейс "человек-машина" (HMI) определяет и выдает рекомендации оператору, какие изменения необходимо внести в эксплуатационные параметры рабочего измерительного узла или рабочих измерительных элементов для того, чтобы вернуть поток текучей среды в установившийся режим. В некоторых вариантах осуществления изобретения интерфейс "человек-машина" (HMI) по команде может автоматически настраивать измерительный узел для возврата рамы в нормальное состояние потока.
На Фиг.1 показана измерительная система 100. Измерительная система 100 включает измерительную станцию или раму 102, которая содержит измерительное устройство или расходомер 104 и прувер 106. Расходомер 104 может являться частью большого измерительного узла, кроме него имеющего оборудование и элементы, такие как измерительный узел 114. Первый трубопровод 108 содержит первый поток 116 текучей среды, в котором текучая среда движется в сторону первого контейнера или источника 112 или в противоположном направлении. Трубопровод 108 соединяется с расходомером 104. Второй трубопровод 110 содержит второй поток 118 текучей среды, в котором текучая среда движется в сторону второго контейнера или источника, удаленного от рамы 102, или в обратном направлении. Посредством рамы 102 осуществляют измерения при передаче продукта потребителю. Как описано выше, характеристики любого из потоков текучей среды могут изменяться в процессе поставки продукта и работы измерительной станции 102, что оказывает отрицательное воздействие на точность измерений объема доставляемого продукта.
В одном варианте осуществления изобретения сначала производится установка и запись нормальных характеристик потока. Это выполняется при сдаче в эксплуатацию измерительной станции или рамы, когда условия являются идеальными и контролируемыми. Определяются зоны возмущения потока при нормальной эксплуатации, замеряются соответствующие звуковые частотные характеристики, и эти частоты определяются в качестве базовых значений. Данные зоны возмущения потока при нормальных условиях эксплуатации определяются с использованием известной характеристики потерь давления в устройстве или трубопроводной системе по траектории движения потока. При конфигурировании измерительной станции уделяется внимание потенциальным изменениям при всем процессе протекания потока, как выше по потоку, так и ниже по потоку от измерительной станции. Кроме того, производится анализ насоса, бака и установленных выше по потоку подающих трубопроводов для определения вероятности влияния на них изменений потока. Данный анализ позволяет определить места установки акустических измерительных устройств в подающей линии. Акустическое измерительное устройство устанавливается на входе в измерительный узел, после чего определяется нормальное состояние потока, которое фиксируется в качестве базового.
В некоторых вариантах осуществления изобретения, как показано на Фиг.1, акустический датчик может устанавливаться у входного отверстия 120 расходомера 104, около прувера 106 и у заднего торца измерительного узла 114. Настоящее изобретение предполагает также использование других комбинаций и другого количества датчиков. Например, как показано на Фиг.2, схематическое изображение измерительной станции 10, которая представляет собой систему, включает трубопровод 15, в который поступает поток 11 текучей среды из контейнера 112. Текучая среда может проходить через прувер 20, имеющий датчики 16, 18, затем через расходомер 12 и, наконец, поступать через распределительные клапаны 30, 32, например, на нефтеперерабатывающий завод. Расходомер 12 связан с компьютером 26 посредством трубопровода 14. Акустические устройства могут устанавливаться в системе 10 в различных местах в соответствии с описанными в данном документе принципами. Например, микрофон 36 устанавливается в зоне распределительных клапанов 30, 32 и соединяется с компьютером 26 посредством трубопровода 34. Другие микрофоны 38, 40 установлены на других участках системы 10, на которых, как определено, могут происходить нарушения, потери давления и изменения состояния потока, причем каждый микрофон связан с компьютером 26 посредством соответствующих трубопроводов 42, 44.
