RU2492553C1 - Конструкция фотоэлектрического гибкого модуля - Google Patents

Конструкция фотоэлектрического гибкого модуля Download PDF

Info

Publication number
RU2492553C1
RU2492553C1 RU2012105908/28A RU2012105908A RU2492553C1 RU 2492553 C1 RU2492553 C1 RU 2492553C1 RU 2012105908/28 A RU2012105908/28 A RU 2012105908/28A RU 2012105908 A RU2012105908 A RU 2012105908A RU 2492553 C1 RU2492553 C1 RU 2492553C1
Authority
RU
Russia
Prior art keywords
film
design
module
films
transparent
Prior art date
Application number
RU2012105908/28A
Other languages
English (en)
Other versions
RU2012105908A (ru
Inventor
Виталий Владимирович Апенышев
Михаил Викторович Гришин
Виктор Сергеевич Белоусов
Тихон Викторович Белоусов
Наталья Анатольевна Петрова
Елена Владимировна Протасова
Original Assignee
Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" filed Critical Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ"
Priority to RU2012105908/28A priority Critical patent/RU2492553C1/ru
Publication of RU2012105908A publication Critical patent/RU2012105908A/ru
Application granted granted Critical
Publication of RU2492553C1 publication Critical patent/RU2492553C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые, помимо основной функции, могут быть дополнительно использованы в качестве элементов промышленного и строительного дизайна, подвергающихся упругой деформации в продольном и/или поперечном направлении. Заявленная конструкция фотоэлектрического гибкого модуля представляет собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку. Нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала. В качестве армирующих слоев используют прозрачные для солнечного света перфорированные пленки из антиадгезивного материала или покрытые слоем антиадгезивного материала, перфорация в которых выполнена в виде регулярно расположенных отверстий. Технический результат - обеспечение обратимой (упругой) деформации плоскости фотоэлектрического модуля одновременно в двух и более направлениях. 3 ил.

