RU2502975C1 - Стенд для испытаний мощного высокооборотного агрегата (варианты) - Google Patents

Стенд для испытаний мощного высокооборотного агрегата (варианты) Download PDF

Info

Publication number
RU2502975C1
RU2502975C1 RU2013103632/06A RU2013103632A RU2502975C1 RU 2502975 C1 RU2502975 C1 RU 2502975C1 RU 2013103632/06 A RU2013103632/06 A RU 2013103632/06A RU 2013103632 A RU2013103632 A RU 2013103632A RU 2502975 C1 RU2502975 C1 RU 2502975C1
Authority
RU
Russia
Prior art keywords
working fluid
gas
recuperator
turbine
heater
Prior art date
Application number
RU2013103632/06A
Other languages
English (en)
Inventor
Николай Сергеевич Зайкин
Андрей Владимирович Каревский
Марина Игоревна Метелкина
Владимир Юрьевич Нечаев
Юрий Аркадьевич Ошев
Сергей Александрович Попов
Александр Вениаминович Семенкин
Сергей Юрьевич Федотов
Сергей Юрьевич Федюнин
Андрей Викторович Чиков
Original Assignee
Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" filed Critical Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша"
Priority to RU2013103632/06A priority Critical patent/RU2502975C1/ru
Application granted granted Critical
Publication of RU2502975C1 publication Critical patent/RU2502975C1/ru

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Стенд для испытания мощного высокооборотного агрегата содержит соосно соединенные турбину, компрессор, электрогенератор и соединительную муфту для испытуемого высокооборотного агрегата, а также стендовые системы газоснабжения, водоснабжения, вакуумирования, электропитания, управления и измерений. Стенд снабжен нагревателем и холодильником газового рабочего тела, теплообменником-рекуператором и трубопроводами. Выход нагревателя соединен с входом турбины. Выход турбины с входом тракта нагретого газового рабочего тела теплообменника-рекуператора. Выход тракта нагретого газового рабочего тела теплообменника-рекуператора с входом холодильника и с выходом системы газового охлаждения электрогенератора. Выход холодильника с входом компрессора и с выходом системы изменения давления газового рабочего тела в течение испытания. Выход компрессора с входом тракта холодного газового рабочего тела теплообменника-рекуператора и с входом системы газового охлаждения электрогенератора. Выход тракта холодного газового рабочего тела теплообменника-рекуператора с входом нагревателя. Нагреватель и трубопроводы нагретого газового рабочего тела выполнены с внутренней негерметичной температуростойкой трубой. Труба образована из трубных отрезков, последовательно вкладываемых своими концевыми частями друг в друга но направлению движения газового рабочего тела. Пространства между корпусом нагревателя и внутренней трубой, между внешней и внутренней трубами трубопроводов надетого газового рабочего тела заполнены высокотемпературной теплоизоляцией. Электрогенератор через коммутатор соединен с электронным инвертором переменной частоты и с блоком задания нагрузочного режима и стабилизации частоты вращения турбины. Другими объектами настоящего изобретения являются стенды, в которых высокооборотный агрегат представляет собой или турбину, или компрессор, или электрогенератор. Изобретение позволяет увеличить длительность испытаний мощных высокооборотных агрегатов на работоспособность. 4 н.п. ф-лы, 4 ил.