Зафиксированная базовая характеристика, как описано выше, обеспечивает идентификацию любых изменений в акустическом диапазоне как нормальных или выходящих за рамки нормы, и оператор может принимать решения на основании рекомендаций интерфейса "человек-машина" (HMI) измерительной системы. В некоторых вариантах осуществления изобретения решением оператора, основанным на выявлении отклонений от нормы, является внесение изменений в поток, поступающий к измерительной станции, или изменение конфигурации измерительной станции в соответствии с изменением состояния потока. В других вариантах осуществления изобретения изменения потока выявляются в пределах измерительной станции или ниже по потоку от измерительной станции, что может повлиять на общую точность измерений расходомера и, в свою очередь, на точность измерений объема поступающего продукта. Измерительная станция также предварительно исследуется с целью выявления участков, на которых возможно падение давления в оборудовании и в элементах трубопровода. Участки, на которых возможны изменения состояния потока, оборудуются акустическими датчиками и для них определяются базовые частоты. Таким образом, формируется базовая акустическая конфигурация потока, включающая информацию с участков выше по потоку, ниже по потоку от измерительной станции и непосредственно на самой измерительной станции. Базовая конфигурация потока используется для установления оптимизированного акустического состояния потока, при котором возможно осуществление точного измерения объема продукта.
Общая нормальная эксплуатация трубопровода и системы измерительной станции может вызывать изменения начальной акустической конфигурации потока во времени, приводя к отклонению от начальной базовой конфигурации и изменяя оптимизированное акустическое состояние потока. Подобные изменения при нормальной эксплуатации считаются нормальными и добавляются к набору частот, соответствующих нормальному состоянию. Подобные изменения обычно связаны с калибровкой расходомера при помощи прувера или с изменением общего расхода продукта через расходомер за счет включений расходомера дистанционно или вручную. Некоторые из этих мероприятий проводятся в определенное время, за счет чего неустановившийся режим потока может допускаться в течение заданного временного периода, превышение которого может быть определено.
После определения нормального акустического состояния потока для всей измерительной станции, в том числе и при типовых мероприятиях, которые изменяют акустические характеристики, но распознаются как оптимальные для точных измерений на станции, может производиться регистрация неоптимального состояния потока, могут выдаваться предупреждающие сигналы и рекомендации для оператора, с указаниями, как привести состояние потока к оптимальному и, следовательно, обеспечить общую точность измерений на станции. Выявление участка акустических изменений при помощи установки датчика определяет необходимые действия, в зависимости от того находится он выше по потоку, на измерительной станции или ниже по потоку от измерительной станции.
Варианты осуществления изобретения, приведенные в данном документе, обеспечивают акустическое определение изменений состояния потока на измерительных станциях. Акустический профиль измерительной станции определяется за счет заранее продуманной установки регистрирующих звук устройств и применения данных устройств с целью определения акустических конфигураций нормального потока, при которых обеспечивается оптимальное измерение. Изменения акустических конфигураций могут использоваться для определения конфигураций потока, при которых снижается точность измерительного узла. Определение участка, на котором происходит искажение и принятие решений и мер для возврата измерительной станции в оптимальное состояние потока, гарантирует выполнение измерительной станцией предсказуемых и точных измерений.
Акустические и звуковые данные, собранные внутри и вокруг замеряющей расход потока станции, используются для корректировки измерений расхода потока в режиме реального времени. Хотя нормальное функционирование станции создает шум, связанный с изменениями состояния потока и потерями давления, варианты осуществления изобретения, описываемые в данном документе, изначально приспособлены к определению отклонений от идеального или базового диапазона шумов станции и их корректировке. Так, в некоторых вариантах осуществления изобретения конкретные шумовые характеристики станции не столь важны, как отклонения от идеального или базового потока и расположения этих отклонений. В дополнение к вышеизложенному потери давления и отклонения, которые происходят вне идеальных или базовых условий, могут включать связанные с отключением бака или с заменой одного продукта на другой, например керосина на бензин. Кроме того, отклонения состояния потока могут указывать на ухудшение характеристик элемента, связанного с расходомером.
