RU2423772C1 - Method and device of electric energy transfer (versions) - Google Patents
Method and device of electric energy transfer (versions) Download PDFInfo
- Publication number
- RU2423772C1 RU2423772C1 RU2010110939/07A RU2010110939A RU2423772C1 RU 2423772 C1 RU2423772 C1 RU 2423772C1 RU 2010110939/07 A RU2010110939/07 A RU 2010110939/07A RU 2010110939 A RU2010110939 A RU 2010110939A RU 2423772 C1 RU2423772 C1 RU 2423772C1
- Authority
- RU
- Russia
- Prior art keywords
- frequency
- resonant
- voltage
- feedback
- transformer
- Prior art date
Links
Images
Landscapes
- Inverter Devices (AREA)
Abstract
Description
Изобретение относится к способу и устройству для передачи электрической энергии. Известно устройство для передачи электрической энергии, содержащее генератор переменного тока 50 Гц, трансформаторную подстанцию в начале и конце высоковольтной кабельной линии.The invention relates to a method and apparatus for transmitting electrical energy. A device for transmitting electrical energy containing a 50 Hz alternating current generator, a transformer substation at the beginning and end of a high voltage cable line is known.
Задачей данного изобретения является повышение КПД передачи, увеличение расстояний передачи электрической энергии от источника энергии до потребителя и уменьшение цветных металлов в линиях электропередачи.The objective of the invention is to increase the transmission efficiency, increase the transmission distance of electric energy from the energy source to the consumer and reduce non-ferrous metals in power lines.
Указанный результат достигается путем преобразования электрической энергии от источника энергии в высокое напряжение повышенной частоты и передачи электрической энергии по одному проводу до потребителя, у которого установлен понижающий преобразователь.This result is achieved by converting electrical energy from an energy source to a high voltage of high frequency and transmitting electric energy through one wire to a consumer who has a step-down converter.
Известен способ и устройство передачи электрической энергии (патент РФ №2340064, Бюл.33), в котором напряжение генератора повышают в высоковольтном трансформаторе до 1-1000 кВ и подают на управляемый быстродействующий коммутатор тока и на последовательный резонансный контур из емкости и индуктивности, образующей первичную обмотку высокочастотного высоковольтного трансформатора. Заряжают емкость резонансного контура до напряжения 1-1000 кВ, разряжают ее в резонансном режиме на частоте 0,4-1000 кГц. Через индуктивность и быстродействующий прерыватель тока за время 10-1000 мкс при токе 1-500 кА накапливают энергию генератора в магнитном поле высокочастотного трансформатора. Разрывают цепь коммутатора тока первичной обмотки и преобразуют накопленную энергию магнитного поля в электрическую энергию во вторичной обмотке высокочастотного трансформатора. Повышают напряжение до 10-100000 кВ и передают его в резонансном режиме потребителю. Устройство содержит повышающий трансформатор с выходным напряжением 1-1000 кВ, вход которого соединен с генератором и имеет с ним одинаковую частоту, а выход соединен параллельно к управляемому быстродействующему коммутатору тока с током коммутации 1-500 кА при длительности импульса тока 10-1000 мкс. Коммутатор тока соединен параллельно с последовательным резонансным контуром повышающего высокочастотного трансформатора с резонансной частотой 0,4-1000 кГц и напряжением в однопроводниковой линии 10-100000 кВ.A known method and device for transmitting electrical energy (RF patent No. 2340064, Bull. 33), in which the voltage of the generator is increased in the high-voltage transformer to 1-1000 kV and served on a controlled high-speed current switch and on a serial resonant circuit from the capacitance and inductance forming the primary winding high-frequency high-voltage transformer. The capacitance of the resonant circuit is charged to a voltage of 1-1000 kV, it is discharged in resonance mode at a frequency of 0.4-1000 kHz. Through inductance and a high-speed current chopper for 10-1000 μs at a current of 1-500 kA, the generator energy is stored in the magnetic field of the high-frequency transformer. The circuit of the primary current switch is broken and the stored magnetic field energy is converted into electrical energy in the secondary winding of the high-frequency transformer. They increase the voltage to 10-100000 kV and transmit it in resonance mode to the consumer. The device contains a step-up transformer with an output voltage of 1-1000 kV, the input of which is connected to the generator and has the same frequency with it, and the output is connected in parallel to a controlled high-speed current switch with a switching current of 1-500 kA with a current pulse duration of 10-1000 μs. A current switch is connected in parallel with a series resonant circuit of a step-up high-frequency transformer with a resonant frequency of 0.4-1000 kHz and a voltage in a single-conductor line of 10-100000 kV.