Description

Группа изобретений относится к техническим средствам, предназначенным для испытания мощных высокооборотных агрегатов на работоспособность и длительное функционирование, например таких как турбонасосы, турбогенераторы и их составные части. При этом тепловая мощность испытываемых агрегатов может превышать несколько мегаватт.
Известен стенд по патенту RU 2362137 с приоритетом 11.02.2008, который предназначен для испытания турбокомпрессора энергетической установки с помощью пропускания через турбину потока воздуха с большим расходом. Для испытания мощных агрегатов нужен воздух высокого давления, и его необходимо накапливать в ресиверах, подключенных к воздушной магистрали. При этом длительность испытания будет ограничиваться запасом воздуха высокого давления.
Установка для динамических испытаний турбомашин по авторскому свидетельству SU 1165105 с приоритетом 04.03.1983 имеет приводом электродвигатель бесщеточного типа, барокамеру, теплообменники, вакуумную систему, систему измерений. Электродвигатель для испытания мощных высокооборотных агрегатов, развивая требуемые высокие обороты вращения, имел бы ограничение по длительности работы из-за перегрева подшипниковых опор.
Известна установка по авторскому свидетельству SU 1226980 с приоритетом 03.05.1984, на которой с целью регулирования мощности при испытаниях атмосферный воздух подмешивается к выходу газотурбинного двигателя в нагрузочном пневмотормозе и входном смесителе с образованием тракта, содержащего продукты сгорания топлива, что не всегда приемлемо при длительных испытаниях из-за коррозионного воздействия.
Стенд по патенту RU 2402750 с приоритетом 17.09.2008 предназначен для высотно-климатических испытаний турбодвигателей. Он содержит термобарокамеру, регулируемую нагрузку в виде гидротормоза, систему управления и измерений, вакуумную систему, систему водоснабжения, воздухоснабжения, электропитания, термогермокожух для изоляции гидротормоза от условий термобарокамеры. Турбодвигатель содержит турбину, компрессор, стартовый электродвигатель, камеру сгорания и через соединительную муфту подключен к гидротормозу. При испытаниях необходимо пополнять запасы топлива, а продукты сгорания топлива контактируют с испытуемым агрегатом, оказывая коррозионное воздействие.
Единым техническим результатом, достигаемым при осуществлении заявленной группы изобретений, является увеличение длительности испытания мощных высокооборотных агрегатов на работоспособность и длительное функционирование (вплоть до испытания на заданный ресурс) при одновременном исключении воздействия агрессивных газовых сред.
Указанный технический результат по первому варианту стенда достигается тем, что стенд, содержащий соосно соединенные турбину, компрессор, электрогенератор и соединительную муфту для испытуемого высокооборотного агрегата, стендовые системы газоснабжения, водоснабжения, вакуумирования, электропитания, управления и измерений, снабжен нагревателем и холодильником газового рабочего тела, теплообменником-рекуператором и трубопроводами, которые соединяют выход нагревателя с входом турбины, выход турбины с входом тракта нагретого газового рабочего тела теплообменника-рекуператора, выход тракта нагретого газового рабочего тела теплообменника-рекуператора с входом холодильника и с выходом системы газового охлаждения электрогенератора, выход холодильника с входом компрессора и с выходом системы изменения давления газового рабочего тела, выход компрессора с входом тракта холодного газового рабочего тела теплообменника-рекуператора и с входом системы газового охлаждения электрогенератора, выход тракта холодного газового рабочего тела теплообменника-рекуператора с входом нагревателя, при этом нагреватель и трубопроводы нагретого газового рабочего тела выполнены с внутренней негерметичной температуростойкой трубой, которая образована из трубных отрезков, последовательно вкладываемых своими концевыми частями друг в друга по направлению движения газового рабочего тела, и пространства между корпусом нагревателя и внутренней трубой, между внешней и внутренней трубами трубопроводов нагретого газового рабочего тела заполнены высокотемпературной теплоизоляцией, а электрогенератор через коммутатор соединен с электронным инвертором переменной частоты и с блоком задания нагрузочного режима и стабилизации частоты вращения турбины.
Образованный таким образом замкнутый газовый контур, содержащий нагреватель - турбину - нагретый тракт теплообменника-рекуператора - холодильник - компрессор - холодный тракт теплообменника-рекуператора - нагреватель, при некоторых расчетных значениях параметров газового рабочего тела: давление, температура нагрева и охлаждения, состав, скорость циркулирования по контуру - имеет избыточную полезную мощность на общем валу стенда с соединительной муфтой, равную разнице между производимой мощностью турбины и затрачиваемой мощностью компрессора, а сам стенд служит высокооборотным приводом для испытания мощных высокооборотных агрегатов. Поскольку в замкнутом газовом контуре нет расходуемых компонентов, длительность испытания ничем не ограничена. Поскольку газовый контур заполнен одним или смесью нескольких инертных газов, нет воздействия агрессивных сред.