В ряде вариантов осуществления изобретения измерительная станция приспособлена к определению различных текучих сред, протекающих через трубопроводы. Регистрирующие звуковые сигналы устройства настраиваются на основании типа перемещаемого продукта, для которого проводятся измерения. Например, геометрия потока может отличаться для каждой станции и окружающего ее оборудования, и продукты в трубопроводах могут иметь высокое или низкое давление паров, что влияет на фиксируемые отклонения. В некоторых вариантах осуществления изобретения, например, когда через станцию и расходомер проходит продукт с высоким (например, 400 фунтов на квадратный дюйм - 2758 кПа) давлением паров (например, жидкий пропан, бутан, бензин, бензол), внутри и вокруг станции устанавливают большее число микрофонов. Это вызвано тем, что данные продукты являются более летучими и в них будет возникать большее число отклонений на большем числе участков от их базовых условий течения. Продукты с более низким давлением паров (например, 10 фунтов на квадратный дюйм - 68,95 кПа) являются более стабильными, и обычно для них требуется меньшее число микрофонов.
В некоторых вариантах осуществления изобретения проводятся вычисления для определения участков вероятного падения давления. На вычисления оказывает влияние геометрия трубопроводов и клапанов. Кроме того, на вычисления влияет тип продукта. Например, если через трубопровод протекает сырая нефть, то известно, что обычно кавитации возникают только ниже по потоку от распределяющих поток клапанов. Если в трубах течет бензин, то будут возникать дополнительные явления, связанные с давлением паров, вызывающие возмущения на участках помимо участков установки распределительных клапанов. Установка микрофонов производится соответствующим образом.
При обнаружении отклонения компьютер, процессор или интерфейс "человек-машина" (HMI) выдаст оператору сигнал о наличии отклонения о местоположении его возникновения. В некоторых вариантах осуществления изобретения после этого создается управляющее воздействие на измерительную станцию или прочие элементы подающей системы для корректировки отклонения. Например, производится регулировка клапанов управления обратным давлением, таких как клапаны расходомера или прувера, что обеспечивает дополнительное обратное давление для стабилизации потерь давления, связанных с отклонением. В некоторых вариантах осуществления изобретения с одной стороны измерительной станции находится резервуар-хранилище, а с другой стороны установлена нефтеперегонная установка, и возможна регулировка устройств, связанных с этими элементами, для корректировки отклонений.
На Фиг.3 на блок-схеме 200 показаны несколько вариантов осуществления процесса согласно принципам, изложенным в данном документе. На этапе 202 один или большее число датчиков подключаются к измерительной станции или установленным вокруг нее трубопроводам. На этапе 204 измерительная станция функционирует в управляемых идеальных условиях, например, при условиях ввода станции в эксплуатацию, для установки и записи базовой акустической конфигурации потока. Как описано выше, базовая конфигурация может включать потери давления и изменения состояния потока, которые являются нормальными и могут быть учтены. На этапе 206 измерительная станция функционирует в обычном режиме и производит измерения расхода продукта при передаче потребителю, производится сбор акустических данных от датчика или датчиков и их запись для установления акустической конфигурации в режиме реального времени. На этапе 208 действительная акустическая конфигурация потока сравнивается с базовой, и любые отличия идентифицируются как искажения состояния потока на этапе 210. На этапе 212 измерения расходомера корректируются на основании определенного искажения состояния потока. Хотя прямоугольник 212 блок-схемы охватывает многие корректирующие воздействия, варианты осуществления могут включать: определение участка изменения состояния потока на этапе 214, изменение поступающего к измерительной станции потока на этапе 216 (или в альтернативном варианте выходящего к резервуару-хранилищу потока), изменение конфигурации измерительной станции для компенсации изменений состояния потока на этапе 218, регулировку управляющего клапана на этапе 220 и проведение обслуживания для устранения повреждений элемента на этапе 228.
Также на Фиг.3 другие варианты осуществления изобретения включают настройку измерительной станции на другую текучую среду на этапе 222, например, за счет настройки акустических датчиков в соответствии с изменением типа текучей среды. В некоторых вариантах осуществления изобретения способ включает определение нормальных изменений акустических данных на этапе 224 и обновление или корректировку базового значения для включения или отражения нормальных изменений на этапе 226.
Хотя изобретение может подвергаться различным модификациям и выполняться в альтернативных формах, в качестве примера приведены описания и чертежи для конкретных вариантов осуществления изобретения. Следует понимать, что чертежи и подробное описание не ограничивают изобретение конкретной описанной формой, но напротив, охватывают все модификации, эквиваленты и альтернативы, находящиеся в рамках сути и объема настоящего изобретения.

