RU2488207C1 - Method and device for transmission of power - Google Patents
Method and device for transmission of power Download PDFInfo
- Publication number
- RU2488207C1 RU2488207C1 RU2011146594/07A RU2011146594A RU2488207C1 RU 2488207 C1 RU2488207 C1 RU 2488207C1 RU 2011146594/07 A RU2011146594/07 A RU 2011146594/07A RU 2011146594 A RU2011146594 A RU 2011146594A RU 2488207 C1 RU2488207 C1 RU 2488207C1
- Authority
- RU
- Russia
- Prior art keywords
- electrode
- capacitance
- resonant
- electric energy
- line
- Prior art date
Links
Images
Landscapes
- Near-Field Transmission Systems (AREA)
Abstract
Description
Устройство относится к области электротехники, в частности к устройству для передачи электроэнергии.The device relates to the field of electrical engineering, in particular to a device for transmitting electricity.
Известен способ и электрическое устройство Н. Тесла для резонансной системы передачи электрической энергии (US Patent №593138. Electrical transformer/Tesla N. 02.11.1897./).A known method and electrical device N. Tesla for a resonant transmission system of electrical energy (US Patent No. 593138. Electrical transformer / Tesla N. 02.11.1897./).
Недостатками известного способа и устройства являются необходимость высоковольтного напряжения, наличие индуктивной связи и большие габариты резонансного трансформатора.The disadvantages of this method and device are the need for high voltage, the presence of inductive coupling and the large dimensions of the resonant transformer.
Другим недостатком известного способа и устройства являются большие энергетические затраты на генерирование высокочастотных высоковольтных электромагнитных колебаний и передачу их по проводящему каналу между источником и приемником.Another disadvantage of the known method and device are the high energy costs of generating high-frequency high-voltage electromagnetic waves and transmitting them through a conductive channel between the source and receiver.
Известен способ передачи электроэнергии, включающий генерирование высокочастотных электромагнитных колебаний и передачу их по проводящему каналу между источником и приемником электрической энергии таким образом, что высокочастотные электромагнитные колебания, генерированные в высокочастотном резонансном трансформаторе, усиливают по напряжению до 0,5-100 миллионов вольт в четвертьволновой резонансной линии, состоящей из спирального волновода и естественной емкости на конце линии путем подачи на вход четвертьволновой линии электромагнитных колебаний от высокочастотного резонансного трансформатора с частотой f0=1-1000 кГц, синхронизированной с периодом времени T0 движения волны напряжения от входа спирального волновода до естественной емкости и возврата отраженной волны по входу в спиральный волновод Tk=2H/u=1/2f0, где H - длина четвертьволновой линии, u - скорость движения электромагнитной волны вдоль оси волновода, накапливают электрическую энергию в естественной емкости, а проводящий канал формируют путем эмиссии стримеров и создания потока электромагнитного излучения с конца игольчатого формирователя проводящего канала на резонансной частоте f0=1-1000 кГц при напряжении 0,5-100 миллионов вольт путем соединения естественной емкости четвертьволновой линии с игольчатым проводящим формирователем канала.A known method of transmitting electricity, including the generation of high-frequency electromagnetic waves and transmitting them through a conductive channel between the source and the receiver of electrical energy in such a way that high-frequency electromagnetic waves generated in a high-frequency resonant transformer, amplify the voltage up to 0.5-100 million volts in a quarter-wave resonant a line consisting of a spiral waveguide and a natural capacitance at the end of the line by applying an electric quarter-wave line to the input gnitnyh fluctuations from the high frequency transformer resonant frequency f 0 = 1-1000 kHz synchronized with the time period T 0 of the stress wave motion from the input waveguide to the natural spiral capacitance and return the reflected wave at the entrance of the spiral waveguide T k = 2H / u = 1 / 2f 0 , where H is the length of the quarter-wave line, u is the speed of the electromagnetic wave along the axis of the waveguide, they accumulate electric energy in a natural capacity, and the conductive channel is formed by emission of streamers and creating a stream of electromagnetic radiation from the end of the needle shaper of the conducting channel at the resonant frequency f 0 = 1-1000 kHz at a voltage of 0.5-100 million volts by connecting the natural capacitance of the quarter-wave line with the needle conducting shaper of the channel.