Для испытания мощного агрегата далее увеличивают мощность стенда. Для этого повышают температуру нагрева, давление и скорость циркулирования по контуру газового рабочего тела. При этом стойкость нагретых конструкций контура обеспечивается разделением их функций при работе. Внутренняя труба выдерживает высокую температуру нагретого газа и направляет газовый скоростной поток в контуре, она не герметична. Внешняя труба выдерживает высокое давление газа, но при более низкой рабочей температуре, так как пространство между трубами заполнено высокотемпературной теплоизоляцией. Стенд запускается в работу электронным инвертором переменной частоты, который раскручивает электрогенератор в режиме «двигатель» до того момента, когда мощность турбины начинает превышать затрачиваемую мощность компрессора и появляется избыточная полезная мощность. Электронный инвертор переменной частоты выполнен с электрической мощностью, достаточной для начальной раскрутки электрогенератора, турбины, компрессора и испытуемого высокооборотного агрегата при запуске процесса газотурбинного термодинамического цикла в замкнутом газовом контуре при пониженном давлении газового рабочего тела, разогретом нагревателе, охлажденном холодильнике и испытуемом высокооборотном агрегате на холостом ходу. При появлении избыточной полезной мощности электрогенератор переключается коммутатором на блок задания нагрузочного режима и стабилизации частоты вращения турбины, который воспринимает эту полезную избыточную мощность стенда на омическое сопротивление. Повышением давления газа в контуре полезная мощность увеличивается до заданной номинальной. При переводе испытуемого мощного высокооборотного агрегата с режима холостого хода на номинальный соответственно уменьшают нагрузочный режим электрогенератора. При этом в блоке задания нагрузочного режима и стабилизации частоты вращения турбины омическое сопротивление выполнено с электрической мощностью, превышающей электрическую мощность электрогенератора, развиваемую при испытаниях агрегата. Система изменения давления газового рабочего тела перед началом и в течение испытания содержит дистанционно управляемые клапан напуска рабочего тела из ресивера в контур, компрессор откачки рабочего тела из контура в ресивер и клапан сброса рабочего тела в газовый дренаж стенда. При этом для приготовления газового рабочего тела требуемого состава и предварительного заполнения контура система содержит баллоны разных газов, устройства независимого напуска газов в ресивер, измерения давления, контроля состава газовой смеси, клапан напуска газового рабочего тела из ресивера в замкнутый газовый контур. Для длительной работы часть газа в контуре направляют для охлаждения электрогенератора. Система газового охлаждения электрогенератора содержит последовательно соединенные вспомогательный холодильник газового рабочего тела и устройство регулирования расхода газового рабочего тела, вход системы подключен к выходу компрессора, а выход системы через трубопроводы продувки подшипниковых опор, статора, ротора и зазора между статором и ротором электрогенератора соединен с входом холодильника; при этом устройство регулирования расхода газового рабочего тела содержит набор расходных шайб, включенных параллельно, и в трубопроводах к каждой расходной шайбе установлен автономно включаемый клапан. Нагревающиеся при испытаниях части замкнутого газового контура, не имеющие высокотемпературной теплоизоляции, размещены в вакуумной барокамере, которая снабжена внутренними экранами и внешними полостями, соединенными с системой оборотного водяного охлаждения.
Высокотемпературная теплоизоляция выполнена из волокнистого материала пористой и набивной, может быть сделана из пористой керамики на основе окислов, из войлочного углерод-углеродного материала, из многослойной фольги. Нагреватель для сохранения чистоты газового рабочего тела выполнен на основе омического сопротивления или в виде электродов, которые соединены с генератором электрического разряда в газе. Холодильник представляет собой теплообменник типа «газ - жидкость», теплообменник-рекуператор - типа «газ - газ» с встречным направлением газовых потоков.
Таким образом, совокупность обсужденных выше отличительных признаков: образование замкнутого газового контура с заявленным составом и последовательностью соединения элементов, особенности построения отдельных элементов контура при высоких температуре и давлении, наличие системы запуска и регулирования, системы переменного газонаполнения инертными газами, - обеспечивают получение заявленного технического результата - проведение испытания мощного высокотемпературного агрегата на работоспособность и длительное функционирование при исключении воздействия агрессивных газовых сред.
Указанный технический результат достигается по второму варианту стенда, когда испытуемый мощный высокооборотный агрегат представляет собой турбину, рабочие параметры и размеры которой близки к рабочим параметрам и размерам турбины стенда. В этом случае испытуемый мощный высокооборотный агрегат в качестве турбины стенда соосно соединяется с компрессором и электрогенератором, а стенд снабжен также всеми отличительными признаками первого варианта, взаимосвязь и существенность которых обсуждена ранее.
Указанный технический результат достигается по третьему варианту стенда, когда испытуемый мощный высокооборотный агрегат представляет собой компрессор, рабочие параметры и размеры которого близки к рабочим параметрам и размерам компрессора стенда. В этом случае испытуемый мощный высокооборотный агрегат в качестве компрессора стенда соосно соединяется с турбиной и электрогенератором, а стенд снабжен также всеми отличительными признаками первого варианта, взаимосвязь и существенность которых обсуждена ранее.