Claims (8)

1. Способ акустического определения изменения состояния потока текучей среды в трубопроводе, снабженном расходомером, включающий установку, по меньшей мере, одного акустического датчика в трубопроводе измерительной станции, запись базовой акустической конфигурации с акустического датчика посредством контролируемого пропускания текучей среды через измерительную станцию, при идеальных условиях, запись акустической конфигурации с акустического датчика в реальном времени посредством пропускания текучей среды через измерительную станцию, при нормальных условиях, сравнение базовой акустической конфигурации с акустической конфигурацией, полученной в реальном времени, определение разницы между базовой акустической конфигурацией и акустической конфигурацией, полученной в реальном времени, для определения изменения состояния потока и регистрацию изменения состояния потока.
2. Способ по п.1, который дополнительно включает корректировку показаний расходомера на основании изменений состояния потока для повышения точности расходомера.
3. Способ по п.1, который дополнительно включает изменение конфигурации измерительной станции для согласования изменений состояния потока.
4. Способ по п.1, который дополнительно включает объединение изменений потока с обновленной базовой акустической конфигурацией, определение разницы между обновленной акустической конфигурацией и акустической конфигурацией, полученной в реальном времени, для определения отклонений в состоянии потока текучей среды.
5. Система повышения точности расходомера посредством акустического определения изменения состояния потока, включающая расходомер трубопровода измерительной станции, по меньшей мере, один акустический датчик, установленный на указанном расходомере, и компьютер с процессором, содержащий предварительно определенные базовые значения информации о потоке и связанный с акустическим датчиком для получения акустической информации о потоке текучей среды от трубопровода, при этом процессор выполнен с возможностью сравнения акустической информации о потоке текучей среды с предварительно определенными базовыми значениями для определения изменения состояния потока.
6. Система по п.5, в которой базовые значения определяются при вводе расходомера измерительной станции в эксплуатацию, при идеальных условиях.
7. Система по п.5, в которой компьютер выполнен с возможностью предупреждения оператора о наличии отклонений в состоянии потока текучей среды на основании изменений состояния потока.
8. Система по п.5, в которой компьютер выполнен с возможностью корректировки показаний расходомера на основании изменений состояния потока.
RU2010146716/28A 2008-04-17 2008-11-10 Способ акустического определения изменения состояния потока текучей среды в трубопроводе (варианты) и система повышения точности расходомера посредством акустического определения изменения состояния потока RU2506583C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4579408P 2008-04-17 2008-04-17
US61/045,794 2008-04-17
PCT/US2008/083030 WO2009128864A1 (en) 2008-04-17 2008-11-10 Sonic detection of flow state change for measurement stations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2013147893A Division RU2644451C2 (ru) 2008-04-17 2013-10-28 Способ акустического определения изменения состояния потока текучей среды в трубопроводе, способ акустического определения изменения состояния потока текучей среды в измерительной станции и система повышения точности расходомера посредством акустического определения изменения состояния потока