Известен способ и устройство передачи электрической энергии (патент №2273939, Бюл. 10), в котором передачу электрической энергии осуществляют под землей или под водой в резонансном режиме при резонансной частоте 50 Гц - 50 кГц и напряжении 1-1000 кВ, плотности тока 1-500 А/мм2 по однопроводниковому электроизолированному кабелю, в частности, многожильному длиной 1-20000 км сечением 0,01-1000 см2, у которого диаметр кабеля в 5-100 раз превышает диаметр проводника. В другом варианте передачу электрической энергии осуществляют под землей или под водой в резонансном режиме по осесимметричному однопроводниковому волноводу внутри герметичного пустотелого диэлектрического цилиндрического канала в атмосфере изолирующего газа, в частности элегаза, при давлении 1-10 кг/см2.A known method and device for transmitting electrical energy (patent No. 2273939, Bull. 10), in which the transmission of electrical energy is carried out underground or under water in a resonant mode at a resonant frequency of 50 Hz to 50 kHz and a voltage of 1-1000 kV, current density 1- 500 A / mm 2 through a single-wire electrically insulated cable, in particular, a multicore length of 1-20000 km with a cross section of 0.01-1000 cm 2 , in which the cable diameter is 5-100 times the diameter of the conductor. In another embodiment, the transmission of electrical energy is carried out underground or under water in a resonant mode along an axisymmetric single-conductor waveguide inside a sealed hollow dielectric cylindrical channel in an atmosphere of an insulating gas, in particular gas, at a pressure of 1-10 kg / cm 2 .
В еще одном варианте способа электрическую энергию передают по одиночному электростатически экранированному и электроизолированному волноводу поверхностной волны внутри пустотелого цилиндрического экрана и герметичного диэлектрического канала в атмосфере изолированного газа. Высоковольтная линия может быть выполнена под землей или под водой в виде однопроводникового волновода длиной 1-20000 км, сечением 0,01-1000 см, установленного осесимметрично внутри трубопровода диаметром 0,02-10 м из диэлектрического материала. Для повышения передаваемого напряжения и мощности волновод выполнен из электроизолированного кабеля с толщиной изоляции 3-300 мм, а пространство между волноводом и трубопроводом заполнено электроизолирующим газом под давлением, например элегазом. Высоковольтная линия выполнена в виде однопроводникового волновода длиной 1-20000 км, сечением 0,01-1000 см2, установленного осесимметрично внутри трубопровода диаметром 0,02-10 м из диэлектрического материала, и содержит электрический экран, выполненный в виде множества электроизолированных друг от друга незамкнутых проводящих цилиндрических оболочек, общая длина которых равна длине волновода, а длина каждой проводящей оболочки составляет 1-1000 м.In yet another embodiment of the method, electrical energy is transmitted through a single electrostatically shielded and electrically insulated surface waveguide inside a hollow cylindrical screen and a sealed dielectric channel in an atmosphere of an isolated gas. The high-voltage line can be made underground or under water in the form of a single-conductor waveguide with a length of 1-20000 km, a cross-section of 0.01-1000 cm, mounted axisymmetrically inside a pipeline with a diameter of 0.02-10 m of dielectric material. To increase the transmitted voltage and power, the waveguide is made of an electrically insulated cable with an insulation thickness of 3-300 mm, and the space between the waveguide and the pipeline is filled with electrically insulating gas under pressure, for example, SF6 gas. The high-voltage line is made in the form of a single-conductor waveguide with a length of 1-20000 km, a cross-section of 0.01-1000 cm 2 , mounted axisymmetrically inside the pipeline with a diameter of 0.02-10 m of dielectric material, and contains an electric shield made in the form of a plurality of electrically insulated from each other open conductive cylindrical shells, the total length of which is equal to the length of the waveguide, and the length of each conductive shell is 1-1000 m
Известен способ передачи электрической энергии по однопроводной линии (патент №97117756) путем получения токов высокой частоты с помощью высокочастотного генератора, имеющего активный усилительный элемент, и подачи указанных токов на первичную обмотку повышающего трансформатора, вторичная обмотка которого разомкнута и к которому присоединена однопроводная линия передачи и нагрузка, отличающийся тем, что используют повышающий трансформатор, первичная обмотка которого выполнена трехполюсной, ее выводы соединены с активным усилительным элементом высокочастотного генератора с образованием автогенератора, работающего по трехточечной схеме с автоматическим установлением и поддержанием резонансных электрических колебаний в системе, содержащей автогенератор, повышающий трансформатор, однопроводную линию передачи и нагрузку, при этом однопроводная линия передачи присоединена к одному из выводов вторичной обмотки повышающего трансформатора или повышающий трансформатор дополнительно