RU2340064C1 - Method and device for electrical energy transmission (versions) - Google Patents
Method and device for electrical energy transmission (versions) Download PDFInfo
- Publication number
- RU2340064C1 RU2340064C1 RU2007111459/09A RU2007111459A RU2340064C1 RU 2340064 C1 RU2340064 C1 RU 2340064C1 RU 2007111459/09 A RU2007111459/09 A RU 2007111459/09A RU 2007111459 A RU2007111459 A RU 2007111459A RU 2340064 C1 RU2340064 C1 RU 2340064C1
- Authority
- RU
- Russia
- Prior art keywords
- voltage
- frequency
- transformer
- electric energy
- generator
- Prior art date
Links
Images
Landscapes
- Ac-Ac Conversion (AREA)
Abstract
Description
Изобретение относится к области электротехники, в частности к способу и устройству для передачи электрической энергии.The invention relates to the field of electrical engineering, in particular to a method and apparatus for transmitting electrical energy.
Известен способ и устройство для передачи электроэнергии по замкнутой цепи, состоящей из двух или более проводов, трансформаторных подстанций и линий электропередач (Электропередачи переменного и постоянного тока. Электротехнический справочник. Энергоатомиздат. 1988. С.337-352).A known method and device for transmitting electricity in a closed circuit consisting of two or more wires, transformer substations and power lines (AC and DC power transmission. Electrical reference book. Energoatomizdat. 1988. S.337-352).
Недостатком известного способа являются потери в линиях, составляющие от 5 до 20% в зависимости от длины ЛЭП, и высокая стоимость оборудования в расчете на 1 км линии электропередачи.The disadvantage of this method is the loss in the lines, comprising from 5 to 20%, depending on the length of the power lines, and the high cost of equipment per 1 km of power line.
Известен способ и устройство питания электротехнических устройств с использованием генератора переменного напряжения, подключаемого к потребителю, отличающегося тем, что напряжение генератора подают на низковольтную обмотку высокочастотного трансформаторного преобразователя, а один из выводов высоковольтной обмотки соединяют с одной из входных клемм электротехнического устройства, при этом изменением частоты генератора добиваются установления резонансных колебаний в образованной электрической цепи.A known method and device for powering electrical devices using an alternating voltage generator connected to a consumer, characterized in that the voltage of the generator is supplied to the low-voltage winding of the high-frequency transformer converter, and one of the terminals of the high-voltage winding is connected to one of the input terminals of the electrical device, while changing the frequency generators achieve the establishment of resonant oscillations in the formed electrical circuit.
Устройство, реализующее данный способ, представляет собой источник переменного напряжения с регулируемой частотой, высокочастотный трансформатор, один вывод высоковольтной секции которого изолирован, а второй предназначен для подачи энергии потребителю (патент РФ №2108649, 1998, Авраменко С.В. Способ питания электротехнических устройств и устройство для его осуществления).A device that implements this method is an AC voltage source with an adjustable frequency, a high-frequency transformer, one output of the high-voltage section of which is isolated, and the second is designed to supply energy to the consumer (RF patent No. 2108649, 1998, S. Avramenko, Method for supplying electrical devices and device for its implementation).
Известно устройство для преобразования и передачи электрической энергии по однопроводной линии на большое расстояние, разработанное Н.Тесла в 1897 году. Согласно изобретению Н.Тесла устройство состоит из двух трансформаторов, один для повышения, а другой для уменьшения потенциала тока, указанные трансформаторы имеют вывод обмотки с проводом большой длины, соединенный с линией, и другой вывод этой обмотки, примыкающий к обмотке из провода более короткой длины, соединен электрически с ней и с землей.A device for converting and transmitting electric energy through a single-wire line over a long distance, developed by N. Tesla in 1897, is known. According to the invention of N. Tesla, the device consists of two transformers, one to increase and the other to reduce the current potential, these transformers have a winding terminal with a long wire connected to the line, and another terminal of this winding adjacent to the winding from a shorter wire electrically connected to it and to the ground.