Description

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые, помимо основной функции (генерации фототоэлектричества), могут быть дополнительно использованы в качестве элементов промышленного и строительного дизайна, подвергающихся упругой деформации в продольном и (или) поперечном направлении (кручение или изгиб).
К таким конструктивным элементам, в частности, могут относиться:
- быстроразвертываемые переносные системы энергообеспечения при аварийно-спасательных и восстановительных работах;
- располагаемые на крышах автомобилей или вагонов поездов системы дополнительного энергообеспечения;
- модули, служащие крышами обособленных объектов (остановок автотранспорта, информационных табло, телефонных будок и пр.) и одновременно обеспечивающие автономное электрообеспечение объекта;
- модули в виде эластичных кровельных материалов и плит, а также ненесущих стен-перегородок для фасадных работ.
Для применения фотоэлектрических модулей в таком качестве необходимо обеспечить с одной стороны - достаточную гибкость конструкции (для того, чтобы вписаться в общий конструктивный дизайн), с другой стороны - необходимо обеспечить достаточную жесткость конструкции, способной сопротивляться распределенным (ветровым) или сосредоточенным нагрузкам (например, удар ледяных градин или случайное надавливание рукой), приложенным к фотоэлектрическому модулю. Кроме того, фотоэлектрический модуль должен быть максимально легким.
Известна конструкция фотоэлектрического гибкого модуля, состоящая из эластичного полимерного основания, на котором сформирован слой аморфного кремния методом осаждения из газовой фазы [1].
Подобная конструкция может иметь высокую гибкость (практически достигающую 100%) при использовании в качестве основания тонкой полимерной пленки.
Простота и невысокая стоимость производства делает модули из аморфного кремния востребованными в самых широких сферах человеческой деятельности, однако их КПД составляет 8-11%, что существенно ниже, чем КПД для модулей на основе монокристаллического кремния, который достигает 30%.
К тому же модули из аморфного кремния менее долговечны из-за значительной деградации электрофизических свойств аморфного кремния при длительном воздействии солнечного света.
Известна также конструкция фотоэлектрического гибкого модуля, предусматривающая размещение на поверхности гибкой сетчатой мембраны рамы из солнечных элементов, коммутированных между собой с помощью металлических шин и покрытых с лицевой и тыльной сторон защитными стеклянными пластинами [2].
Недостатком данной конструкции является невозможность обеспечения регулярности деформируемой плоскости модуля (деформируется лишь сетчатая мембрана, тогда как каждый из входящих в состав модуля солнечных элементов деформации не подвергается: изменяется лишь пространственное расположение элементов относительно друг друга).
Известна конструкция фотоэлектрического гибкого модуля, представляющая собой единую конструкцию близко расположенных между собой солнечных элементов на гибком основании из синтетического материала («Капитона»), в котором солнечные элементы соединяются с основанием посредством твердеющего полимерного адгезионного слоя, в котором имеются металлические частицы, обеспечивающие эффективное соединение солнечных элементов в единую электрическую цепь [3].
Недостатком такой конструкции является ее малая жесткость. Гибкость фотоэлектрического модуля обеспечивается в первую очередь возможностью упругой деформации его основания. При малой толщине слоя основания фотоэлектрический модуль обладает малой жесткостью, что в ряде случаев неприемлемо.
Увеличение жесткости конструкции модуля возможно лишь за счет увеличения толщины основания, а это приводит к увеличению веса фотоэлектрического модуля, что также является неприемлемым решением.
Наиболее близким по технической сущности и достигаемому результату является фотоэлектрический гибкий модуль, содержащий прозрачные для солнечного света верхнюю и нижнюю несущие пленки, расположенные между несущими пленками электрически соединенные между собой солнечные элементы, скрепленные с несущими пленками прозрачными для солнечного света верхней и нижней скрепляющей пленками, содержащими армирующие слои в виде сетки из высокопрочных искусственных нитей, прозрачных для солнечного света и пропитанные веществом (или содержащие такое вещество) с низким коэффициентом поглощения и рассеивания света [4].