содержит однополюсный изолированный элемент, расположенный внутри или снаружи повышающего трансформатора и служащий для сбора энергии, излучаемой повышающим трансформатором, а однопроводная линия передачи присоединена к указанному элементу.A known method of transmitting electrical energy through a single-wire line (patent No. 97117756) by obtaining high-frequency currents using a high-frequency generator having an active amplifying element, and supplying these currents to the primary winding of a step-up transformer, the secondary winding of which is open and connected to a single-wire transmission line and load, characterized in that they use a step-up transformer, the primary winding of which is made triple-pole, its conclusions are connected to an active amplifier element of a high-frequency generator with the formation of an oscillator operating in a three-point circuit with the automatic installation and maintenance of resonant electrical oscillations in a system containing an oscillator, step-up transformer, single-wire transmission line and load, while a single-wire transmission line is connected to one of the terminals of the secondary winding of the step-up transformer or step-up the transformer further comprises a single-pole insulated element located inside or outside the main ayuschego transformer and serving to collect energy emitted up transformer, and single-wire transmission line connected to said element.
Недостатками этих способов является то, что нагрузка (потребитель) входят в состав резонансного контура и изменение нагрузки влияет на параметры контура. В связи с этим меняется напряжение на линии электропередачи и соответственно в нагрузке у потребителя. К тому же в этих способах передачи электрической энергии при работе на холостом ходу в контурах генерируются напряжения, превышающие в несколько раз значения при работе под нагрузкой, в связи с этим в передающих устройствах протекают значительные реактивные токи, на которые расходуется электрическая энергия генератора.The disadvantages of these methods is that the load (consumer) are part of the resonant circuit and the change in load affects the parameters of the circuit. In this regard, the voltage on the power line changes and, accordingly, in the load at the consumer. In addition, in these methods of transferring electrical energy when idling, voltages are generated in the circuits that exceed several times the values when operating under load, and therefore significant reactive currents flow into the transmitting devices, which consume the electric energy of the generator.
Задачей предлагаемого изобретения является повышение стабильности передающегося напряжения независимо от нагрузки и повышение КПД передачи.The objective of the invention is to increase the stability of the transmitted voltage regardless of the load and increase the transmission efficiency.
Указанный результат достигается тем, что в предлагаемом способе передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансного контура и резонансного трансформатора и однопроводной линии электропередачи между ними, напряжение источника питания преобразуют по частоте с обратной связью, снимаемой с контура, для поддержания значения выходного напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, и обратной связью по частоте для синхронизации задающего генератора с резонансной частотой выходного трансформатора и линии электропередачи.This result is achieved by the fact that in the proposed method of transmitting electrical energy by transmitting resonant oscillations of increased frequency in a circuit consisting of a resonant circuit and a resonant transformer and a single-wire power line between them, the voltage of the power source is converted in frequency with feedback taken from the circuit, for maintaining the value of the output voltage in the power line at a constant level corresponding to the maximum load, and frequency feedback for sync ization oscillator with a resonant frequency of the output transformer and the power line.
В другом варианте способа передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из двух резонансных трансформаторов и однопроводной линии электропередачи между ними, напряжение источника питания преобразуют по частоте с обратной связью с выходного трансформатора для поддержания значения выходного напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, и обратной связью по частоте для синхронизации задающего генератора с резонансной частотой выходного трансформатора и линии электропередачи.In another embodiment of the method for transmitting electrical energy by transmitting resonant oscillations of increased frequency in a circuit consisting of two resonant transformers and a single-wire power line between them, the voltage of the power source is converted in frequency with feedback from the output transformer to maintain the value of the output voltage in the power line at a constant the level corresponding to the maximum load and frequency feedback to synchronize the master oscillator with resonant frequencies th output transformer and the power line.