Publications (2)

Publication Number Publication Date
RU2010146716A RU2010146716A (ru) 2012-05-27
RU2506583C2 true RU2506583C2 (ru) 2014-02-10

Family

ID=41199384

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2010146716/28A RU2506583C2 (ru) 2008-04-17 2008-11-10 Способ акустического определения изменения состояния потока текучей среды в трубопроводе (варианты) и система повышения точности расходомера посредством акустического определения изменения состояния потока
RU2013147893A RU2644451C2 (ru) 2008-04-17 2013-10-28 Способ акустического определения изменения состояния потока текучей среды в трубопроводе, способ акустического определения изменения состояния потока текучей среды в измерительной станции и система повышения точности расходомера посредством акустического определения изменения состояния потока

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2013147893A RU2644451C2 (ru) 2008-04-17 2013-10-28 Способ акустического определения изменения состояния потока текучей среды в трубопроводе, способ акустического определения изменения состояния потока текучей среды в измерительной станции и система повышения точности расходомера посредством акустического определения изменения состояния потока

Country Status (8)

Country Link
US (1) US8816866B2 (ru)
EP (1) EP2271923B1 (ru)
CN (1) CN102007401B (ru)
BR (1) BRPI0822593B8 (ru)
CA (1) CA2721504C (ru)
MX (1) MX2010011331A (ru)
RU (2) RU2506583C2 (ru)
WO (1) WO2009128864A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506785B2 (en) 2013-03-15 2016-11-29 Rain Bird Corporation Remote flow rate measuring
DE102014119512A1 (de) * 2014-12-23 2016-06-23 Endress + Hauser Flowtec Ag Durchflussmessgerät
ES2583128B1 (es) * 2014-12-30 2019-06-21 Abeinsa Epc Mexico S A De C V Patin de medicion de vapor
US9835592B2 (en) * 2015-06-16 2017-12-05 Mueller International, Llc Determination of tuberculation in a fluid distribution system
US10067092B2 (en) 2015-12-18 2018-09-04 Mueller International, Llc Noisemaker for pipe systems
US10267774B2 (en) 2016-02-29 2019-04-23 Mueller International, Llc External noisemaker for pipe systems
US10222252B2 (en) 2016-05-06 2019-03-05 Big Elk Energy Systems, LLC Portable verification system and method for use in verifying a gas pipeline flow meter when in field
US10634538B2 (en) 2016-07-13 2020-04-28 Rain Bird Corporation Flow sensor
US11326928B2 (en) 2017-05-06 2022-05-10 Big Elk Energy Systems, LLC Portable verification system and method used to verify an in-field gas flow meter
US10473494B2 (en) 2017-10-24 2019-11-12 Rain Bird Corporation Flow sensor
US11662242B2 (en) 2018-12-31 2023-05-30 Rain Bird Corporation Flow sensor gauge
US20200402679A1 (en) * 2019-06-24 2020-12-24 Analysis And Measurement Services Corporation Online Sensor and Process Monitoring System
US10768146B1 (en) 2019-10-21 2020-09-08 Mueller International, Llc Predicting severity of buildup within pipes using evaluation of residual attenuation
US11726064B2 (en) 2020-07-22 2023-08-15 Mueller International Llc Acoustic pipe condition assessment using coherent averaging
US11609348B2 (en) 2020-12-29 2023-03-21 Mueller International, Llc High-resolution acoustic pipe condition assessment using in-bracket pipe excitation
US11965769B2 (en) * 2021-10-21 2024-04-23 Romet Limited Self proving meter system and method of proving a meter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014559A1 (en) * 1994-11-02 1996-05-17 Foster-Miller, Inc. Method and system for analyzing a two-phase flow
US5594180A (en) * 1994-08-12 1997-01-14 Micro Motion, Inc. Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters
WO2005010407A1 (en) * 2003-07-28 2005-02-03 Toyota Jidosha Kabushiki Kaisha Shift control device of automatic transmission
RU2246703C2 (ru) * 2002-04-08 2005-02-20 Шустов Александр Владимирович Устройство для поверки (калибровки) расходомера и способ ускоренной поверки (калибровки) расходомера

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710163A (en) * 1986-06-06 1987-12-01 Ivac Corporation Detection of fluid flow faults in the parenteral administration of fluids
US5191795A (en) 1987-05-01 1993-03-09 Abbott Laboratories Ultrasonic detector
US5161525A (en) * 1990-05-11 1992-11-10 Puritan-Bennett Corporation System and method for flow triggering of pressure supported ventilation
US5533383A (en) * 1994-08-18 1996-07-09 General Electric Company Integrated acoustic leak detection processing system
US5741980A (en) * 1994-11-02 1998-04-21 Foster-Miller, Inc. Flow analysis system and method
US6389881B1 (en) * 1999-05-27 2002-05-21 Acoustic Systems, Inc. Method and apparatus for pattern match filtering for real time acoustic pipeline leak detection and location
US6453247B1 (en) * 2000-01-14 2002-09-17 National Research Council Of Canada PC multimedia-based leak detection system for water transmission and distribution pipes
RU2204113C1 (ru) * 2002-03-28 2003-05-10 ЗАО "Нефтегазкомплектсервис" Носитель датчиков для внутритрубного инспекционного снаряда (варианты)
US6891477B2 (en) * 2003-04-23 2005-05-10 Baker Hughes Incorporated Apparatus and methods for remote monitoring of flow conduits
CA2532592C (en) * 2003-07-15 2013-11-26 Cidra Corporation An apparatus and method for compensating a coriolis meter
CN100543426C (zh) * 2003-07-15 2009-09-23 塞德拉公司 用于补偿科里奥利计的设备和方法
CN1853098B (zh) * 2003-07-18 2010-12-08 罗斯蒙德公司 声学流量计和监测工业过程中固定设备的健康程度的方法
US7882750B2 (en) * 2003-08-01 2011-02-08 Cidra Corporate Services, Inc. Method and apparatus for measuring parameters of a fluid flowing within a pipe using a configurable array of sensors
CN101091105A (zh) * 2005-08-12 2007-12-19 迅捷公司 带气泡检测的流量测量和控制
US20070068225A1 (en) * 2005-09-29 2007-03-29 Brown Gregory C Leak detector for process valve
US8165663B2 (en) * 2007-10-03 2012-04-24 The Invention Science Fund I, Llc Vasculature and lymphatic system imaging and ablation
US8220484B2 (en) * 2008-04-02 2012-07-17 University Of North Carolina At Charlotte Monitoring systems and methods for sewer and other conduit systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594180A (en) * 1994-08-12 1997-01-14 Micro Motion, Inc. Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters
WO1996014559A1 (en) * 1994-11-02 1996-05-17 Foster-Miller, Inc. Method and system for analyzing a two-phase flow
RU2246703C2 (ru) * 2002-04-08 2005-02-20 Шустов Александр Владимирович Устройство для поверки (калибровки) расходомера и способ ускоренной поверки (калибровки) расходомера
WO2005010407A1 (en) * 2003-07-28 2005-02-03 Toyota Jidosha Kabushiki Kaisha Shift control device of automatic transmission