Повышающий трансформатор имеет первичную обмотку, соединенную с электрическим генератором повышенной частоты. Первичная обмотка намотана на вторичную высоковольтную обмотку, длина провода которой значительно больше длины первичной обмотки и приблизительно равна четверти длины волны электромагнитного поля в линии. В этом случае потенциал одного внутреннего вывода высоковольтной обмотки равен нулю, а потенциал другого наружного вывода будет максимальный. Внутренний конец высоковольтной вторичной обмотки соединен с линией передачи электрической энергии, а наружный конец вторичной обмотки и прилегающий вывод первичной обмотки в целях электробезопасности соединен с землей. Понижающий трансформатор выполнен аналогично. Выводы низковольтной обмотки соединены с электрической нагрузкой в виде ламп накаливания и электродвигателей. Однопроводная линия электропередач имеет длинные изоляторы на опорах для снижения потерь на утечку тока (Н.Тесла. Электрический трансформатор. Пат. США №593138 от 2.11.1897 г.).The step-up transformer has a primary winding connected to an increased frequency electric generator. The primary winding is wound on a secondary high-voltage winding, the wire length of which is much greater than the length of the primary winding and approximately equal to a quarter of the wavelength of the electromagnetic field in the line. In this case, the potential of one internal output of the high voltage winding is zero, and the potential of the other external output will be maximum. The inner end of the high voltage secondary winding is connected to the electric power transmission line, and the outer end of the secondary winding and the adjacent output of the primary winding are connected to earth for electrical safety purposes. The step-down transformer is made similarly. The findings of the low-voltage winding are connected to an electric load in the form of incandescent lamps and electric motors. A single-wire power line has long insulators on poles to reduce current leakage losses (N. Tesla. Electric transformer. US Pat. No. 593138 of November 2, 1897).
Недостатком известного способа и устройства являются потери мощности из-за утечки тока на высокой частоте через изоляторы и окружающее пространство при наличии атмосферных осадков.The disadvantage of this method and device is the power loss due to leakage of current at a high frequency through the insulators and the surrounding space in the presence of precipitation.
Недостатком всех известных способов и устройств передачи электрической энергии является то, что они не позволяют обеспечить высокоэффективную передачу энергии на большое расстояние, а также передавать без существенных потерь электроэнергию на транспортные средства и летательные аппараты.The disadvantage of all known methods and devices for the transmission of electrical energy is that they do not allow for highly efficient energy transmission over a long distance, and also without significant losses to transmit electricity to vehicles and aircraft.
Задачей изобретения является повышение эффективности передачи энергии, увеличение длины линий передач и возможность передачи электроэнергии на транспортные средства и летательные аппараты.The objective of the invention is to increase the efficiency of energy transfer, increasing the length of transmission lines and the ability to transfer electricity to vehicles and aircraft.
В результате использования предлагаемого изобретения повышается эффективность и снижаются потери при передаче электрической энергии стационарным и мобильным потребителям энергии.As a result of the use of the invention, the efficiency is increased and the losses in the transmission of electric energy to stationary and mobile energy consumers are reduced.
Вышеуказанный технический результат достигается тем, что в предлагаемом способе передачи электрической энергии, включающем преобразование электрической энергии по напряжению и частоте у электрического генератора, передачу электрической энергии по однопроводниковой высоковольтной линии и преобразование электрической энергии по напряжению и по частоте у потребителя, электрическую энергию генератора повышают по напряжению в высоковольтном трансформаторе до 1-1000 кВ и подают на управляемый быстродействующий коммутатор тока и на последовательный резонансный контур из емкости и индуктивности, образующей первичную обмотку высокочастотного высоковольтного трансформатора, заряжают емкость резонансного контура до напряжения 1-1000 кВ, разряжают емкость в резонансном режиме на частоте 0,4-1000 кГц, через индуктивность и быстродействующий прерыватель тока за время 10-1000 мкс при величине тока 1-500 кА накапливают энергию генератора в магнитном поле высокочастотного трансформатора, разрывают цепь коммутатора тока первичной обмотки и преобразуют накопленную энергию магнитного поля в электрическую энергию во вторичной обмотке высокочастотного трансформатора, повышают электрическую энергию по напряжению до 10-100000 кВ и передают ее в резонансном режиме потребителю.The above technical result is achieved by the fact that in the proposed method of transmitting electric energy, including converting electric energy by voltage and frequency from an electric generator, transmitting electric energy by a single-conductor high voltage line and converting electric energy by voltage and frequency from a consumer, the electric energy of the generator is increased by voltage in a high-voltage transformer up to 1-1000 kV and served on a controlled high-speed current switch and after The series resonant circuit from the capacitance and inductance, which forms the primary winding of the high-frequency high-voltage transformer, charges the capacitance of the resonant circuit to a voltage of 1-1000 kV, discharges the capacitance in the resonant mode at a frequency of 0.4-1000 kHz, through inductance and a high-speed current chopper for 10- 1000 μs at a current value of 1-500 kA accumulate the energy of the generator in the magnetic field of a high-frequency transformer, break the circuit of the primary current switch and convert the stored magnetic energy I'm into electrical energy in the secondary winding of the high-frequency transformer, increase the electrical energy at voltages of up to 10-100000 kV and transmit it to the resonant mode to the consumer.
