RU2629128C1 - Фотоэлектрическая гибкая панель - Google Patents

Фотоэлектрическая гибкая панель Download PDF

Info

Publication number
RU2629128C1
RU2629128C1 RU2016138655A RU2016138655A RU2629128C1 RU 2629128 C1 RU2629128 C1 RU 2629128C1 RU 2016138655 A RU2016138655 A RU 2016138655A RU 2016138655 A RU2016138655 A RU 2016138655A RU 2629128 C1 RU2629128 C1 RU 2629128C1
Authority
RU
Russia
Prior art keywords
unmanned aerial
film
panel
flexible panel
reinforcing layer
Prior art date
Application number
RU2016138655A
Other languages
English (en)
Inventor
Виктор Сергеевич Белоусов
Михаил Викторович Гришин
Людмила Анатольевна Панфилова
Игорь Николаевич Кочетков
Владимир Михайлович Звероловлев
Original Assignee
Акционерное Общество "ТЕЛЕКОМ-СТВ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "ТЕЛЕКОМ-СТВ" filed Critical Акционерное Общество "ТЕЛЕКОМ-СТВ"
Priority to RU2016138655A priority Critical patent/RU2629128C1/ru
Application granted granted Critical
Publication of RU2629128C1 publication Critical patent/RU2629128C1/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим панелям, которые могут быть использованы в качестве элементов энергетических установок сверхлегких беспилотных летательных аппаратов. Фотоэлектрическая гибкая панель представляет собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой кремниевые солнечные элементы, верхнюю скрепляющую пленку и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, а в качестве нижнего армирующего слоя использован слой бальсы толщиной от 0,5 до 2,0 мм. Изобретение обеспечивает гладкую рабочую плоскость фотоэлектрической гибкой панели.