Известное устройство для передачи электрической энергии содержит источник электрической энергии, преобразователь частоты, передающий и приемный резонансные высокочастотные трансформаторы с резонансной частотой f0, установленные у источника и приемника энергии, и проводящий канал между ними. Передающий трансформатор с частотой f0=1-1000 кГц соединен с четвертьволновой резонансной линией, выполненной из спирального волновода с длиной H=u/4f0, где u - скорость распространения электромагнитной волны вдоль оси волновода, естественной емкости на конце линии с напряжением 0,5-100 MB, емкость соединена с игольчатым проводящим формирователем проводящего канала, который ориентирован на приемник нагрузки потребителя (Патент РФ 2310964. // БИ 32 2007).A known device for transmitting electrical energy contains a source of electrical energy, a frequency converter, transmitting and receiving resonant high-frequency transformers with a resonant frequency f 0 installed at the source and receiver of energy, and a conductive channel between them. A transmitting transformer with a frequency f 0 = 1-1000 kHz is connected to a quarter-wave resonance line made of a spiral waveguide with a length H = u / 4f 0 , where u is the propagation velocity of the electromagnetic wave along the axis of the waveguide, the natural capacitance at the end of the line with voltage 0, 5-100 MB, the capacity is connected to a needle-shaped conductive former of the conductive channel, which is oriented to the consumer load receiver (RF Patent 2310964. // BI 32 2007).
Недостатком известного способа и устройства является необходимость использования преобразователя частоты, передающего и приемного резонансного высокочастотного трансформатора.The disadvantage of this method and device is the need to use a frequency converter, transmitting and receiving resonant high-frequency transformer.
Другим недостатком известного способа и устройства являются большие энергетические затраты на генерирование высокочастотных электромагнитных колебаний и передачу их по проводящему каналу между источником и приемником.Another disadvantage of the known method and device are the high energy costs of generating high-frequency electromagnetic waves and transmitting them through a conductive channel between the source and receiver.
Задачей предлагаемого изобретения является упрощение генерирующего контура, повышение эффективности и снижение энергетических затрат на генерирование электромагнитных волн, а также повышение передаваемой мощности электроэнергии.The objective of the invention is to simplify the generating circuit, increase efficiency and reduce energy costs for generating electromagnetic waves, as well as increase the transmitted power of electricity.
Вышеуказанный результат достигается тем, что в способе передачи электрической энергии по проводящему каналу между источником и приемником электрической энергии путем генерирования высокочастотных электромагнитных колебаний в высокочастотном резонансном трансформаторе, усиления по напряжению до 0,5-100 миллионов вольт в четвертьволновой резонансной линии, состоящей из спирального волновода и естественной емкости на конце линии, путем подачи на вход четвертьволновой линии электромагнитных колебаний от высокочастотного высоковольтного резонансного трансформатора, электромагнитные колебания от генератора электромагнитных импульсов подают через согласующую емкость на входные электроды двухэлектродной обкладки - изолированной диэлектриком уединенной емкости передатчика электрической энергии, который выполняют в виде трехэлектродной резонансной емкости, и формируют на одноэлектродной обкладке - изолированной диэлектриком уединенной емкости с одним выходным электродом емкостные реактивные токи посредством емкостной связи между обкладками, присоединяют через выходной электрод к однопроводной резонансной линии и передают электрическую энергию в виде емкостных реактивных токов и токов смещения в пространстве, окружающем проводник, и принимают электрическую энергию приемником в виде трехэлектродной резонансной емкости путем присоединения однопроводной линии к входному электроду одноэлектродной обкладки - изолированной уединенной емкости приемника, и преобразуют емкостные реактивные токи и токи смещения в пространстве, окружающем однопроводную линию, в активные токи в замкнутом электрическом контуре с нагрузкой потребителя электрической энергии посредством емкостной связи между обкладками, путем присоединения выходных электродов двухэлектродной