В варианте способа передачи электрической энергии, включающем преобразование электрической энергии по напряжению и частоте у электрического генератора, передачу электрической энергии по однопроводниковой высоковольтной линии и преобразование электрической энергии по напряжению и по частоте у потребителя, электрическую энергию трехфазного генератора повышают по напряжению в трехфазном трансформаторе до 1-1000 кВ по каждой фазе и подают на три управляемых быстродействующих коммутатора тока, каждый из которых соединяют к одному из трех последовательных резонансных контуров из емкости и индуктивности, образующей одну из трех первичных обмоток высокочастотного высоковольтного трансформатора с общей для всех фаз одной вторичной обмоткой, поочередно заряжают емкости трех резонансных контуров до напряжения 1-1000 кВ с задержкой по времени между коммутаторами тока, где Т - период колебаний электрической энергии генератора, разряжают поочередно емкость каждого из резонансных контуров в резонансном режиме на частоте 0,4-1000 кГц через каждую из трех индуктивностей с помощью быстродействующего управляемого коммутатора тока за время 10-1000 мкс при величине тока 1-500 кА с задержкой по времени между коммутаторами тока, где Т - период колебаний электрической энергии генератора, накапливают энергию генератора в магнитном поле высокочастотного трансформатора, разрывают цепь каждого из трех управляемых прерывателей тока с задержкой по времени между коммутаторами тока, где T - период колебаний электрической энергии генератора, преобразуют накопленную энергию магнитного поля в электрическую энергию в общей для всех трех фаз вторичной обмотке высокочастотного трансформатора, повышают электрическую энергию по напряжению до 10-100000 кВ и передают ее в резонансном режиме через однопроводниковую высоковольтную линию потребителю.In an embodiment of a method for transmitting electric energy, including converting electric energy by voltage and frequency from an electric generator, transmitting electric energy by a single-wire high-voltage line and converting electric energy by voltage and frequency from a consumer, the electric energy of a three-phase generator is increased in voltage in a three-phase transformer to 1 -1000 kV for each phase and is fed to three controlled high-speed current switches, each of which is connected to one of three successive resonant circuits from the capacitance and inductance, forming one of the three primary windings of the high-frequency high-voltage transformer with one secondary winding common for all phases, alternately charge the capacities of the three resonant circuits to a voltage of 1-1000 kV with a time delay between the current switches, where T is the oscillation period of the generator’s electric energy, the capacitance of each of the resonant circuits in the resonance mode is discharged at a frequency of 0.4-1000 kHz through each of the three inductors using a high-speed controlled current switch for a time of 10-1000 μs at current 1-500 kA with a time delay between the current switches, where T is the oscillation period of the generator’s electric energy, they store the generator energy in the magnetic field of the high-frequency transformer, break the circuit of each of the three controlled current breakers with a time delay between the current switches, where T is the oscillation period of the generator’s electric energy, they convert the stored magnetic field energy into electric energy in the secondary winding of the high-frequency transformer common to all three phases, increase the electric energy by voltage to 10-100000 kV and transmit it in resonant mode through a single-conductor high voltage line to consumer.
В варианте способа передачи электрической энергии электрическую энергию трехфазного генератора повышают по напряжению в трехфазном трансформаторе до 1-1000 кВ на частоте генератора, регулируют по напряжению, выпрямляют и стабилизируют в зарядном электрическом аппарате и затем подают напряжение на управляемый быстродействующий коммутатор тока и на последовательный резонансный контур из емкости и индуктивности, образующей первичную обмотку высокочастотного высоковольтного трансформатора, заряжают емкость резонансного контура до напряжения 1-1000 кВ, разряжают емкость в резонансном режиме на частоте 0,4-1000 кГц, через индуктивность и быстродействующий прерыватель тока за время 10-1000 мкс при величине тока 1-500 кА накапливают энергию генератора в магнитном поле высокочастотного трансформатора, разрывают цепь коммутатора тока и первичной обмотки, преобразуют накопленную энергию магнитного поля в электрическую энергию во вторичной обмотке высокочастотного трансформатора, повышают электрическую энергию по напряжению до 10-100000 кВ и передают ее в резонансном режиме через однопроводниковую высоковольтную линию на частоте 0,4-1000 кГц потребителю.In an embodiment of a method for transmitting electric energy, the electric energy of a three-phase generator is increased in voltage in a three-phase transformer to 1-1000 kV at the generator frequency, regulated in voltage, rectified and stabilized in a charging electric apparatus and then voltage is supplied to a controllable high-speed current switch and to a serial resonant circuit From the capacitance and inductance forming the primary winding of the high-frequency high-voltage transformer, the capacitance of the resonant circuit is charged to voltages of 1-1000 kV, discharge the capacitance in resonance mode at a frequency of 0.4-1000 kHz, through inductance and a high-speed current chopper for 10-1000 μs at a current value of 1-500 kA, they store the generator energy in the magnetic field of the high-frequency transformer, break the circuit current switch and primary winding, convert the stored energy of the magnetic field into electrical energy in the secondary winding of a high-frequency transformer, increase the electrical energy by voltage to 10-100000 kV and transmit it in resonant mode through a single ovodnikovuyu high-voltage line at a frequency 0,4-1000 kHz consumer.