Указанный технический результат достигается по четвертому варианту стенда, когда испытуемый мощный высокооборотный агрегат представляет собой электрогенератор, рабочие параметры и размеры которого близки к рабочим параметрам и размерам электрогенератора стенда. В этом случае испытуемый мощный высокооборотный агрегат в качестве электрогенератора стенда соосно соединяется с турбиной и компрессором, а стенд снабжен также всеми отличительными признаками первого варианта, взаимосвязь и существенность которых обсуждена ранее.
На фигурах 1, 2, 3, 4 приведены схемы стенда для испытания мощного высокооборотного агрегата для четырех вариантов.
На фигуре 1 представлена схема стенда по первому варианту. Приведем его описание. К турбине 1, компрессору 2 и электрогенератору 3 через соединительную муфту 4 подсоединен испытуемый высокооборотный агрегат 5 с собственной системой задания нагрузочных режимов. С помощью нагревателя 6 и холодильника 8 газового рабочего тела, теплообменника-рекуператора 7 и трубопроводов 9…14 образован замкнутый газовый контур, соответственно, например, в следующей последовательности: 6-9-1-10-7-11-8-12-2-13-7-14-6. Нагреватель 6 и трубопроводы нагретого газового рабочего тела 9, 10 выполнены с внутренней негерметичной температуростойкой трубой, которая образована из трубных отрезков, последовательно вкладываемых своими концевыми частями друг в друга по направлению движения газового рабочего тела. Разные рабочие температуры внешней и внутренней труб приводят к их разным температурным удлинениям, разница между ними компенсируется подвижностью трубных отрезков внутренней трубы. Пространства между корпусом нагревателя 6 и его внутренней трубой, между внешней и внутренней трубами трубопроводов нагретого газового рабочего тела 9,10 заполнены высокотемпературной теплоизоляцией.
К электрогенератору 3 через коммутатор 15 подключены электронный инвертор переменной частоты 16 и блок 17 задания нагрузочного режима и стабилизации частоты вращения турбины 1. Электронный инвертор переменной частоты 16 выполнен с электрической мощностью, достаточной для начальной раскрутки электрогенератора 3, турбины 1, компрессора 2 и испытуемого высокооборотного агрегата 5 при запуске процесса газотурбинного термодинамического цикла в замкнутом газовом контуре при пониженном давлении газового рабочего тела, разогретом нагревателе 6, охлажденном холодильнике 8 и испытуемом высокооборотном агрегате 5 на холостом ходу. В блоке 17 задания нагрузочного режима и стабилизации частоты вращения турбины 1 омическое сопротивление выполнено с электрической мощностью, превышающей электрическую мощность электрогенератора 3, развиваемую при испытаниях мощного высокооборотного агрегата 5.
Выход системы 18 изменения давления газового рабочего тела в течение испытания подключен к входу компрессора 2 и содержит дистанционно управляемые клапан напуска рабочего тела из ресивера в контур, компрессор откачки рабочего тела из контура в ресивер и клапан сброса рабочего тела в газовый дренаж стенда. При этом для приготовления газового рабочего тела требуемого состава и предварительного заполнения контура система содержит баллоны разных газов, устройства независимого напуска газов в ресивер, измерения давления, контроля состава сложной газовой смеси, клапан напуска газового рабочего тела из ресивера в замкнутый газовый контур. Вход системы 19 газового охлаждения электрогенератора 3 подключен к выходу компрессора 2 (зона наибольшего давления в работающем контуре) и последовательно содержит вспомогательный холодильник газового рабочего тела, устройство регулирования расхода газового рабочего тела, трубопроводы продувки охлажденным газовым рабочим телом статора, ротора и зазора между ними в электрогенераторе 3, выход ее соединен с входом холодильника 8. При этом устройство регулирования расхода газового рабочего тела системы 19 газового охлаждения электрогенератора 3 содержит набор расходных шайб, включенных параллельно, и в трубопроводе к каждой расходной шайбе установлен автономно включаемый клапан.
Нагревающиеся при испытаниях части замкнутого газового контура, не имеющие высокотемпературной теплоизоляции (это турбина 1, компрессор 2 и подводящие к ним части трубопроводов 9, 10), размещены в вакуумной барокамере, которая снабжена внутренними экранами и внешними полостями, соединенными с системой оборотного водяного охлаждения.
Высокотемпературная теплоизоляция выполнена пористой и набивной из волокнистого материала муллита, который набивается в межтрубные пространства с остаточной пористостью; она также может быть выполнена из пористой керамики на основе окислов, из углерод-углеродного войлочного материала, из многослойной фольги. Нагреватель 6 для сохранения чистоты газового рабочего тела выполнен на основе омического сопротивления, также он может быть выполнен в виде электродов, которые соединены с генератором электрического разряда в газе. Холодильник 8 представляет собой теплообменник «газ - жидкость» и подключен к стендовой системе оборотного водяного охлаждения. Теплообменник-рекуператор 7 представляет собой теплообменник «газ - газ» с встречным направлением газовых потоков и установлен для повышения кпд стенда, он значительную долю остаточного тепла газового рабочего тела перед холодильником 8 передает на подогрев газовому рабочему телу перед нагревателем 6.
На фигуре 2 представлена схема стенда по второму варианту, когда испытуемый высокооборотный агрегат 5 представляет собой турбину и соосно соединен с компрессором 2 и электрогенератором 3 в качестве турбины 1 стенда. Далее описание стенда полностью совпадает с описанием стенда по первому варианту.
На фигуре 3 представлена схема стенда по третьему варианту, когда испытуемый высокооборотный агрегат 5 представляет собой компрессор и соосно соединен с турбиной 1 и электрогенератором 3 в качестве компрессора 2 стенда. Далее описание стенда полностью совпадает с описанием стенда по первому варианту.