обкладки - изолированной диэлектриком уединенной емкости трехэлектродной резонансной емкости, к приемнику электрической энергии.The above result is achieved in that in a method for transmitting electrical energy through a conductive channel between a source and a receiver of electrical energy by generating high-frequency electromagnetic waves in a high-frequency resonant transformer, voltage amplification of up to 0.5-100 million volts in a quarter-wave resonance line consisting of a spiral waveguide and natural capacitance at the end of the line, by applying electromagnetic waves from the high-frequency high-voltage to the input of the quarter-wave line resonant transformer, electromagnetic oscillations from the electromagnetic pulse generator are fed through a matching capacitor to the input electrodes of the two-electrode plate - insulated by a solitary capacitor of an electric energy transmitter, which is made in the form of a three-electrode resonant capacitance, and formed on a single-electrode plate - insulated by a dielectric of a solitary capacitance with one output electrode capacitive reactive currents through capacitive coupling between the plates, connect through the output electrode to the single-wire resonance line and transmit electric energy in the form of capacitive reactive currents and bias currents in the space surrounding the conductor, and receive electric energy in the form of a three-electrode resonant capacitance by attaching a single-wire line to the input electrode of the single-electrode plate - an isolated secluded receiver capacitance, and convert capacitive reactive currents and bias currents in the space surrounding a single-wire line into active currents in a closed electric com circuit with the load electric power consumer by capacitive coupling between the electrodes, output electrodes by attaching the two-electrode electrode - dielectric isolated solitary three-electrode capacitance of the resonant tank, to a receiver of electrical energy.
В устройстве для передачи электрической энергии, содержащем источник электрической энергии и передающий трансформатор с частотой f0=1-1000 кГц, соединенный с четвертьволновой резонансной линией, выполненной из спирального волновода и естественной емкости на конце линии с напряжением 0,5-100 MB, емкость соединена с игольчатым проводящим формирователем проводящего канала, который ориентирован на приемник нагрузки потребителя, генератор электромагнитных импульсов соединен через согласующую емкость с передатчиком электрической энергии в виде трехэлектродной резонансной емкости, у которой, двухэлектродная обкладка - изолированная диэлектриком уединенная емкость с двумя входными электродами, замкнута на генератор, а вторая обкладка с одним электродом присоединена через однопроводную линию к приемнику электрической энергии, в виде трехэлектродной резонансной емкости, у которой одноэлектродная обкладка - изолированная диэлектриком уединенная емкость с одним входным электродом, присоединена к однопроводной линии, а вторая двухэлектродная обкладка - изолированная диэлектриком уединенная емкость с двумя выходными электродами, образует через согласующую емкость замкнутый контур с нагрузкой потребителя электрической энергии.In a device for transmitting electrical energy containing an electric energy source and a transmitting transformer with a frequency f 0 = 1-1000 kHz, connected to a quarter-wave resonance line made of a spiral waveguide and a natural capacitance at the end of the line with a voltage of 0.5-100 MB, the capacitance connected to a needle-shaped conductive shaper of the conductive channel, which is oriented to the consumer load receiver, the electromagnetic pulse generator is connected through a matching capacitance to an electric energy transmitter in the form e of a three-electrode resonant capacitance, in which, a two-electrode lining - a solitary capacitor insulated by a dielectric with two input electrodes, is closed to a generator, and a second lining with one electrode is connected through a single-wire line to an electric energy receiver, in the form of a three-electrode resonant capacitance, in which a single-electrode lining is insulated solitary capacitance with one input electrode, connected to a single-wire line, and the second two-electrode lining - insulated dielectric com solitary container with two output electrodes, forms a matching capacitance through a closed circuit with the load of the consumer of electric energy.