В варианте способа передачи электрической энергии в качестве быстродействующего коммутатора тока используют управляемый газовый разрядник.In an embodiment of the method for transmitting electric energy, a controlled gas spark gap is used as a high-speed current switch.
В другом варианте способа передачи электрической энергии в качестве быстродействующего коммутатора тока используют управляемые полупроводниковые ключи.In another embodiment of the method for transmitting electrical energy, controlled semiconductor switches are used as a high-speed current switch.
Еще в одном варианте способа электрическую энергию передают по однопроводниковому высоковольтному кабелю с сечением многожильного провода 0,1-100 мм2 на расстояние 1 - 40000 км в режиме стоячих волн тока и напряжения в кабеле.In another embodiment of the method, electric energy is transmitted via a single-conductor high-voltage cable with a cross-section of a stranded wire of 0.1-100 mm 2 over a distance of 1 - 40,000 km in the mode of standing waves of current and voltage in the cable.
В варианте способа передачи электрической энергии электрическую энергию передают по однопроводниковому проводящему каналу с концентрацией заряженных частиц 1012-1018 см-3, образованному излучением лазера, микроволновым излучением или релятивистским пучком электронов сверхвысоких энергий.In an embodiment of the method for transmitting electrical energy, electrical energy is transmitted through a single-conductor conducting channel with a concentration of charged particles of 10 12 -10 18 cm -3 , formed by laser radiation, microwave radiation or a relativistic electron beam of superhigh energies.
В устройстве для передачи электрической энергии, содержащем генератор электрической энергии, преобразователь частоты, резонансный контур повышающего трансформатора, однопроводниковую высоковольтную линию, резонансный контур понижающего трансформатора и нагрузку, устройство содержит повышающий трансформатор с выходным напряжением 1-1000 кВ, вход которого соединен с генератором и имеет с ним одинаковую частоту, а выход соединен параллельно к управляемому быстродействующему коммутатору тока с током коммутации 1-500 кА при длительности импульса тока 10-1000 мкс, а коммутатор тока соединен параллельно с последовательным резонансным контуром повышающего высокочастотного трансформатора с резонансной частотой 0,4-1000 кГц и напряжением в однопроводниковой линии 10-100000 кВ.In the device for transmitting electric energy containing an electric energy generator, a frequency converter, a resonant circuit of a step-up transformer, a single-conductor high-voltage line, a resonant circuit of a step-down transformer and a load, the device contains a step-up transformer with an output voltage of 1-1000 kV, the input of which is connected to the generator and has the same frequency with it, and the output is connected in parallel to a controlled high-speed current switch with a switching current of 1-500 kA with a duration of the current pulse is 10-1000 μs, and the current switch is connected in parallel with a series resonant circuit of a step-up high-frequency transformer with a resonant frequency of 0.4-1000 kHz and a voltage in a single-conductor line of 10-100000 kV.
В варианте устройства для передачи электрической энергии, содержащем генератор электрической энергии, преобразователь частоты, резонансный контур повышающего высокочастотного трансформатора, однопроводниковую высоковольтную линию, резонансный контур понижающего трансформатора и нагрузку, генератор выполнен трехфазным и соединен с трехфазным высоковольтным трансформатором с выходным фазным напряжением 1-1000 кВ, а три выхода трехфазного трансформатора соединены параллельно с тремя быстродействующими коммутаторами тока с системой управления с током коммутации 1-500 кА при длительности импульсного тока коммутации 10-1000 мкс, каждый из трех коммутаторов тока соединен с одним из трех последовательных резонансных контуров повышающего высокочастотного трансформатора с резонансной частотой 0,4-1000 кГц, повышающий высокочастотный трансформатор имеет три низковольтные одинаковые обмотки, намотанные симметрично на одном каркасе относительно центра одной общей высоковольтной обмотки, а устройства управления коммутаторами тока имеют контроллеры для поочередного включения каждого из коммутаторов при прохождении через емкость и индуктивность данного резонансного контура волны напряжения трехфазного тока с задержкой по времени между коммутаторами тока, где Т - период колебаний электрической энергии с частотой генератора, высоковольтная обмотка соединена с однопроводниковой высоковольтной линией и имеет резонансную частоту 0,4-1000 кГц при напряжении 10-100000 кВ.In an embodiment of a device for transmitting electric energy, comprising an electric energy generator, a frequency converter, a resonant circuit of a step-up high-frequency transformer, a single-conductor high-voltage line, a resonant circuit of a step-down transformer and a load, the generator is made of three-phase and connected to a three-phase high-voltage transformer with an output phase voltage of 1-1000 kV , and the three outputs of the three-phase transformer are connected in parallel with three high-speed current switches with the system boards with a switching current of 1-500 kA with a switching pulse duration of 10-1000 μs, each of the three current switches is connected to one of three consecutive resonant circuits of the boosting high-frequency transformer with a resonant frequency of 0.4-1000 kHz, the boosting high-frequency transformer has three low-voltage the same windings wound symmetrically on one frame relative to the center of one common high-voltage winding, and the control devices of the current switches have controllers for alternating switching on each switch when passing through the capacitance and inductance of a given resonant circuit of a three-phase current voltage wave with a time delay between the current switches, where T is the period of oscillation of electric energy with the generator frequency, the high-voltage winding is connected to a single-conductor high-voltage line and has a resonant frequency of 0.4-1000 kHz at a voltage of 10-100000 kV.