Конструкция фотоэлектрического гибкого модуля поясняется фиг.1, где:
1 и 7- верхняя и нижняя несущие пленки соответственно;
2 и 6 - верхняя и нижняя скрепляющие пленки соответственно;
3 и 5 - верхний и нижний армирующие слои (сетки из высокопрочных искусственных нитей) соответственно;
4 - солнечные элементы.
Максимальная компенсация упругой деформации плоскости фотоэлектрического гибкого модуля за счет введенной в его конструкцию сетки 3 и 5 из прозрачных высокопрочных нитей обеспечивается при расположении нитей параллельно плоскости фотоэлектрического гибкого модуля.
Если высокопрочные искусственные нити сориентировать в направлении вектора внутреннего напряжения предполагаемого изгиба фотоэлектрического гибкого модуля, то тем самым можно дополнительно повысить устойчивость фотоэлектрического гибкого модуля к деформирующим напряжениям, возникающим при конкретных условиях его эксплуатации.
Если фотоэлектрический гибкий модуль предполагается эксплуатировать в виде изогнутой в продольном и поперечном направлении упругодеформированной конструкции (при размещении его на сложнопрофилированных поверхностях, таких как на бампер автомобиля, элементы такелажа катеров или яхт и т.п.), оптимальным расположением высокопрочных искусственных нитей в таком случае является диагонально-перекрестное.
Для того чтобы дополнительно введенная в конструкцию фотоэлектрического гибкого модуля сетка из высокопрочных искусственных нитей не ухудшала его электрофизические параметры, высокопрочные искусственные нити пропитывают веществом с низким коэффициентом поглощения и рассеивания света (например, кремнийорганической жидкостью, представляющей собой смесь полисилоксана, содержащего диметил- или (и) диэтилвинилсилоксановые звенья, платинового катализатора и сшивающего агента).
Одним из вариантов конструкции сетки из высокопрочных искусственных нитей, пропитанных веществом с низким коэффициентом поглощения и рассеивания света является сетка, в которой в качестве искусственных нитей используются нити из вещества с низким коэффициентом поглощения и рассеивания света.
Толщина верхней 1 и нижней 7 несущих пленок ~0,4 мм. Толщина верхней 2 и нижней 6 скрепляющих пленок вместе с введенными в них сетками 3 и 5 из высокопрочных искусственных нитей составляет ~0,3 мм. Толщина кремниевых монокристаллических солнечных элементов 4 составляет 100÷250 мкм. Общая толщина фотоэлектрического гибкого модуля составляет ~1,4÷1,5 мм. При этом радиус максимально возможной кривизны под действием изгибающих напряжений, при которых еще не происходит разрушение кремниевых солнечных элементов, составляет ~25÷30 см.
Указанный фотоэлектрический гибкий модуль может быть подвергнут упругой деформации только в одном (продольном, поперечном либо диагональном) направлении, при этом возможный радиус кривизны модуля примерно равен соответственно длине или ширине фотоэлектрического гибкого модуля при изгибающих напряжениях, приложенных соответственно к противоположным краям по длине или по ширине модуля.
Недостатком такой конструкции является невозможность упругой деформации плоскости гибкого модуля одновременно в нескольких направлениях без механического разрушения солнечных элементов модуля.
Задачей изобретения является обеспечение обратимой (упругой) деформации плоскости фотоэлектрического модуля одновременно в двух и более направлениях.
Это достигается за счет того, что в конструкции фотоэлектрического гибкого модуля, представляющей собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, в качестве армирующих слоев используют прозрачные для солнечного света перфорированные пленки из антиадгезивного материала или покрытые слоем антиадгезивного материала, перфорация в которых выполнена в виде регулярно расположенных отверстий.
Конструкция заявляемого фотоэлектрического гибкого модуля поясняется фиг.2, где:
1 и 7- верхняя и нижняя несущие пленки соответственно;
2 и 6 - верхняя и нижняя скрепляющие пленки соответственно;
3 и 5 - верхний и нижний армирующие слои соответственно;
4 - солнечные элементы;
8 и 9 - отверстия в верхнем и нижнем армирующих слоях соответственно.
В качестве антиадгезивного армирующего слоя используют прозрачную для солнечного света перфорированную этиленвинилацетатную пленку «ЭВА», обработанную антиадгезивным составом (например, силиконовым антиадгезивом «SYL-OFF» фирмы «Dow Corning»). Толщина пленки выбирается из расчета 200-350 мкм и обусловлена типичными размерами этиленацетатных пленок, выпускаемых промышленностью для использования в технологии электроники и солнечной энергетики.