В варианте устройства для передачи электрической энергии передатчик и приемник выполнены в виде трех электродных резонансных емкостей, последняя из которых содержит одноэлектродную обкладку, представляющую собой изолированную уединенную емкость с одним электродом, который с двух сторон через диэлектрик окружен двумя электродными обкладками, площадь которых в два раза превышает площадь одноэлектродной обкладки.In an embodiment of a device for transmitting electrical energy, the transmitter and receiver are made in the form of three electrode resonant capacitances, the last of which contains a single-electrode lining, which is an isolated secluded capacitance with one electrode, which is surrounded on two sides by two dielectric plates with an area of two exceeds the area of a single-electrode lining.
Сущность предлагаемого способа и устройства для передачи электрической энергии поясняется на фиг.1, фиг.2, где на фиг.1 представлена общая схема устройства для передачи электрической энергии с использованием резонансной однопроводной линии и трехэлектродной резонансной емкости в качестве передатчика и приемника, с одинаковой поверхностью обкладок - изолированных уединенных емкостей, на фиг.2 представлена общая схема устройства для передачи электрической энергии, где одноэлектродная изолированная уединенная емкость-обкладка имеет площадь поверхности в два раза меньше площади поверхности двухэлектродной емкости.The essence of the proposed method and device for transmitting electrical energy is illustrated in figure 1, figure 2, where figure 1 shows a General diagram of a device for transmitting electrical energy using a resonant single-wire line and a three-electrode resonant capacitance as a transmitter and a receiver, with the same surface plates - isolated secluded containers, figure 2 presents a General diagram of a device for transmitting electrical energy, where a single-electrode isolated secluded capacitance lining has a flat ad surface half the surface area of the two-electrode capacitance.
На фиг.1 представлен передатчик 1 в виде трехэлектродной резонансной емкости, у которой обкладки 2 и 3 разделены диэлектриком 4, причем одна из обкладок 2, имеющая два входных электрода 5 и 6, образует замкнутый электрический контур с генератором 7 электромагнитных импульсов через согласующую емкость 8 и выводы 9, а вторая обкладка 3 с одним электродом 10 присоединена к однопроводной резонансной линии 11 и далее к входному электроду 12 обкладки 13, обкладка 13 разделена диэлектриком 14 от двухэлектродной обкладки 15 приемника 16. Приемник 16 выполнен в виде трехэлектродной резонансной емкости, где выходные электроды 17 и 18 образуют замкнутый контур через согласующую емкость 19 с нагрузкой потребителя электроэнергии 20.Figure 1 shows the
На фиг.2 представлены передатчик 21 и приемник 22. Приемник 22 выполнен в виде трехэлектродной резонансной емкости, у которой обкладка 23 с одним электродом 24 с двух сторон окружена через диэлектрик обкладками 26 и 27, площадь поверхности которых в два раза больше, чем одноэлектродная обкладка 23. Обкладки 26 и 27 соединены электродами 28 и 29 с выводами 30 и через емкость 31 с генератором электромагнитных импульсов 32. Приемник 22 выполнен в виде трехэлектродной резонансной емкости, у которой обкладка 33 с одним электродом 34 с двух сторон через диэлектрик 35 окружена обкладками 36 и 37. Площадь поверхности обкладок 36 и 37 в два раза превышает площадь одноэлектродной обкладки 33. Электрод 24 передатчика 21 и электрод 34 приемника 22 соединены с однопроводной резонансной линией 11. Электроды 38 и 39 обкладок 36 и 37 соединены через согласующую емкость 40 и через выходные электроды 41 с нагрузкой потребителя 42.Figure 2 shows the transmitter 21 and receiver 22. The receiver 22 is made in the form of a three-electrode resonant capacitance, in which the lining 23 with one electrode 24 is surrounded on both sides by dielectric lining 26 and 27, the surface area of which is two times larger than the single-electrode lining 23. The plates 26 and 27 are connected by electrodes 28 and 29 to the terminals 30 and through the capacitance 31 with an electromagnetic pulse generator 32. The receiver 22 is made in the form of a three-electrode resonant capacitance, in which the plate 33 with one electrode 34 on both sides through a dielectric 35 surrounded by plates 36 and 37. The surface area of the plates 36 and 37 is two times the area of the single-electrode plate 33. The electrode 24 of the transmitter 21 and the electrode 34 of the receiver 22 are connected to a single-
Способ передачи электроэнергии реализуется следующим образом.The method of electric power transmission is implemented as follows.