В варианте устройства для передачи электрической энергии, содержащем генератор, преобразователь частоты и резонансный контур повышающего трансформатора, однопроводниковую высоковольтную линию, резонансный контур понижающего трансформатора и нагрузку, генератор выполнен трехфазным и соединен с трехфазным высоковольтным трансформатором, у которого три высоковольтные обмотки соединены с управляемым выпрямителем и стабилизированным зарядным аппаратом с напряжением на выходе 1-1000 кВ, выход выпрямителя соединен параллельно управляемому быстродействующему коммутатору тока с током коммутации 1-500 кА при длительности импульса тока 10-1000 мкс, а коммутатор тока соединен параллельно с последовательным резонансным контуром повышающего высокочастотного трансформатора с резонансной частотой 0,4-1000 кГц и напряжением в однопроводниковой линии 10-100000 кВ.In an embodiment of a device for transmitting electric energy comprising a generator, a frequency converter and a resonant circuit of a step-up transformer, a single-wire high-voltage line, a resonant circuit of a step-down transformer and a load, the generator is made of three-phase and connected to a three-phase high-voltage transformer, in which three high-voltage windings are connected to a controlled rectifier and stabilized charger with a voltage at the output of 1-1000 kV, the output of the rectifier is connected in parallel controlled a high-speed current switch with a switching current of 1-500 kA with a current pulse duration of 10-1000 μs, and the current switch is connected in parallel with a series resonant circuit of a high-frequency transformer with a resonant frequency of 0.4-1000 kHz and a voltage in a single-conductor line of 10-100000 kV .
В варианте устройства для передачи электрической энергии в качестве коммутатора тока используют газовый разрядник с блоком управления.In an embodiment of a device for transmitting electric energy, a gas spark gap with a control unit is used as a current switch.
В другом варианте устройства для передачи электрической энергии в качестве коммутатора тока используют полупроводниковые ключи с блоком управления.In another embodiment of the device for transmitting electrical energy, semiconductor switches with a control unit are used as a current switch.
В варианте устройства для передачи электрической энергии в качестве однопроводниковой линии используют высоковольтный кабель с многожильными проводами сечением 0,1-100 мм2 длиной 1-40000 км.In a variant of the device for transmitting electric energy, a high-voltage cable with multicore wires with a cross section of 0.1-100 mm 2 and a length of 1-40000 km is used as a single-conductor line.
В другом варианте устройства для передачи электрической энергии в качестве однопроводниковой линии используют проводящий канал с концентрацией заряженных частиц 1012-1018 см-3, сформированный лучом лазера, пучком микроволнового генератора или пучком релятивистских электронов сверхвысоких энергий.In another embodiment of the device for transmitting electric energy, a conductive channel with a concentration of charged particles of 10 12 -10 18 cm -3 , formed by a laser beam, a beam of a microwave generator or a beam of relativistic electrons of superhigh energies, is used as a single-conductor line.
Способ и устройство для передачи электрической энергии иллюстрируются на фиг.1, 2, 3, 4.The method and apparatus for transmitting electrical energy are illustrated in figures 1, 2, 3, 4.
На фиг.1 представлена блок-схема способа передачи электрической энергии.Figure 1 presents a block diagram of a method for transmitting electrical energy.
На фиг.2 - электрическая схема устройства для передачи электрической энергии с использованием однофазного генератора электрической энергии.Figure 2 - electrical diagram of a device for transmitting electrical energy using a single-phase generator of electrical energy.
На фиг.3 - электрическая схема устройства для передачи электрической энергии с использованием трехфазного генератора и трехфазного высокочастотного трансформатора.Figure 3 is an electrical diagram of a device for transmitting electrical energy using a three-phase generator and a three-phase high-frequency transformer.