Description

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим панелям, которые могут быть использованы, в частности, в качестве элементов энергетических установок (например, для быстроразвертываемых портативных систем энергообеспечения, для располагаемых на крышах транспортных средств систем дополнительного энергообеспечения, для модулей, служащих крышами обособленных объектов и одновременно обеспечивающих их автономное электрообеспечение, и т.п.).
Однако основное назначение изобретения относится к области энергообеспечения сверхлегких беспилотных летательных аппаратов.
Беспилотные летательные аппараты могут быть применены для решения множества задач, выполнение которых пилотируемыми летательными аппаратами, в силу различных причин, не всегда целесообразно. В число таких задач входят мониторинг воздушного пространства, земной и водной поверхностей, экологический контроль, управление воздушным движением, контроль морского судоходства, развитие систем связи и др.
Все перечисленное характеризует широкий круг задач, которые весьма эффективно и экономично могут быть решены в случае применения беспилотных летательных аппаратов.
В настоящее время наиболее распространены беспилотные летательные аппараты самолетного и вертолетного типов. Каждый из них решает свой круг задач:
1) беспилотные летательные аппараты самолетного типа применяются преимущественно для создания ортофотопланов территорий, цифровых моделей местности, мониторинга протяженных объектов.
Основные преимущества: высокая крейсерская скорость, значительная дальность полета и автономность;
2) беспилотные летательные аппараты вертолетного типа (вертолеты, квадро- и гексакоптеры) применяются в основном для перспективной съемки, мониторинга небольших территорий или обследования сложных конструкций (например, опор моста, в том числе и под дорожным полотном) и воздушной лидарной съемки (лазерного сканирования).
Основные преимущества: малые размеры, взлет и запуск с любых площадок, возможность зависания над объектом обследования, увеличенная полезная нагрузка, позволяющая устанавливать на него оборудование для проведения воздушного лазерного сканирования и тепловизионной съемки.
Для применения фотоэлектрических гибких панелей в качестве энергетических установок для беспилотных летательных аппаратов необходимо максимально обеспечить следующие условия:
- достаточную гибкость панели (для того, чтобы вписаться в общий конструктивный дизайн плоскости крыла/фюзеляжа малогабаритного беспилотного летательного устройства);
- приемлемую жесткость конструкции панели, способной сопротивляться распределенным (ветровым) или сосредоточенным нагрузкам, например удару ледяных градин или случайному столкновению с мелкой птицей (или насекомым);
- малый вес и гладкую наружную поверхность для обеспечения оптимальных аэродинамических свойств крыла беспилотного летательного аппарата, имеющего в своем составе фотоэлектрическую гибкую панель.
Если для беспилотных летательных аппаратов вертолетного типа реализация перечисленных требований не носит критического характера, то в случае использования фотоэлектрической гибкой панели для беспилотных летательных аппаратов самолетного типа ситуация носит обратный характер (особенно это касается аэродинамических свойств поверхности фотоэлектрической гибкой панели).
Известна фотоэлектрическая гибкая панель, выполненная из углепластика (крыла) и покрытого сверхтонкой пленкой аморфного кремния. Указанная конструкция является элементом энергетической установки, размещенной на сверхлегком беспилотном летательном аппарате «Silent Falcon», совместно разработанном компаниями «Sfuas», «Вуе Aerospace» и «Ascent Solar» [1].
Простота, небольшой вес и невысокая стоимость производства делает модули из аморфного кремния весьма привлекательными для беспилотных летательных аппаратов, однако при этом фотоэлектрические гибкие панели имеют невысокую эффективность (их КПД составляет 8÷11%, что существенно ниже, чем КПД для модулей на основе монокристаллического кремния, который достигает 30%).
К тому же фотоэлектрические гибкие панели из аморфного кремния менее долговечны из-за значительной деградации электрофизических свойств аморфного кремния при длительном воздействии солнечного света, что резко ограничивает их использование в качестве источника энергии для беспилотных летательных аппаратов, особенно на больших высотах.
Известна фотоэлектрическая гибкая панель, представляющая собой единую конструкцию близко расположенных между собой солнечных элементов на гибком основании из синтетического материала («Кантона»), в котором солнечные элементы соединяются с основанием посредством твердеющего полимерного адгезионного слоя, в котором имеются металлические частицы, обеспечивающие эффективное соединение солнечных элементов в единую электрическую цепь [2].
Недостатком такой конструкции является ее малая жесткость. Гибкость фотоэлектрической панели обеспечивается, в первую очередь, возможностью упругой деформации ее основания. При малой толщине слоя основания фотоэлектрическая панель обладает малой жесткостью, что неприемлемо в случае использования ее в беспилотных летательных аппаратах.
Увеличение жесткости конструкции панели возможно лишь за счет увеличения толщины основания, а это приводит к увеличению веса фотоэлектрической панели, что также является неприемлемым решением.
Наиболее близким к заявляемому техническому решению является фотоэлектрическая гибкая панель, представляющая собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, а в качестве армирующих слоев используют сетки из прозрачных для солнечного света высокопрочных искусственных нитей [3].