В другом варианте способа передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из двух резонансных трансформаторов и однопроводной линии электропередачи между ними, напряжение источника питания преобразуют по частоте с тремя обратными связями, первую по напряжению для поддержания значения напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, вторую обратную связь по частоте для синхронизации задающего генератора с резонансной частотой выходного трансформатора и линии электропередачи и третью обратную связь для стабилизации напряжения в нагрузке.In another embodiment of the method for transmitting electrical energy by transmitting resonant oscillations of increased frequency in a circuit consisting of two resonant transformers and a single-wire power line between them, the voltage of the power source is converted in frequency with three feedbacks, the first in voltage to maintain the voltage value in the power line for a constant level corresponding to the maximum load, the second frequency feedback for synchronizing the master oscillator with a resonant frequency in Khodnev transformer and the power transmission line and a third feedback voltage for stabilizing the load.
В другом варианте способа передачи электрической энергии путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из резонансного контура и резонансного трансформатора и однопроводной линии электропередачи между ними, напряжение источника питания преобразуют по частоте с тремя обратными связями, первую по напряжению для поддержания значения напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, вторую обратную связь по частоте для синхронизации задающего генератора с резонансной частотой выходного трансформатора и линии электропередачи и третью обратную связь для стабилизации напряжения в нагрузке.In another embodiment of a method for transmitting electrical energy by transmitting resonant oscillations of increased frequency in a circuit consisting of a resonant circuit and a resonant transformer and a single-wire power line between them, the voltage of the power source is converted in frequency with three feedbacks, the first in voltage to maintain the voltage value in the line power transmission at a constant level corresponding to the maximum load, the second frequency feedback to synchronize the master oscillator with ansnoy frequency output transformer and the power transmission line and a third feedback voltage for stabilizing the load.
Технический результат достигается также тем, что в устройстве передачи электрической энергии, содержащем преобразователь частоты, повышающий резонансный контур, однопроводную линию электропередачи и понижающий трансформатор, в преобразователе частоты выполнены одна обратная связь по напряжению для поддержания значения выходного напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, другая обратная связь по частоте для синхронизации задающего генератора с резонансной частотой выходного контура и линии электропередачи, при этом преобразователь соединен с последовательным резонансным контуром, средняя точка которого соединена с линией электропередачи, к которой на другом конце подсоединен понижающий трансформатор с нагрузкой.The technical result is also achieved by the fact that in the electric power transmission device comprising a frequency converter, increasing a resonant circuit, a single-wire power line and a step-down transformer, one voltage feedback is provided in the frequency converter to maintain the output voltage value in the power line at a constant level corresponding to maximum load, another frequency feedback for synchronizing the master oscillator with the resonant frequency of the output power line and power lines, while the converter is connected to a series resonant circuit, the middle point of which is connected to a power line to which a step-down transformer with a load is connected at the other end.
В другом варианте в устройстве передачи электрической энергии, содержащем преобразователь частоты, повышающий резонансный трансформатор, однопроводную линию электропередачи и понижающий трансформатор, в преобразователе частоты выполнены одна обратная связь по напряжению для поддержания значения выходного напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, вторая обратная связь по частоте для синхронизации задающего генератора с резонансной частотой выходного трансформатора и линии электропередачи, при этом преобразователь частоты соединен с резонансным трансформатором, к высоковольтному выходу которого подсоединена линия электропередачи, к которой на другом конце подсоединен понижающий трансформатор с нагрузкой.In another embodiment, in an electric energy transmission device comprising a frequency converter, a step-up resonant transformer, a single-wire power line and a step-down transformer, one voltage feedback is provided in the frequency converter to maintain the value of the output voltage in the power line at a constant level corresponding to the maximum load, the second frequency feedback for synchronization of the master oscillator with the resonant frequency of the output transformer and the electric line ktroperedachi, wherein the frequency converter is connected with a resonant transformer to the high voltage output of which is connected a transmission line to which the other end is connected to a load step-down transformer.