На фиг.4 - электрическая схема устройства для передачи электрической энергии с использованием трехфазного генератора, управляемого выпрямителя и стабилизированного зарядного устройства и однофазного высокочастотного трансформатора.Figure 4 is an electrical diagram of a device for transmitting electrical energy using a three-phase generator, a controlled rectifier and a stabilized charger and a single-phase high-frequency transformer.
На фиг.1 представлена блок-схема способа передачи электрической энергии, где 1 - генератор электрической энергии, 2 - высоковольтный трансформатор, 3 - быстродействующий сильноточный коммутатор с блоком управления 4, 5 - зарядная емкость С0 последовательного резонансного контура 6, 7 - индуктивность L0 резонансного контура, которая является первичной обмоткой 8 резонансного высокочастотного повышающего трансформатора 9, 10 - вторичная высоковольтная обмотка высокочастотного повышающего трансформатора 9, 11 - емкость резонансного контура вторичной обмотки повышающего высокочастотного трансформатора 9, 12 - однопроводниковая высоковольтная линия, 13 - емкость резонансного контура высоковольтной обмотки 14 резонансного высокочастотного понижающего трансформатора 15, 16 - емкость резонансного контура низковольтной обмотки 17 понижающего высокочастотного трансформатора 15, 18 - инвертор, 19 - нагрузка.Figure 1 presents a flowchart of a method for transmitting electric energy, where 1 is an electric energy generator, 2 is a high-voltage transformer, 3 is a high-speed high-current switch with a
Способ передачи электрической энергии реализуется следующим образом.The method of transmitting electrical energy is implemented as follows.
Электрическая энергия от генератора 1 поступает в высоковольтный трансформатор 2. Высокое напряжение с трансформатора 2 подают на коммутатор тока 3 и на последовательный резонансный контур 6, при этом происходит заряд конденсатора 5 с емкостью С0. При увеличении напряжения на емкости С0 блок управления 4 коммутатора 3 замыкает электроды коммутатора и емкость С0 разряжается через коммутатор 3. Резонансные колебания с частотой создают в цепи последовательного резонансного контура 6. На индуктивности L0 возникает напряжение V0, которое превышает выходное напряжение высоковольтного трансформатора 2 в Q раз, где - добротность резонансного контура 6, a R0 - активное сопротивление контура 6.Electric energy from the generator 1 is supplied to the high-
Ток разряда конденсатора через коммутатор тока 3 и первичную обмотку 8 создает магнитное поле в резонансном трансформаторе 9. Когда энергия магнитного поля трансформатора 9 достигнет максимального значения, блок управления 4 коммутатора тока 3 разорвет цепь коммутатора 3. Так как первичная обмотка резонансного трансформатора 9 будет разомкнута, энергия магнитного поля резонансного трансформатора 9 выделится в виде энергии электрического поля в резонансном контуре высоковольтной обмотки 10 резонансного трансформатора 9. Напряжение на высоковольтной однопроводниковой линии 12, которая соединена с высокопотенциальным выводом высоковольтной обмотки 10 резонансного трансформатора 9, составит:The discharge current of the capacitor through the
, ,
где VГ - напряжение на генераторе;where V G is the voltage at the generator;
- коэффициент трансформации высоковольтного трансформатора 2; - the transformation coefficient of the
Q - добротность контура L0C0;Q is the quality factor of the circuit L 0 C 0 ;
- коэффициент трансформации резонансного трансформатора 9. - the transformation coefficient of the
Принимая VГ=400 В, , Q=50, , получим напряжение на однопроводниковой линии 12 VЛ=20 млн. В.Taking V G = 400 V, , Q = 50, , we obtain a voltage on a single-conductor line 12 V L = 20 million V.