На фигуре 4 представлена схема стенда по четвертому варианту, когда испытуемый высокооборотный агрегат 5 представляет собой электрогенератор и соосно соединен с турбиной 1 и компрессором 2 в качестве электрогенератора 3 стенда. Далее описание стенда полностью совпадает с описанием стенда по первому варианту.
Заявленный стенд (по всем четырем вариантам) работает по газотурбогенераторному термодинамическому циклу (называемому иногда циклом Брайтона), который состоит из двух изобар, соответствующих процессам нагрева и охлаждения, и, в идеальном случае, двух изоэнтроп, соответствующих процессам сжатия и расширения [см.: например, О.Н. Фаворский, Я.С. Каданер - Вопросы теплообмена в космосе - М.: 1972, стр.65]. Для этого в состав стенда введены нагреватель 6 и холодильник 8 газового рабочего тела, теплообменник-рекуператор 7 и трубопроводы 9… …14, посредством которых образован замкнутый газовый контур 6-9-1-10-7-11-8-12-2-13-7-14-6. Полезная мощность стенда с таким замкнутым газовым контуром записывается как разность работ расширения газа в турбине 1 и сжатия газа в компрессоре 2 при его постоянном расходе (циркулировании) в замкнутом газовом контуре с учетом разных температур газа перед турбиной 1 и перед компрессором 2 вследствие, соответственно, нагрева в нагревателе 6 и охлаждения в холодильнике 8. Теплообменник-рекуператор 7 позволяет повысить общий кпд преобразования. Варьируя род газа и состав газового рабочего тела (для длительной работы в первую очередь подходят инертные газы), его расход (циркулирование) по замкнутому контуру, отношение температур нагрева в нагревателе 6 и охлаждения в холодильнике 8 газа в контуре, степень расширения в турбине 1 и сжатия в компрессоре 2 газа в контуре, рассчитывается требуемая полезная механическая мощность стенда для номинального стационарного режима работы при испытании.
Для стенда по варианту 1 включение стенда происходит в следующей последовательности. Вакуумируются все элементы замкнутого газового контура 6-9-1-10-7-11-8-12-2-13-7-14-6 и присоединенные к нему элементы 3, 18, 19. После приготовления газового рабочего тела требуемого состава в системе 18 проводят заполнение замкнутого газового контура до заданного начального давления. Разогревают нагреватель 6 до заданной начальной температуры и охлаждают холодильник 8, включая охладитель - воду из системы оборотного водяного охлаждения. От электронного инвертора переменной частоты 16 через коммутатор 15 подают электропитание на электрогенератор 3, который в режиме «двигатель» начинает раскручивать всю соосно соединенную сборку 1-2-3-4-5, прогоняя газовое рабочее тело по замкнутому газовому контуру, последовательно через компрессор 2 - теплообменник-рекуператор 7 - нагреватель 6 - турбину 1 - теплообменник-рекуператор 7 - холодильник 8 - компрессор 2. С ростом числа оборотов увеличивается скорость циркулирования газового рабочего тела по контуру и, начиная с некоторого момента, происходит самоподхват контура, т.е. появляется избыточная полезная мощность турбины 1, превышающая затраты на сжатие газа в компрессоре 2, на трение и тепловые потери в контуре. При этом коммутатор 15 отключает электронный инвертор 16 и переключает электрогенератор 3 на блок 17 задания нагрузочного режима и стабилизации частоты вращения турбины 1. Стенд продолжает работать на установившемся начальном режиме. Система стабилизации блока 17 автоматически поддерживает установившееся начальное число оборотов, увеличивая или уменьшая нагрузку на электрогенератор 3 через омическое сопротивление блока 17 в пределах 2-3 кВт.
Далее проводят наращивание мощности стенда до режима холостого хода: плавно увеличивают температуру нагрева рабочего тела в нагревателе 6 до расчетного номинального значения и повышают число оборотов до номинального значения, увеличивая расход рабочего тела через контур повышением давления в контуре с помощью контролируемого напуска газового рабочего тела от системы изменения давления 18. При этом вырабатываемая электрогенератором 3 электроэнергия расходуется блоком 17 только для управления и регулирования данного перехода. На холостом ходу стенд работает при номинальных расчетных параметрах по температуре и числу оборотов. Стабилизация числа оборотов производится блоком 17 посредством использования варьируемой мощности потребления в пределах 2-3 кВт (а именно ±1,5 кВт по сигналу датчика числа оборотов).
Для стенда по первому варианту (фиг.1) нагружение испытуемого мощного высокооборотного агрегата 5 возможно проводить по двум режимам. Первый - плавно увеличивают мощность стенда, увеличивая давление газового рабочего тела в контуре от системы изменения давления 18, отслеживая стабильность остальных параметров. При этом соответствующим образом увеличивают нагрузочный режим в агрегате 5 посредством его собственной системы задания нагрузочных режимов, например управляемым перепускным дросселем для турбокомпрессора и пр. При достижении требуемых режимов для испытания мощного высокооборотного агрегата 5 наращивание мощности стенда останавливают и продолжают испытание на достигнутом стационарном режиме. При большой продолжительности испытания включают систему газового охлаждения 19 электрогенератора 3, который хотя и работает при мощности 2-3 кВт, но вследствие больших оборотов вращения (до 60000 об/мин) требует охлаждения подшипниковых опор при любой их конструкции, продувки ротора и статора и зазора между ними при длительной работе.