Толщина верхней и нижней несущих пленок ~0,4 мм. Толщина верхней и нижней скрепляющих пленок вместе с введенными в них сетками из высокопрочных искусственных нитей составляет ~0,3 мм. Толщина кремниевых монокристаллических солнечных элементов составляет 100÷250 мкм. Общая толщина фотоэлектрического гибкого модуля составляет ~1,4÷1,5 мм. При этом радиус максимально возможной кривизны под действием изгибающих напряжений, при которых еще не происходит разрушение кремниевых солнечных элементов, составляет ~25÷30 см.
Указанная панель закрепляется на верхней плоскости крыла беспилотного летательного аппарата посредством клея (например, эпоксидного), что обеспечивает высокую надежность крепления и плотность прилегания к поверхности крыла.
Хотя конструктивные и весовые параметры такой панели вполне удовлетворяют требованиям использования в большинстве типов беспилотных летательных аппаратов, указанная фотоэлектрическая панель имеет недостаточную гладкость лицевой поверхности, и это не позволяет использовать ее в качестве элементов крыла беспилотников, предназначенных для полетов с большими скоростями и выполняющих резкие повороты и маневры.
Недостаточная гладкость лицевой поверхности панели (в случае ее поверхностного монтажа на крыло беспилотного летательного аппарата) не обеспечивает требуемых аэродинамических характеристик, что не позволяет беспилотному летательному аппарату развивать высокие скорости при маневрах и резких поворотах.
Это обусловлено тем, что армирующая сетка, расположенная над цепочкой кремниевых солнечных элементов, является причиной наличия микробугорков на поверхности верхней скрепляющей пленки, которые образуются при ее термоусадке после процесса ламинирования панели. Эти бугорки придают волнистость поверхности панели и представляют собой регулярную структуру, топология которой повторяет топологию пересечения волокон армирующей сетки. Хотя высота этих бугорков незначительна и не превышает 0,1 мм, при прохождении вдоль поверхности панели параллельного воздушного потока возникают локальные микрозавихрения, что отрицательно сказывается на аэродинамических свойствах беспилотного летательного аппарата.
Задачей изобретения является обеспечение гладкости рабочей плоскости фотоэлектрической гибкой панели.
Это достигается за счет того, что в фотоэлектрической гибкой панели, представляющей собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой кремниевые солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, верхний армирующий слой отсутствует, а в качестве нижнего армирующего слоя используют слой бальсы толщиной от 0,5 до 2,0 мм.
При толщине слоя бальсы менее 0,5 мм в процессе ламинирования после термоусадки несущей и скрепляющей пленок может произойти деформация модуля, а при толщинах слоя бальсы более 2,0 мм термоусадка несущей и скрепляющей пленок не обеспечивает требуемый уровень вдавливания цепочки солнечных элементов в слой бальсы, вследствие чего поверхность фотроэлектрической панели получается волнистой (за счет провалов, возникающих в местах, соответствующих промежуткам между соседними солнечными элементами цепочки), что отрицательно сказывается на аэродинамических характеристиках летательного аппарата, на крыле которого размещают модуль.
При закреплении такой панели на верхней плоскости крыла беспилотного летательного аппарата турбулентные потоки воздуха вдоль плоскости фотоэлектрической панели будут минимизированы (или даже полностью исключены), что обеспечивает высокие аэродинамические характеристики беспилотного аппарата.
В известных науке и технике решениях аналогичной задачи не обнаружено использование в фотоэлектрических гибких модулях, используемых в беспилотных летательных аппаратах, в качестве армирующего слоя слоя бальсы толщиной 0,5÷2,0 мм.
Реализация предлагаемой конструкции фотоэлектрического гибкого модуля осуществляется следующим образом.
На монтажном столе раскладывается пленка первого пластика (прозрачная этилен-тетрафлюроэтиленовая пленка «TEFZEL» заданной площади). На нее сверху укладывается этиленвинилацетатная пленка «ЭВА». На нее сверху укладывают армирующий слой из бальсы толщиной от 0,5 до 2,0 мм, выполненный в виде рельефа верхней плоскости крыла беспилотного летательного аппарата, затем поверх этой стопки укладывается распаянная цепочка солнечных элементов из монокристаллического кремния. Толщина каждого солнечного элемента составляет ~200 мкм.
Поверх солнечных элементов последовательно укладывают сетку из прозрачных капроновых нитей, пленку «ЭВА» и пленку «TEFZEL».
Сформированный таким образом пакет подвергают ламинированию в последующей программе.
1. Снижение давления в камере ламинатора до 2×10-3 атм (время откачки ~10,0 мин).
2. Подъем температуры до 140°C в течение 30 мин.
3. Выдержка при T=140°C в течение 24 час.
4. Натекание в камеру и остывание до комнатной температуры в течение 5 час.
В результате получают облегченную фотоэлектрическую панель с гладкой верхней плоскостью, поскольку в процессе ламинирования за счет термоусадки несущей и скрепляющей пленок цепочки солнечных элементов вдавливаются в плоскость армирующего слоя из бальсы практически под уровень плоскости слоя и без какой-либо деформации.
Указанный модуль может быть наклеен на верхнюю плоскость крыла беспилотного летательного аппарата.
Технический результат, достигаемый при использовании предлагаемой конструкции, заключается в обеспечение гладкости рабочей плоскости фотоэлектрической гибкой панели.
Источники информации:
1. First Flight for Production Solar-Powered Silent Falcon Unmanned Aircraft. - «Unmanned Systems Technology Magazine», May 20, 2014.
2. Патент США №4043834.
3. Патент РФ №2416056 – прототип.