В другом варианте устройства передачи электрической энергии, содержащем преобразователь частоты, повышающий резонансный трансформатор, однопроводную линию электропередачи и понижающий трансформатор, в преобразователе частоты выполнены одна обратная связь по напряжению для поддержания значения напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, вторая обратная связь по частоте для синхронизации задающего генератора с резонансной частотой выходного трансформатора и линии электропередачи и третья обратная связь для стабилизации напряжения в нагрузке, при этом преобразователь частоты соединен с резонансным трансформатором, к высоковольтному выходу которого подсоединена линия электропередачи, к которой на другом конце подсоединен понижающий трансформатор с нагрузкой.In another embodiment of an electric energy transmission device comprising a frequency converter, a step-up resonant transformer, a single-wire power line and a step-down transformer, one voltage feedback is provided in the frequency converter to maintain the voltage value of the power line at a constant level corresponding to the maximum load, the second feedback in frequency to synchronize the master oscillator with the resonant frequency of the output transformer and power line and a third feedback to stabilize the voltage in the load, wherein the frequency converter is connected with a resonant transformer to the high voltage output of which is connected a transmission line to which the other end is connected to a load step-down transformer.
В другом варианте устройства передачи электрической энергии, содержащем преобразователь частоты, повышающий резонансный контур, однопроводную линию электропередачи и понижающий трансформатор, в преобразователе частоты выполнены одна обратная связь по напряжению для поддержания значения напряжения в линии электропередачи на постоянном уровне, соответствующем максимальной нагрузке, вторая обратная связь по частоте для синхронизации задающего генератора с резонансной частотой выходного контура и линии электропередачи и третья обратная связь для стабилизации напряжения в нагрузке, при этом преобразователь соединен с последовательным резонансным контуром, средняя точка которого соединена с линией электропередачи, к которой на другом конце подсоединен понижающий трансформатор с нагрузкой.In another embodiment of an electric energy transmission device comprising a frequency converter increasing a resonant circuit, a single-wire transmission line and a step-down transformer, one voltage feedback is made in the frequency converter to maintain the voltage value in the transmission line at a constant level corresponding to the maximum load, the second feedback in frequency to synchronize the master oscillator with the resonant frequency of the output circuit and power line and the third close connection to stabilize the voltage in the load, while the converter is connected to a series resonant circuit, the middle point of which is connected to a power line to which a step-down transformer is connected to the load at the other end.
Сущность предлагаемого изобретения поясняется фиг.1, 2, 3 и 4.The essence of the invention is illustrated in figures 1, 2, 3 and 4.
На фиг.1 представлена система передачи электрической энергии по однопроводной линии использованием резонансного контура и резонансного трансформатора. В этой системе преобразователь частоты имеет обратную связь по выходному напряжению и резонансной частоте.Figure 1 shows a system for transmitting electrical energy through a single-wire line using a resonant circuit and a resonant transformer. In this system, the frequency converter has feedback on the output voltage and resonant frequency.
На фиг.2 представлена система передачи электрической энергии по однопроводной линии использованием резонансных трансформаторов. В этой системе преобразователь частоты имеет обратную связь по выходному напряжению и резонансной частоте.Figure 2 presents a system for transmitting electrical energy through a single-wire line using resonant transformers. In this system, the frequency converter has feedback on the output voltage and resonant frequency.
На фиг.3 представлена система передачи электрической энергии по однопроводной линии использованием резонансных трансформаторов. В этой системе преобразователь частоты имеет обратную связь по выходному напряжению и резонансной частоте и обратную связь по напряжению в нагрузке.Figure 3 presents a system for transmitting electrical energy through a single-wire line using resonant transformers. In this system, the frequency converter has feedback on the output voltage and resonant frequency and feedback on the voltage in the load.
На фиг.4 представлена система передачи электрической энергии по однопроводной линии использованием резонансного контура и резонансного трансформатора. В этой системе преобразователь частоты имеет обратную связь по выходному напряжению и резонансной частоте и обратную связь по напряжению в нагрузке.Figure 4 presents a system for transmitting electrical energy through a single-wire line using a resonant circuit and a resonant transformer. In this system, the frequency converter has feedback on the output voltage and resonant frequency and feedback on the voltage in the load.