Второй режим нагружения - скачкообразный. Мощность стенда увеличивают непрерывно, сбрасывая электроэнергию с электрогенератора 3 на омическое сопротивление блока 17. По достижении требуемого уровня мощности, синхронно включают нагрузочный режим на испытуемом агрегате 5 и выключают блоком задания нагрузочного режима 17 соответствующее энергопотребление в балластной нагрузке - в омическом сопротивлении - оставляя по прежнему 2-3 кВт для стабилизации частоты вращения сборки 1-2-3-4-5.
Для снижения мощности стенда производят откачку газового рабочего тела из контура посредством системы 18 изменения давления в ресивер системы 18. Давление в контуре плавно уменьшается под непрерывным контролем блока 17 задания нагрузочного режима и стабилизации частоты вращения.
При аварийном сбросе мощности стенда в системе изменения давления 18 включают клапан сброса газового рабочего тела из контура в дренаж стенда и выключают нагреватель 6. При этом давление сбрасывается до минимального начального, чтобы в режиме «двигатель» электрогенератором 3 проводить циркулирование контура и охлаждать более инерционные в тепловом отношении элементы и агрегаты контура. Режим «двигатель» у электрогенератора 3 обеспечивает электронный инвертор переменной частоты 16, как и при включении стенда в работу.
Стенд останавливают после охлаждения всех элементов и агрегатов контура до приемлемых температур. При этом циркулирование контура прекращают, отключая коммутатором 15 электронный инвертор 16, и сбрасывают давление в контуре до атмосферного системой 18.
Ограничения длительности испытания стенд по первому варианту не имеет, так как нет расходуемых компонентов, нет агрессивных сред, воздействующих на материалы конструкции, стенд работает на инертных газах.
Приведем далее пример реализации стенда по первому варианту для испытания мощного высокооборотного агрегата 5 мощностью 200 кВт. Параметры газового замкнутого контура следующие:
- рабочее тело - смесь He и Xe с массовым содержанием гелия 7,17%;
- давление рабочего тела за компрессором 2 на входе в нагреватель 6 3,4 МПа;
- степень повышения давления в компрессоре 2 2,6;
- частота вращения в соосно соединенных агрегатах 1-2-3-4-5 60000 об/мин;
- температура рабочего тела после нагревателя 6 перед турбиной 1 1500 К;
- температура рабочего тела после турбины 1 1130 К;
- температура рабочего тела на выходе из холодильника 8 394 К;
- объем замкнутого газового контура 6-9-1-10-7-11-8-12-2-13-7-14-6 0,75 м3;
- масса рабочего тела в замкнутом газовом контуре 10,4 кг;
- циклический расход рабочего тела в замкнутом газовом контуре 3,47 кг/с;
- тепловая мощность турбины 1 658кВт;
- тепловая мощность компрессора 2 433кВт;
- электрическая мощность электрогенератора 3 200 кВт;
- тепловая мощность нагревателя 6 не менее 750кВт;
- самоподхват контура происходит при температуре рабочего тела перед турбиной 1, равной 950 К, при давлении рабочего тела за компрессором 2, равным 0,34 МПа, при частоте вращения 12000 об/мин.
При испытании на стационарном режиме вся заявленная мощность 200 кВт прикладывается к испытуемому мощному высокооборотному агрегату 5 с его собственной системой нагружения, а электрогенератор 3 работает на мощности 2-3 кВт, потребляемой блоком 17 для стабилизации частоты вращения сосной сборки 1-2-3-4-5.
Для стенда по вариантам 2, 3, 4 (фиг.2, 3, 4) включение стенда происходит в той же последовательности, что и для стенда по варианту 1, описанной ранее. Отличием является соосно соединенная сборка 1-2-3 вместо сборки 1-2-3-4-5.
Для стенда по вариантам 2,3,4 нагружение испытуемого мощного высокооборотного агрегата 5 проводится одинаково и возможно только в одном режиме. Плавно увеличивают мощность стенда, увеличивая давление газового рабочего тела в контуре системой изменения давления 18, отслеживая стабильность остальных параметров блоком 17. При этом электроэнергия, вырабатываемая электрогенератором 3, сбрасывается на омическое сопротивление блока 17. При достижении требуемого уровня мощности увеличение давления газового рабочего тела в контуре прекращают, и блок 17 далее следит за стабильностью параметров, варьируя нагрузочную мощность в пределах 2-3 кВт на достигнутом уровне мощности, например, 200 кВт.
Для стенда по вариантам 2, 3, 4 снижение мощности и останов проводят аналогично описанным процедурам для стенда по первому варианту.
Для стенда по вариантам 2, 3, 4 ограничения длительности испытания также не имеется, так как нет расходуемых компонентов, нет агрессивных сред, воздействующих на материалы конструкции, стенд работает на инертных газах.
Пример реализации стенда по второму варианту (фиг.2) следует по расчетным параметрам стенда по первому варианту. Однако мощность, при которой проходит испытание на стенде по второму варианту для испытуемого мощного высокооборотного агрегата 5, представляющего собой турбину 1 стенда, равна 658 кВт.
Пример реализации стенда по третьему варианту (фиг.3) следует по расчетным параметрам стенда по первому варианту. Однако мощность, при которой проходит испытание на стенде по третьему варианту для испытуемого мощного высокооборотного агрегата 5, представляющего собой компрессор 2 стенда, равна 433 кВт.
Пример реализации стенда по четвертому варианту (фиг.4) следует по расчетным параметрам стенда по первому варианту. Однако мощность, при которой проходит испытание на стенде по четвертому варианту для испытуемого мощного высокооборотного агрегата 5, представляющего собой электрогенератор 3 стенда, равна 200 кВт.
В этих примерах реализации стенда по вариантам 2, 3, 4 нагружение испытуемого мощного высокооборотного агрегата происходит через блок 17 на омическое сопротивление.