Claims (1)

  1. Фотоэлектрическая гибкая панель, представляющая собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой кремниевые солнечные элементы, верхнюю скрепляющую пленку и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, отличающаяся тем, что в качестве нижнего армирующего слоя используют слой бальсы толщиной от 0,5 до 2,0 мм.
RU2016138655A 2016-09-30 2016-09-30 Фотоэлектрическая гибкая панель RU2629128C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016138655A RU2629128C1 (ru) 2016-09-30 2016-09-30 Фотоэлектрическая гибкая панель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016138655A RU2629128C1 (ru) 2016-09-30 2016-09-30 Фотоэлектрическая гибкая панель

Publications (1)

Publication Number Publication Date
RU2629128C1 true RU2629128C1 (ru) 2017-08-24

Family

ID=59744974

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016138655A RU2629128C1 (ru) 2016-09-30 2016-09-30 Фотоэлектрическая гибкая панель

Country Status (1)

Country Link
RU (1) RU2629128C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU178427U1 (ru) * 2017-10-03 2018-04-04 Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический модуль для морского применения
RU178429U1 (ru) * 2017-08-21 2018-04-04 Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический усиленный гибкий модуль

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2416056C1 (ru) * 2009-12-17 2011-04-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический гибкий модуль
EP2401767A2 (en) * 2009-02-24 2012-01-04 Abound Solar, Inc. Systems and methods for improved photovoltaic module structure and encapsulation
RU2492553C1 (ru) * 2012-02-21 2013-09-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Конструкция фотоэлектрического гибкого модуля
RU2493633C1 (ru) * 2012-04-12 2013-09-20 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Гибкий фотоэлектрический модуль
RU2495513C1 (ru) * 2012-06-19 2013-10-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Гибкий фотоэлектрический модуль
RU2526219C1 (ru) * 2013-04-30 2014-08-20 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический гибкий модуль

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2401767A2 (en) * 2009-02-24 2012-01-04 Abound Solar, Inc. Systems and methods for improved photovoltaic module structure and encapsulation
RU2416056C1 (ru) * 2009-12-17 2011-04-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический гибкий модуль
RU2492553C1 (ru) * 2012-02-21 2013-09-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Конструкция фотоэлектрического гибкого модуля
RU2493633C1 (ru) * 2012-04-12 2013-09-20 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Гибкий фотоэлектрический модуль
RU2495513C1 (ru) * 2012-06-19 2013-10-10 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Гибкий фотоэлектрический модуль
RU2526219C1 (ru) * 2013-04-30 2014-08-20 Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический гибкий модуль

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU178429U1 (ru) * 2017-08-21 2018-04-04 Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический усиленный гибкий модуль
RU178427U1 (ru) * 2017-10-03 2018-04-04 Акционерное Общество "ТЕЛЕКОМ-СТВ" Фотоэлектрический модуль для морского применения

Similar Documents

Publication Publication Date Title
US8448898B1 (en) Autonomous solar aircraft
Gonzalo et al. On the capabilities and limitations of high altitude pseudo-satellites
US9694894B2 (en) Aerial vehicle and method of flight
US9796478B2 (en) Method for controlling solar panels in a solar propelled aircraft
US10005541B2 (en) Methods for providing a durable solar powered aircraft with a variable geometry wing
US10468545B1 (en) Airfoil body including a moveable section of an outer surface carrying an array of transducer elements
Ross Fly around the world with a solar powered airplane
Xu et al. Improvement of endurance performance for high-altitude solar-powered airships: A review
US20160244144A1 (en) Solar Powered Aircraft with a Variable Geometry Wing and Telecommunications Networks Utilizing Such Aircraft
EP3243741B1 (en) Adaptive solar airframe
RU2725573C2 (ru) Беспилотный летательный аппарат с двумя крыльями, к которым прикреплены фотоэлектрические элементы
Dwivedi et al. MARAAL: A low altitude long endurance solar powered UAV for surveillance and mapping applications
US8746620B1 (en) Adaptive solar airframe
RU2629128C1 (ru) Фотоэлектрическая гибкая панель
CN105355685A (zh) 一种兼顾隔热的刚柔一体化太阳能电池及其研制方法
KR20140079641A (ko) 무인 항공기의 태양전지 날개
Wei et al. Energy harvesting fueling the revival of self-powered unmanned aerial vehicles
CN206141833U (zh) 无人飞行系统
CN108839570A (zh) 以太阳能电池板和锂电池组为动力源的小型太阳能无人机
US10991833B2 (en) Laminar airfoil and the assembly and mounting of solar cell arrays on such airfoils
US20150240785A1 (en) Power generation device floating in the air
Komerath et al. The flying carpet: Aerodynamic high-altitude solar reflector design study
Scheiman et al. A path toward enhanced endurance of a UAV using IMM solar cells
RU2506204C1 (ru) Способ размещения высотной платформы и высотная платформа
CN209870712U (zh) 航空客机

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181001