Сцепление несущей и скрепляющей пленок друг с другом в заявляемой конструкции фотоэлектрического гибкого модуля осуществляется только через отверстия в перфорированной пленке в процессе изготовления модуля (на операции ламинирования солнечных элементов).
Эта особенность конструкции поясняется фиг.3, где:
7 - нижняя несущая пленка;
2 и 6 - верхняя и нижняя скрепляющие пленки соответственно;
5 - нижний армирующий слой;
4 - солнечные элементы;
9 - отверстия в нижнем армирующем слое 5;
10 - область отсутствия сцепления пленок 7 и 8;
11 - область отсутствия сцепления пленок 6 и 8.
За счет антиадгезивных свойств пленки 5 вне областей сцепления 9 пленка 5 оказывается не жестко прикрепленной к поверхностям пленок 6 и 7 в местах 10 и 11. Таким образом, области 9 выполняют функцию демпферов упругой деформации в любом направлении плоскости модуля.
Отверстия в перфорированной пленке должны иметь правильную геометрическую форму (круг, квадрат, правильный шестигранник и т.п.). В этом случае обеспечиваются условия пластической деформации конструкции модуля как минимум в двух плоскостях одновременно, не приводящей к механическим повреждениям солнечных элементов.
Соотношение площадей перфорируемых отверстий и площади неперфорированной поверхности пленки может варьироваться в широких пределах и определяется только условиями дальнейшей эксплуатации модуля: чем меньше это соотношение, тем большую жесткость имеет конструкция и, соответственно, тем меньшей пластической деформации может быть подвергнут модуль.
Большие соотношения площадей перфорируемых отверстий и площади неперфорированной поверхности пленки (90% и более) неприемлемы с точки зрения технологии перфорации пленки и снижения ее механической прочности, что, в свою очередь, затрудняет технологические операции с использованием такой пленки (в частности, процесс ламинирования модуля).
Оптимальным соотношением площадей перфорируемых отверстий и площади неперфорированной поверхности пленки является 50%, что легко реализуется при использовании перфорации в воде отверстий круглой формы.
В известных науке и технике решениях аналогичной задачи не обнаружено использование в фотоэлектрических гибких модулях в качестве армирующего слоя дополнительно введенной перфорированной пленки из антиадгезивного материала или покрытой антиадгезивным материалом.
Реализация предлагаемой конструкции фотоэлектрического гибкого модуля материала осуществляется следующим образом.
На монтажном столе раскладывается пленка первого пластика (прозрачная этилен-тетрафлюроэтиленовая пленка «TEFZEL» заданной площади). На нее сверху укладывается пленка «ЭВА», обработанная антиадгезивным составом «SYL-OFF» фирмы «DOW CORNING», толщиной 250 мкм, в которой предварительно методом прокатки ленты через ошипованные валики сделаны отверстия размером 10,0×10,0 мм на расстоянии 0,8 мм друг от друга. Сверху этой пленки укладывается этиленвинилацетатная пленка «ЭВА».
Поверх этой стопки укладывается распаянная цепочка солнечных элементов из монокристаллического кремния. Толщина каждого солнечного элемента составляет ~200 мкм.
Поверх солнечных элементов последовательно укладывают пленку «ЭВА», сверху нее - обработанную антиадгезивным составом «SYL-OFF» перфорированную пленку «ЭВА», а затем - пленку «TEFZEL».
Приготовленная слоистая заготовка помещается в ламинатор, где происходит формирование фотоэлектрического модуля при температуре ~150°C в течение 20 мин.
Сформированный таким образом фотоэлектрический гибкий модуль может быть подвергнут упругой деформации как в продольном, так и в поперечном направлениях одновременно, при этом возможный радиус кривизны модуля примерно равен соответственно длине или ширине фотоэлектрического гибкого модуля.
Технический результат, достигаемый при использовании предлагаемой конструкции, заключается в обеспечении упругой деформации плоскости фотоэлектрического гибкого модуля одновременно в двух и более направлениях.
Источники информации
1. Патент РФ, МПК: H01L 31/18, №2190901 от 24 сентября 1997 г.
2. Патент РФ, МПК: H01L 31/05, №2234166 от 21 апреля 2003 г.
3. Патент США, МПК: H01L 35/04, №4043834 от 23 августа 1977 г.
4. Патент РФ, МПК: F24J 2/42, H01L 31/00, №2416056 от 17 декабря 2009 г. - прототип.