Устройство фиг.1 содержит блок управления 1, силовой каскад 2, блок обратной связи для стабилизации напряжения и частоты 3, резонансную катушку 4, конденсатор 5, линию обратной связи 6, линию электропередачи 7, входную обмотку приемного трансформатора 8, выходную обмотку приемного трансформатора 9, выпрямитель или инвертор 10, изолированную емкость или заземление 11.The device of FIG. 1 comprises a
Устройство фиг.2 содержит блок управления 1, силовой каскад 2, блок обратной связи для стабилизации напряжения и частоты 3, линию обратной связи 6, линию электропередачи 7, входную обмотку приемного трансформатора 8, выходную обмотку приемного трансформатора 9, выпрямитель или инвертор 10, изолированную емкость или заземление 11, конденсатор 12, первичную обмотку резонансного трансформатора 13, вторичную обмотку резонансного трансформатора 14.The device of figure 2 contains a
Устройство фиг.3 содержит блок управления 1, силовой каскад 2, блок обратной связи для стабилизации напряжения и частоты 3, линию обратной связи 6, линию электропередачи 7, входную обмотку приемного трансформатора 8, выходную обмотку приемного трансформатора 9, выпрямитель или инвертор 10, изолированную емкость или заземление 11, конденсатор 12, первичную обмотку резонансного трансформатора 13, вторичную обмотку резонансного трансформатора 14, блок стабилизации в нагрузке 15, линию обратной связи 14.The device of FIG. 3 comprises a
Устройство фиг.4 содержит блок управления 1, силовой каскад 2, блок обратной связи для стабилизации напряжения и частоты 3, резонансную катушку 4, конденсатор 5, линию обратной связи 6, линию электропередачи 7, входную обмотку приемного трансформатора 8, выходную обмотку приемного трансформатора 9, выпрямитель или инвертор 10, изолированную емкость или заземление 11, блок стабилизации в нагрузке 15, линию обратной связи 14.The device of FIG. 4 comprises a
Устройство передачи электрической энергии работает следующим образом.A device for transmitting electrical energy works as follows.
Электрическая энергия от электрической сети, солнечной батареи, аккумуляторной батареи и т.п. подается на преобразователь частоты, затем через конденсатор 12 на низковольтную обмотку 13 повышающего высокочастотного резонансного трансформатора (фиг.2, 3) или на последовательный резонансный контур, состоящий из конденсатора 5 и высоковольтного дросселя 4 (фиг.1, 4). Высоковольтная обмотка 14 высокочастотного резонансного трансформатора своим высоковольтным выводом соединена однопроводной линией 7. Низкопотенциальный вывод высоковольтной обмотки 14 трансформатора заземлен через конденсатор или без него. Резонансная частота высокочастотного резонансного трансформатора или контура составляет 1…100 кГц. Напряжение однопроводной линии 7 составляет 0,5…100 кВ.Electric energy from the mains, solar panel, battery, etc. fed to the frequency converter, then through the
К однопроводной линии электропередачи подключена одна или несколько нагрузок через обратные преобразователи, состоящие из трансформатора, у которого входная обмотка 8 соединена одним выводом с линией электропередачи, другим выводом - с изолированным проводящим телом 11 или с заземлением. Выходная обмотка 9 трансформатора соединена с выпрямителем 10 или с инвертором, со стандартным выходным напряжением. Преобразователь частоты состоит из блока управления 1, силового блока 2 и блоков обратной связи 3, 15. Блок обратной связи 3 подключен к средней точке резонансного контура (фиг.2, 4), или к средней точке резонансного контура выходного трансформатора (фиг.1, 3), или к линии электропередачи и синхронизирует рабочую частоту преобразователя частоты с резонансной частотой контура и линии электропередачи и стабилизирует выходное напряжение. Блок обратной связи 15 подключен к нагрузке и дополнительно стабилизирует выходное напряжение в нагрузке.One or more loads are connected to a single-wire power line through inverters, consisting of a transformer, in which the input winding 8 is connected by one terminal to the power line, and the other terminal is connected to an insulated
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010110939/07A RU2423772C1 (en) | 2010-03-23 | 2010-03-23 | Method and device of electric energy transfer (versions) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010110939/07A RU2423772C1 (en) | 2010-03-23 | 2010-03-23 | Method and device of electric energy transfer (versions) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2423772C1 true RU2423772C1 (en) | 2011-07-10 |
Family
ID=44740460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010110939/07A RU2423772C1 (en) | 2010-03-23 | 2010-03-23 | Method and device of electric energy transfer (versions) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2423772C1 (en) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2554723C2 (en) * | 2013-06-13 | 2015-06-27 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Aircraft power supply method and device (versions) |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
RU2626815C2 (en) * | 2015-10-14 | 2017-08-02 | Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) | Method and device for transmission of electric power |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
RU199452U1 (en) * | 2020-05-15 | 2020-09-02 | Общество с ограниченной ответственностью НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР «ТОР-ТЕХНО» | Power transmission device |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