Claims (4)

1. Стенд для испытания мощного высокооборотного агрегата, содержащий соосно соединенные турбину, компрессор, электрогенератор и соединительную муфту для испытуемого высокооборотного агрегата, стендовые системы газоснабжения, водоснабжения, вакуумирования, электропитания, управления и измерений, отличающийся тем, что стенд снабжен нагревателем и холодильником газового рабочего тела, теплообменником-рекуператором и трубопроводами, которые соединяют выход нагревателя с входом турбины, выход турбины с входом тракта нагретого газового рабочего тела теплообменника-рекуператора, выход тракта нагретого газового рабочего тела теплообменника-рекуператора с входом холодильника и с выходом системы газового охлаждения электрогенератора, выход холодильника с входом компрессора и с выходом системы изменения давления газового рабочего тела в течение испытания, выход компрессора с входом тракта холодного газового рабочего тела теплообменника-рекуператора и с входом системы газового охлаждения электрогенератора, выход тракта холодного газового рабочего тела теплообменника-рекуператора с входом нагревателя, при этом нагреватель и трубопроводы нагретого газового рабочего тела выполнены с внутренней негерметичной температуростойкой трубой, которая образована из трубных отрезков, последовательно вкладываемых своими концевыми частями друг в друга по направлению движения газового рабочего тела, и пространства между корпусом нагревателя и внутренней трубой, между внешней и внутренней трубами трубопроводов нагретого газового рабочего тела заполнены высокотемпературной теплоизоляцией, а электрогенератор через коммутатор соединен с электронным инвертором переменной частоты и с блоком задания нагрузочного режима и стабилизации частоты вращения турбины.
2. Стенд для испытания мощного высокооборотного агрегата, содержащий соосно соединенные компрессор и электрогенератор, стендовые системы газоснабжения, водоснабжения, вакуумирования, электропитания, управления и измерений, отличающийся тем, что компрессор и электрогенератор соосно соединены с испытуемым высокооборотным агрегатом, представляющим собой турбину, а стенд снабжен нагревателем и холодильником газового рабочего тела, теплообменником-рекуператором и трубопроводами, которые соединяют выход нагревателя с входом турбины, выход турбины с входом тракта нагретого газового рабочего тела теплообменника-рекуператора, выход тракта нагретого газового рабочего тела теплообменника-рекуператора с входом холодильника и с выходом системы газового охлаждения электрогенератора, выход холодильника с входом компрессора и с выходом системы изменения давления газового рабочего тела в течение испытания, выход компрессора с входом тракта холодного газового рабочего тела теплообменника-рекуператора и с входом системы газового охлаждения электрогенератора, выход тракта холодного газового рабочего тела теплообменника-рекуператора с входом нагревателя, при этом нагреватель и трубопроводы нагретого газового рабочего тела выполнены с внутренней негерметичной температуростойкой трубой, которая образована из трубных отрезков, последовательно вкладываемых своими концевыми частями друг в друга по направлению движения газового рабочего тела, и пространства между корпусом нагревателя и внутренней трубой, между внешней и внутренней трубами трубопроводов нагретого газового рабочего тела заполнены высокотемпературной теплоизоляцией, а электрогенератор через коммутатор соединен с электронным инвертором переменной частоты и с блоком задания нагрузочного режима и стабилизации частоты вращения турбины.
3. Стенд для испытания мощного высокооборотного агрегата, содержащий соосно соединенные турбину и электрогенератор, стендовые системы газоснабжения, водоснабжения, вакуумирования, электропитания, управления и измерений, отличающийся тем, что турбина и электрогенератор соосно соединены с испытуемым высокооборотным агрегатом, представляющим собой компрессор, а стенд снабжен нагревателем и холодильником газового рабочего тела, теплообменником-рекуператором и трубопроводами, которые соединяют выход нагревателя с входом турбины, выход турбины с входом тракта нагретого газового рабочего тела теплообменника-рекуператора, выход тракта нагретого газового рабочего тела теплообменника-рекуператора с входом холодильника и с выходом системы газового охлаждения электрогенератора, выход холодильника с входом компрессора и с выходом системы изменения давления газового рабочего тела в течение испытания, выход компрессора с входом тракта холодного газового рабочего тела теплообменника-рекуператора и с входом системы газового охлаждения электрогенератора, выход тракта холодного газового рабочего тела теплообменника-рекуператора с входом нагревателя, при этом нагреватель и трубопроводы нагретого газового рабочего тела выполнены с внутренней негерметичной температуростойкой трубой, которая образована из трубных отрезков, последовательно вкладываемых своими концевыми частями друг в друга по направлению движения газового рабочего тела, и пространства между корпусом нагревателя и внутренней трубой, между внешней и внутренней трубами трубопроводов нагретого газового рабочего тела заполнены высокотемпературной теплоизоляцией, а электрогенератор через коммутатор соединен с электронным инвертором переменной частоты и с блоком задания нагрузочного режима и стабилизации частоты вращения турбины.
4. Стенд для испытания мощного высокооборотного агрегата, содержащий соосно соединенные турбину и компрессор, стендовые системы газоснабжения, водоснабжения, вакуумирования, электропитания, управления и измерений, отличающийся тем, что турбина и компрессор соосно соединены с испытуемым высокооборотным агрегатом, представляющим собой электрогенератор, а стенд снабжен нагревателем и холодильником газового рабочего тела, теплообменником-рекуператором и трубопроводами, которые соединяют выход нагревателя с входом турбины, выход турбины с входом тракта надетого газового рабочего тела теплообменника-рекуператора, выход тракта нагретого газового рабочего тела теплообменника-рекуператора с входом холодильника и с выходом системы газового охлаждения электрогенератора, выход холодильника с входом компрессора и с выходом системы изменения давления газового рабочего тела в течение испытания, выход компрессора с входом тракта холодного газового рабочего тела теплообменника-рекуператора и с входом системы газового охлаждения электрогенератора, выход тракта холодного газового рабочего тела теплообменника-рекуператора с входом нагревателя, при этом нагреватель и трубопроводы нагретого газового рабочего тела выполнены с внутренней негерметичной температуростойкой трубой, которая образована из трубных отрезков, последовательно вкладываемых своими концевыми частями друг в друга по направлению движения газового рабочего тела, и пространства между корпусом нагревателя и внутренней трубой, между внешней и внутренней трубами трубопроводов нагретого газового рабочего тела заполнены высокотемпературной теплоизоляцией, а электрогенератор через коммутатор соединен с электронным инвертором переменной частоты и с блоком задания нагрузочного режима и стабилизации частоты вращения турбины.
RU2013103632/06A 2013-01-29 2013-01-29 Стенд для испытаний мощного высокооборотного агрегата (варианты) RU2502975C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013103632/06A RU2502975C1 (ru) 2013-01-29 2013-01-29 Стенд для испытаний мощного высокооборотного агрегата (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013103632/06A RU2502975C1 (ru) 2013-01-29 2013-01-29 Стенд для испытаний мощного высокооборотного агрегата (варианты)