Claims (1)

  1. Конструкция фотоэлектрического гибкого модуля, представляющая собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, отличающаяся тем, что в качестве армирующих слоев используют прозрачные для солнечного света перфорированные пленки из антиадгезивного материала или покрытые слоем антиадгезивного материала, перфорация в которых выполнена в виде регулярно расположенных отверстий.
RU2012105908/28A 2012-02-21 2012-02-21 Конструкция фотоэлектрического гибкого модуля RU2492553C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012105908/28A RU2492553C1 (ru) 2012-02-21 2012-02-21 Конструкция фотоэлектрического гибкого модуля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012105908/28A RU2492553C1 (ru) 2012-02-21 2012-02-21 Конструкция фотоэлектрического гибкого модуля

Publications (2)

Publication Number Publication Date
RU2012105908A RU2012105908A (ru) 2013-08-27
RU2492553C1 true RU2492553C1 (ru) 2013-09-10

Family

ID=49163433

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012105908/28A RU2492553C1 (ru) 2012-02-21 2012-02-21 Конструкция фотоэлектрического гибкого модуля

Country Status (1)

Country Link
RU (1) RU2492553C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629128C1 (ru) * 2016-09-30 2017-08-24 Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрическая гибкая панель
RU2636575C1 (ru) * 2016-07-01 2017-11-24 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Способ изготовления пластичных радиоэлектронных узлов и межсоединений
RU178429U1 (ru) * 2017-08-21 2018-04-04 Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический усиленный гибкий модуль

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043834A (en) * 1975-09-18 1977-08-23 Licentia Patent-Verwaltungs-G.M.B.H. Flexible solar generator panel
RU2410796C1 (ru) * 2010-01-19 2011-01-27 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Конструкция фотоэлектрического модуля
RU2416056C1 (ru) * 2009-12-17 2011-04-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический гибкий модуль

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043834A (en) * 1975-09-18 1977-08-23 Licentia Patent-Verwaltungs-G.M.B.H. Flexible solar generator panel
RU2416056C1 (ru) * 2009-12-17 2011-04-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический гибкий модуль
RU2410796C1 (ru) * 2010-01-19 2011-01-27 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Конструкция фотоэлектрического модуля

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636575C1 (ru) * 2016-07-01 2017-11-24 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Способ изготовления пластичных радиоэлектронных узлов и межсоединений
RU2629128C1 (ru) * 2016-09-30 2017-08-24 Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрическая гибкая панель
RU178429U1 (ru) * 2017-08-21 2018-04-04 Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический усиленный гибкий модуль

Also Published As

Publication number Publication date
RU2012105908A (ru) 2013-08-27

Similar Documents

Publication Publication Date Title
DK2863443T3 (en) Photovoltaic panel and method for making it
RU2416056C1 (ru) Фотоэлектрический гибкий модуль
SK12902002A3 (sk) Spôsob výroby tenkovrstvového fotovoltaického modulu
US20110277809A1 (en) Modular Tensile Structure with Integrated Photovoltaic Modules
US20090272436A1 (en) Non-glass photovoltaic module and methods for manufacture
US20100243033A1 (en) Solar cell laminate comprising a semiconductor layer
CN106992253B (zh) 封装结构、薄膜太阳能电池及有机发光显示装置
JP5176268B2 (ja) 太陽電池モジュール
CN104584235B (zh) 太阳电池背面保护片
KR20100133962A (ko) 태양 전지 시스템
JP3193193U (ja) フレキシブル太陽電池パネル
RU2492553C1 (ru) Конструкция фотоэлектрического гибкого модуля
US20230006082A1 (en) Hybrid photovoltaic device having rigid planar segments and flexible non-planar segments
US20180122972A1 (en) Semi-flexible solar module using crystaline solar cells and method for fabrication thereof
EP3956978B1 (en) Solar panel product comprising a taper
JP6216505B2 (ja) 太陽電池一体型膜材
RU2493633C1 (ru) Гибкий фотоэлектрический модуль
WO2013117084A1 (zh) 一种可弯曲高效太阳能电池板
CN1950954A (zh) 光伏系统及其制造方法
JP2012064767A (ja) 太陽電池モジュール
RU178429U1 (ru) Фотоэлектрический усиленный гибкий модуль
JP5870461B2 (ja) 積層フィルムの高温密着性検査方法と接着剤溶液の高温密着性予測検査方法及びそれらを用いた太陽電池モジュール用裏面保護シートの製造方法
RU2526219C1 (ru) Фотоэлектрический гибкий модуль
RU2495513C1 (ru) Гибкий фотоэлектрический модуль
JP2015135914A (ja) 太陽電池モジュール一体型膜材

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160222