При воздействии электромагнитного импульса на трехэлектродной резонансной емкости в передатчике 1 (фиг.1) обкладка - изолированная уединенная емкость 2 с двумя электродами 5 и 6, с замкнутым на генератор электрических импульсов 7 через согласующую емкость 8 генерирует через диэлектрик 4 на обкладке 3, с присоединенной через выходной электрод 10 однопроводной линией 11 посредством емкостной связи между обкладками 2 и 3, емкостные реактивные токи и токи смещения в пространстве, окружающем однопроводную линию 11, принимаемые приемником 16 в виде трехэлектродной резонансной емкости обкладка 13 которой с входным электродом 12, присоединенным к резонансной однопроводной линии 11, через диэлектрик 14 посредством емкостной связи с двухэлектродной обкладкой 15, формирует ток в замкнутом контуре, образуемом выходными электродами 17 и 18 через согласующую емкость 19 и нагрузкой потребителя электрической энергии.When an electromagnetic pulse is applied to a three-electrode resonant capacitance in the transmitter 1 (Fig. 1), the lining is an isolated
Пример выполнения способа и устройства передачи электроэнергии.An example of the method and device for transmitting electricity.
Равнозначно выполненные передатчик 1 и приемник 16 (фиг.1) в виде трехэлектродной резонансной емкости изготовлены из железной рулонной ленты 0,5 мм толщиной, 0,5 м шириной и длиной 200 м на каждую обкладку, одна из которой имеет два прикрепленных к ленте электрода в начале и конце длины ленты, а вторая обкладка с одним электродом, присоединенным к середине ленты. Ленты через диэлектрик в виде стеклоткани толщиной 0,05 мм намотаны на бобину диаметром 2 м. Энергия передается от генератора 7 электромагнитных импульсов через согласующую емкость 8 и входные электроды 5 и 6, к обкладке - изолированной уединенной емкости 8, имеющей емкостную связь через диэлектрик 4 с обкладкой 3, с одним выходным электродом 10, присоединенным к резонансной однопроводной линии 11 в виде медного повода толщиной 0,1 мм и длиной 10 км и далее к приемнику 16, где входной электрод 12 одноэлектродной обкладки - изолированной уединенной емкости 13, имеющую емкостную связь через диэлектрик 14 с обкладкой 15, с двумя выходными электродами 17 и 18, которые через согласующую емкость 19 образуют замкнутый контур с нагрузкой 20 потребителя электрической энергии.Equally made
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011146594/07A RU2488207C1 (en) | 2011-11-17 | 2011-11-17 | Method and device for transmission of power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011146594/07A RU2488207C1 (en) | 2011-11-17 | 2011-11-17 | Method and device for transmission of power |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011146594A RU2011146594A (en) | 2013-05-27 |
RU2488207C1 true RU2488207C1 (en) | 2013-07-20 |
Family
ID=48789000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011146594/07A RU2488207C1 (en) | 2011-11-17 | 2011-11-17 | Method and device for transmission of power |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2488207C1 (en) |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2172546C1 (en) * | 2000-01-24 | 2001-08-20 | Стребков Дмитрий Семенович | Method and device for electrical energy transmission |
RU2310964C1 (en) * | 2006-02-10 | 2007-11-20 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Electrical energy transmission method and device |
RU2366057C1 (en) * | 2008-04-25 | 2009-08-27 | Российская Академия сельскохозяйственных наук Государственное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Electric power transmission method and device |
US20100244581A1 (en) * | 2009-03-31 | 2010-09-30 | Fujitsu Limited | Wireless electric power supply method and wireless electric power supply apparatus |
-
2011
- 2011-11-17 RU RU2011146594/07A patent/RU2488207C1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2172546C1 (en) * | 2000-01-24 | 2001-08-20 | Стребков Дмитрий Семенович | Method and device for electrical energy transmission |
RU2310964C1 (en) * | 2006-02-10 | 2007-11-20 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Electrical energy transmission method and device |
RU2366057C1 (en) * | 2008-04-25 | 2009-08-27 | Российская Академия сельскохозяйственных наук Государственное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Electric power transmission method and device |