RU2771663C1 (en) * | 2021-08-19 | 2022-05-11 | Михаил Евгеньевич Бочаров | Device for the transmission of electric energy |
-
2010
- 2010-03-23 RU RU2010110939/07A patent/RU2423772C1/en not_active IP Right Cessation
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
RU2554723C2 (en) * | 2013-06-13 | 2015-06-27 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Aircraft power supply method and device (versions) |
US10224589B2 (en) | 2014-09-10 | 2019-03-05 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10998604B2 (en) | 2014-09-10 | 2021-05-04 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10193353B2 (en) | 2014-09-11 | 2019-01-29 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10177571B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10320200B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US10320045B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10355480B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10381843B2 (en) | 2014-09-11 | 2019-08-13 | Cpg Technologies, Llc | Hierarchical power distribution |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10355481B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10153638B2 (en) | 2014-09-11 | 2018-12-11 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US10135298B2 (en) | 2014-09-11 | 2018-11-20 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10132845B2 (en) | 2015-09-08 | 2018-11-20 | Cpg Technologies, Llc | Measuring and reporting power received from guided surface waves |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US10467876B2 (en) | 2015-09-08 | 2019-11-05 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10320233B2 (en) | 2015-09-08 | 2019-06-11 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US10516303B2 (en) | 2015-09-09 | 2019-12-24 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US10148132B2 (en) | 2015-09-09 | 2018-12-04 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10536037B2 (en) | 2015-09-09 | 2020-01-14 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10425126B2 (en) | 2015-09-09 | 2019-09-24 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US9882606B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10333316B2 (en) | 2015-09-09 | 2019-06-25 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10601099B2 (en) | 2015-09-10 | 2020-03-24 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10326190B2 (en) | 2015-09-11 | 2019-06-18 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US10355333B2 (en) | 2015-09-11 | 2019-07-16 | Cpg Technologies, Llc | Global electrical power multiplication |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
RU2626815C2 (en) * | 2015-10-14 | 2017-08-02 | Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) | Method and device for transmission of electric power |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
RU199452U1 (en) * | 2020-05-15 | 2020-09-02 | Общество с ограниченной ответственностью НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР «ТОР-ТЕХНО» | Power transmission device |
RU2771663C1 (en) * | 2021-08-19 | 2022-05-11 | Михаил Евгеньевич Бочаров | Device for the transmission of electric energy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2423772C1 (en) | Method and device of electric energy transfer (versions) | |
RU2488207C1 (en) | Method and device for transmission of power | |
RU2340064C1 (en) | Method and device for electrical energy transmission (versions) | |
RU2488208C1 (en) | Method and device for transmission of electric power | |
RU2459340C2 (en) | Method and device for transmission of power | |
RU2273939C1 (en) | Method and device for transferring electric energy (variants) | |
RU2161850C1 (en) | Technique and gear to transmit electric energy | |
RU2474031C2 (en) | Method and device for electrical energy transmission (versions) | |
CN112421966B (en) | Solid-state transformer | |
RU2411142C2 (en) | Method of electric power wireless transmission and device to this end | |
RU2577522C2 (en) | Method and device for transmission of electric power | |
CN110112928B (en) | Electric energy transmission equipment | |
RU2626815C2 (en) | Method and device for transmission of electric power | |
RU2521108C2 (en) | Device for electric energy transmission in rocket and space complexes (versions) | |
US10491043B2 (en) | Resonant coil, wireless power transmitter using the same, wireless power receiver using the same | |
RU2662796C1 (en) | Electrical lighting system | |
WO2021053502A1 (en) | Method and apparatus for transmission of electrical energy (embodiments) | |
WO2022119969A1 (en) | Power receiver for extracting energy from the earth's hydrosphere | |
RU95104930A (en) | Electric device feeding method and it realizing arrangement | |
Junlin et al. | Contactless power delivery system for the underground flat transit of mining | |
KR102094832B1 (en) | Apparatus for Control Power Supply of Semiconductor Transformer | |
RU2014151682A (en) | METHOD FOR TRANSFER OF ELECTROMAGNETIC ENERGY AND DEVICE FOR ITS IMPLEMENTATION | |
KR100582716B1 (en) | Pulse transformer of high-voltage power supply for driving traveling-wave tube | |
RU2819862C1 (en) | Method and device for transmission of electric energy | |
CN113113910B (en) | Electric energy transmission system utilizing high-frequency coupling resonance and distribution parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20120324 |