Электрическая энергия распределена в однопроводниковой линии 12 в виде стоячих волн тока и напряжения со сдвигом фаз между волнами тока и напряжения во времени и в пространстве. В сечении линии с пучностями напряжения возникают узлы тока, а при узлах напряжения наблюдаются пучности тока. Фаза напряжения во всех сечениях линии одинакова. Это значит, что во всей линии напряжение равно нулю или достигает максимума в один и тот же момент времени, но эти максимумы для разных сечений различны, поскольку амплитуда колебаний вдоль линии изменяется. То же самое происходит с волнами тока. Когда во всей линии напряжение максимально, ток равен нулю и наоборот. При длине линии 12 с учетом высоковольтных обмоток 10 и 14 высокочастотных трансформаторов 9 и 15, кратной четверти длины волны, линия 12 является последовательным резонансным контуром, а при длине линии 12, кратной целому числу полуволн, линия ведет себя как параллельный резонансный контур. При работе в режиме стоячих волн вектор Умова-Пойнтинга через каждые четверть периода изменяет свое направление на противоположное. Это объясняется тем, что в однопроводниковой линии 12 имеется сдвиг фаз между напряженностями электрических и магнитных полей, вследствие чего каждые четверть периода из векторов электрического поля или магнитного поля изменяет свое направление на противоположное. Таким образом подтверждается, что на создание чисто стоячих волн генератор не затрачивает энергии (Г.Б.Белоцерковский. Антенны. Оборонгиз, М., 1962, с.34-41, 101). На конце однопроводниковой линии 12 возникают резонансные колебания с частотой f0 в резонансных контурах высоковольтной 14 обмотки и низковольтной 17 обмотки понижающего трансформатора 15. Электрическая энергия из резонансных контуров поступает в инвертор 18 и в нагрузку 19. Высоковольтный трансформатор 2 служит для увеличения передаваемой мощности и длины однопроводниковой линии 12. Если электрическая мощность и расстояние между генератором 1 и нагрузкой 19 незначительные, высоковольтный трансформатор 2 может не использоваться.Electric energy is distributed in the single-
На фиг.2 однофазный электрический генератор 1 соединен с высоковольтным трансформатором 2, к которому присоединен параллельно коммутатор тока 3 и последовательный резонансный контур 6 с зарядной емкостью 5 С0 и индуктивностью 7 L0.In Fig.2, a single-phase electric generator 1 is connected to a high-
На фиг.3 трехфазный генератор 20 присоединен к трехфазному высоковольтному трансформатору 21. Высоковольтные обмотки 22, 23 и 24 трансформатора 21 соединены параллельно с коммутаторами тока 25, 26 и 27 с блоками управления 28, 29 и 30 и с последовательными резонансными контурами 31, 32 и 33, каждый из которых состоит из зарядной емкости 34 и индуктивности 35. Каждая из трех индуктивностей 35 является одной из первичных обмоток повышающего трехфазного резонансного высокочастотного трансформатора 36, который имеет три низковольтные обмотки 35 и одну высоковольтную обмотку 37. Высоковольтная обмотка 37 и емкость 38 образуют последовательный резонансный контур высоковольтной обмотки трансформатора 36, который соединен с однопроводниковой линией 12. Блоки управления 28, 29 и 30 обеспечивают замыкание и размыкание электродов коммутаторов тока 25, 26 и 27 со сдвигом фаз по времени на между коммутаторами тока, где Т - период колебаний напряжения в резонансных контурах 31, 32 и 33, таким образом, что в первичных обмотках 35 трансформатора 36 возникают со сдвигом по времени согласованные по фазе резонансные колебания напряжения и тока, которые создают и усиливают магнитное поле трансформатора 36.In Fig. 3, a three-
На фиг.4 трехфазный генератор 20 соединен с трехфазным трансформатором 21, у которого высоковольтные обмотки 22, 23, 24 соединены с управляемым зарядным электрическим аппаратом 25 с блоком выпрямления 26, регулирования и стабилизации напряжения 27. Зарядный аппарат 25 соединен параллельно с коммутатором тока 3 с блоком управления 4 и последовательный резонансный контур 6 с зарядной емкостью 5 С0 и индуктивностью 7 L0 аналогично фиг.1 и 2. Зарядный электрический аппарат 25 с блоком управления 27 имеет функции регулирования величины напряжения, выпрямления тока и стабилизации выходного напряжения.In Fig. 4, a three-
Примеры выполнения способа и устройства передачи электрической энергииExamples of the method and device for transmitting electrical energy
Генератор 1 в виде однофазной электрической сети на напряжение 220 В соединен с однофазным высоковольтным трансформатором 2 220 В/1,0 кВ электрической мощностью 10 кВт. Выход высоковольтной обмотки трансформатора соединен параллельно коммутатором тока 3, выполненным в виде полупроводниковых транзисторных модулей IGBT, с блоком управления 4. Транзисторные модули IGBT имеют токи коммутации 1 кА при напряжении 1200 В. Частота резонансного контура 30 кГц, напряжение на однопроводниковой линии 10 кВ.The generator 1 in the form of a single-phase electric network for a voltage of 220 V is connected to a single-phase high-
Пример 2Example 2