Also Published As

Publication number Publication date
US8816866B2 (en) 2014-08-26
BRPI0822593B1 (pt) 2020-03-24
CA2721504C (en) 2018-12-11
EP2271923B1 (en) 2018-05-02
RU2644451C2 (ru) 2018-02-12
US20110037598A1 (en) 2011-02-17
CA2721504A1 (en) 2009-10-22
CN102007401B (zh) 2013-11-20
RU2013147893A (ru) 2015-05-10
CN102007401A (zh) 2011-04-06
BRPI0822593B8 (pt) 2023-03-14
RU2010146716A (ru) 2012-05-27
EP2271923A1 (en) 2011-01-12
MX2010011331A (es) 2010-12-21
WO2009128864A1 (en) 2009-10-22
BRPI0822593A2 (pt) 2015-06-23
EP2271923A4 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
RU2506583C2 (ru) Способ акустического определения изменения состояния потока текучей среды в трубопроводе (варианты) и система повышения точности расходомера посредством акустического определения изменения состояния потока
KR101758248B1 (ko) 디지털 필터 기능의 수위계를 이용하여 오수펌프장, 배수지의 원격제어진단이 가능한 계측제어시스템
US10401250B2 (en) Leakage detection and leakage location in supply networks
RU2525369C2 (ru) Способ и устройство для повышения в реальном времени эффективности работы трубопровода для транспортировки текучей среды
CA2805524C (en) Sound-velocity dewatering system
CN105698903A (zh) 提供用于仪表校验结果的质量测量的方法
US10184611B2 (en) Detecting fluid properties of a multiphase flow in a condensate drain
Ravula et al. Experimental validation of leak and water-ingression detection in low-pressure gas pipeline using pressure and flow measurements
AU2011338394B2 (en) Method for in-situ calibrating a differential pressure plus sonar flow meter system using dry gas conditions
CN111051827B (zh) 压差测量装置
AU2012202785A1 (en) Monitoring hydrocarbon fluid flow
CN108490870A (zh) 一种智能型消防运转实验台及其实施监控的方法
CN208654615U (zh) 一种智能型消防运转实验台
US20220206483A1 (en) Method and System for Production Accounting in Process Industries Using Artificial Intelligence
CN214794791U (zh) 一种原油分析系统
JP2005293236A (ja) 導管網圧力制御方法および装置
JP2023125843A (ja) 漏水検知装置、漏水検知方法、漏水監視システム、およびプログラム
JPH07117473B2 (ja) パイプラインの漏洩検知装置
EPA et al. ACRONYM DEFINITIONS
Xu et al. Improved Negative Pressure Wave Method for Municipal Water Pipeline Leak Location Using Real-Time Flow and Pressure Data
Lourenco Verification procedures of ultrasonic flow meters for natural gas applications; Procedimento de verificacao de medidores ultra-sonicos para gas natural
JP2020186930A (ja) 加圧配管システム
Gailey et al. Pipeline Diagnostics With Ultrasonic Meters
Brown Ultrasonic metering of liquid hydrocarbon flows