US20100244581A1 (en) * | 2009-03-31 | 2010-09-30 | Fujitsu Limited | Wireless electric power supply method and wireless electric power supply apparatus |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10998604B2 (en) | 2014-09-10 | 2021-05-04 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10224589B2 (en) | 2014-09-10 | 2019-03-05 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10355481B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10193353B2 (en) | 2014-09-11 | 2019-01-29 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10135298B2 (en) | 2014-09-11 | 2018-11-20 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10381843B2 (en) | 2014-09-11 | 2019-08-13 | Cpg Technologies, Llc | Hierarchical power distribution |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10355480B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10177571B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US10320200B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10320045B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10153638B2 (en) | 2014-09-11 | 2018-12-11 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US10320233B2 (en) | 2015-09-08 | 2019-06-11 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10467876B2 (en) | 2015-09-08 | 2019-11-05 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US10132845B2 (en) | 2015-09-08 | 2018-11-20 | Cpg Technologies, Llc | Measuring and reporting power received from guided surface waves |
US10148132B2 (en) | 2015-09-09 | 2018-12-04 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10536037B2 (en) | 2015-09-09 | 2020-01-14 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10516303B2 (en) | 2015-09-09 | 2019-12-24 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US9882606B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10425126B2 (en) | 2015-09-09 | 2019-09-24 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US10333316B2 (en) | 2015-09-09 | 2019-06-25 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10601099B2 (en) | 2015-09-10 | 2020-03-24 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US10326190B2 (en) | 2015-09-11 | 2019-06-18 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US10355333B2 (en) | 2015-09-11 | 2019-07-16 | Cpg Technologies, Llc | Global electrical power multiplication |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
Also Published As
Publication number | Publication date |
---|---|
RU2011146594A (en) | 2013-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2488207C1 (en) | Method and device for transmission of power | |
RU2488208C1 (en) | Method and device for transmission of electric power | |
RU2423772C1 (en) | Method and device of electric energy transfer (versions) | |
RU2366057C1 (en) | Electric power transmission method and device | |
RU2310964C1 (en) | Electrical energy transmission method and device | |
RU2342761C1 (en) | Method and device for electric energy transmission (versions) | |
RU2341860C2 (en) | Method and device for transmission of electric power (versions) | |
US10270292B2 (en) | System for wireless distribution of power | |
RU2273939C1 (en) | Method and device for transferring electric energy (variants) | |
RU2366058C1 (en) | Electric power transmission method and device | |
CN104158430A (en) | Ultra-compact high-voltage nanosecond pulse source | |
Zhang et al. | A compact high-voltage pulse generator based on pulse transformer with closed magnetic core | |
CN204089634U (en) | Ultra-compact high-voltage nanosecond pulse source | |
Gubanov et al. | Sources of high-power ultrawideband radiation pulses with a single antenna and a multielement array | |
RU2577522C2 (en) | Method and device for transmission of electric power | |
Roh et al. | Analysis of output pulse of high voltage and nanosecond Blumlein pulse generator | |
Kuka | Wireless power transfer | |
US10491043B2 (en) | Resonant coil, wireless power transmitter using the same, wireless power receiver using the same | |
de Freitas et al. | Contactless power transfer using capacitive resonant single-conductor structure | |
WO2022119969A1 (en) | Power receiver for extracting energy from the earth's hydrosphere | |
RU2423746C2 (en) | Electric high-frequency resonant transformer (versions) | |
CN104103885B (en) | A kind of bipolarity TEM microwave resonance generator | |
RU2014151682A (en) | METHOD FOR TRANSFER OF ELECTROMAGNETIC ENERGY AND DEVICE FOR ITS IMPLEMENTATION | |
Parajuli et al. | Single Contact Wireless Power Transfer through the Conductive Surface Without Grounding | |
Wang et al. | A four-stage high-voltage transmission line pulse transformer for transforming a quasi-rectangular pulse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20131118 |