Publications (1)

Publication Number Publication Date
RU2502975C1 true RU2502975C1 (ru) 2013-12-27

Family

ID=49817778

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013103632/06A RU2502975C1 (ru) 2013-01-29 2013-01-29 Стенд для испытаний мощного высокооборотного агрегата (варианты)

Country Status (1)

Country Link
RU (1) RU2502975C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677478A (zh) * 2017-08-10 2018-02-09 中国北方发动机研究所(天津) 一种涡轮增压器性能试验台的压气机出口测试段
RU189719U1 (ru) * 2019-02-13 2019-05-31 Федеральное Государственное Бюджетное Образовательное Учереждение Высшего Образования "Самарский Государственный Университет Путей Сообщения" (Самгупс) Стенд для испытания высокооборотных электрических машин

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1226980A1 (ru) * 1984-05-03 2005-09-10 Е.Д. Стенькин Установка для испытания газотурбинного двигателя со свободной турбиной
SU1165105A1 (ru) * 1983-03-04 2006-06-10 О.Б. Антонов Установка для динамических испытаний турбомашин
DE102007016420A1 (de) * 2007-04-05 2008-10-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Prüfstand und Verfahren zum Überprüfen eines Antriebsstrangs
RU2362137C1 (ru) * 2008-02-11 2009-07-20 Государственное образовательное учреждение высшего профессионального образования Омский государственный университет путей сообщения Стенд для "холодной" обкатки турбокомпрессоров энергетических установок
RU2402750C2 (ru) * 2008-09-17 2010-10-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Стенд для высотно-климатических испытаний турбовинтовых и турбовальных двигателей
CN201820109U (zh) * 2010-09-17 2011-05-04 济南轨道交通装备有限责任公司 风力发电机组试验台用在线状态监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1165105A1 (ru) * 1983-03-04 2006-06-10 О.Б. Антонов Установка для динамических испытаний турбомашин
SU1226980A1 (ru) * 1984-05-03 2005-09-10 Е.Д. Стенькин Установка для испытания газотурбинного двигателя со свободной турбиной
DE102007016420A1 (de) * 2007-04-05 2008-10-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Prüfstand und Verfahren zum Überprüfen eines Antriebsstrangs
RU2362137C1 (ru) * 2008-02-11 2009-07-20 Государственное образовательное учреждение высшего профессионального образования Омский государственный университет путей сообщения Стенд для "холодной" обкатки турбокомпрессоров энергетических установок
RU2402750C2 (ru) * 2008-09-17 2010-10-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Стенд для высотно-климатических испытаний турбовинтовых и турбовальных двигателей
CN201820109U (zh) * 2010-09-17 2011-05-04 济南轨道交通装备有限责任公司 风力发电机组试验台用在线状态监测系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677478A (zh) * 2017-08-10 2018-02-09 中国北方发动机研究所(天津) 一种涡轮增压器性能试验台的压气机出口测试段
RU189719U1 (ru) * 2019-02-13 2019-05-31 Федеральное Государственное Бюджетное Образовательное Учереждение Высшего Образования "Самарский Государственный Университет Путей Сообщения" (Самгупс) Стенд для испытания высокооборотных электрических машин

Similar Documents

Publication Publication Date Title
CN106884723B (zh) 利用热管用于燃气涡轮发动机的闭环冷却方法和系统
US10280803B2 (en) Energy storage device and method for storing energy
US20140102098A1 (en) Bypass and throttle valves for a supercritical working fluid circuit
JP2014139429A (ja) ガス・タービン・エンジンに対する能動的構成部品寿命管理のためのシステムおよび方法
US20100263405A1 (en) Cryogenic Refrigeration Method And Device
JP2014109279A (ja) 統合ボトミングサイクルシステムを備えたガスタービンエンジン
EP1985946B1 (en) Heat pump system and method for operating a heat pump system
JP6382355B2 (ja) ガスタービン発電機の冷却
JP2019011754A (ja) 軸受加圧流体源としてインタークーラ冷却流体を使用するためのシステムおよび方法
RU2502975C1 (ru) Стенд для испытаний мощного высокооборотного агрегата (варианты)
JP2005345084A (ja) 排熱回収冷凍空調システム
JP2010031866A (ja) ターボ機械用のヒートパイプ中間冷却器
CN101939510A (zh) 用于产生电能的封闭的热力学系统
La Fleur Description of an operating closed cycle: helium gas turbine
JP6181138B2 (ja) 軸シール装置及び発電システム
RU2583478C2 (ru) Рекуперационная установка
JP2007051636A (ja) 低温適用用のターボ機械
JP2016522870A (ja) 防振システムを有するターボポンプ
JP2010077856A (ja) 非常用ディーゼル発電設備及び非常用ディーゼル発電設備の運転方法
JP2009068367A (ja) 発電装置
US3398525A (en) Combined multistage power plant having a rotary compressor serving as the low pressure stage and a rotary pressure-wave machine serving as the high pressure stage
KR20160112309A (ko) 누설 유체를 재생하는 터보 팽창기
US10718346B2 (en) Apparatus for pressurizing a fluid within a turbomachine and method of operating the same
RU2629515C1 (ru) Система для утилизации тепла замкнутого типа (варианты)
JP2016160807A (ja) タービンロータの位置調整装置およびコンバインドサイクル発電設備