Трехфазный генератор 20 (фиг.4) с напряжением 400 В соединен с трехфазным повышающим трансформатором 21 0,4/10 кВ. Трехфазный выход трансформатора 21 соединен с зарядным электрическим аппаратом 25 типа ИВН-4, который выпрямляет токи, повышает напряжение генератора до 50 кВ. Аппарат ИВН-4 имеет дистанционный блок управления 27 и стабильность поддержания напряжения 5% с уровнем пульсации напряжения не более 0,1%. Выход аппарата соединен с коммутатором тока 3 типа РГУ-1-50-100 на основе газового разрядника с блоком управления 4. Технические характеристики коммутатора тока 3: рабочее напряжение 50 кВ, максимальный ток 100 кА, длительность тока 100 - 1000 мкс, масса 5 кг. Резонансный контур 6 настроен на частоту 50 кГц. Коэффициент трансформации трансформатора 21 n=20. Добротность резонансного контура 6 Q=20. Напряжение на однопроводниковой высоковольтной линии 12 V=500 кВ.A three-phase generator 20 (Fig. 4) with a voltage of 400 V is connected to a three-phase step-up
Электрическая мощность, передаваемая от генератора 1 (фиг.2) в первичную обмотку 8 высокочастотного резонансного повышающего трансформатора 9, равна:The electric power transmitted from the generator 1 (figure 2) to the primary winding 8 of a high-frequency resonant step-up
, ,
где V - напряжение на конденсаторе 5;where V is the voltage across the
С0 - емкость конденсатора 5;With 0 is the capacitance of the
fк - частота коммутатора тока 3.f to - the frequency of the
τ0 - продолжительность резонансных колебаний с частотой f0 в резонансном контуре 6, которая определяется временем нахождения коммутатора тока 3 в замкнутом состоянии;τ 0 - the duration of resonant oscillations with a frequency f 0 in the
τp - время заряда конденсатора 5 высоковольтного трансформатора 2 (фиг.1, 2) или от зарядного аппарата 25 (фиг.4), равное времени нахождения коммутатора тока 3 в разомкнутом состоянии.τ p is the charging time of the
Для эффективной работы устройства необходимо, чтобы частота переключения коммутатора тока 3 fк была значительно меньше частоты f0 резонансных колебаний в контуре 6. Принимая С0=0,12 мкФ, V=70 кВ, τ0=100 мкс, τр=100 мкс, получим fк=5 кГц, Рэл=15 МВт.For the effective operation of the device, it is necessary that the switching frequency of the current switch 3 f k be much less than the frequency f 0 of the resonant oscillations in
В отличие от известных резонансных способов и устройств передачи электрической энергии в предлагаемом способе функции преобразователя частоты выполняет коммутатор тока 3 и резонансный контур 6, который выделяет из всего спектра электромагнитных колебаний, возникающих при замыкании коммутатора тока 3, колебания с резонансной частотой , которые через магнитное поле трансформатора 9 передают в высоковольтную обмотку 10 и в однопроводниковую линию 12. Это значительно снижает потери электрической энергии при преобразовании частоты и снижает стоимость устройства для передачи электрической энергии. Автоматическая настройка частоты резонанса f0 в резонансном контуре 6 исключает необходимость согласования частоты преобразователя частоты с частотой f0 резонансного контура 6, что упрощает управление устройством передачи электрической энергии и увеличивает его надежность.In contrast to the known resonant methods and devices for transmitting electrical energy in the proposed method, the functions of the frequency converter are performed by the
Другим важным преимуществом предлагаемого способа и устройства является отсутствие ограничений передаваемой мощности, которые существуют в известных устройствах передачи электрической энергии по однопроводниковой линии в резонансном режиме и связаны с необходимостью изготовления и использования преобразователя частоты большой мощности.Another important advantage of the proposed method and device is the absence of restrictions on the transmitted power that exist in the known devices for transmitting electric energy through a single-conductor line in resonance mode and are associated with the need to manufacture and use a high-frequency frequency converter.
Еще одним преимуществом предлагаемого способа и устройства передачи электрической энергии является возможность передачи мощных потоков электрической энергии с малыми потерями по однопроводниковому высоковольтному кабелю из многожильного провода сечением 0,1-100 мм2 на расстояние 1-40000 км при уровне мощности 1-10 ГВт и напряжении (10-100)·106 В.Another advantage of the proposed method and device for transmitting electric energy is the ability to transfer powerful flows of electric energy with low losses through a single-conductor high-voltage cable from a stranded wire with a cross section of 0.1-100 mm 2 over a distance of 1-40000 km at a power level of 1-10 GW and voltage (10-100) · 10 6 V.
Высокий кпд передачи электрической энергии 95-97% объясняется принципиально другим механизмом передачи электрической энергии не в виде бегущих волн тока и напряжения, как в обычных трехфазных линиях передач переменного тока, а в стационарном режиме, когда в однопроводниковой высоковольтной линии сформированы пучности и узлы стоячих волн напряжения и тока и генератор 20 затрачивает энергию на холостом ходу только на поддержание этих стоячих волн. В этом случае электрическая энергия существует по всей линии, в том числе и у потребителя, и ее не надо передавать вдоль линии в виде бегущих волн.The high efficiency of electric energy transmission of 95-97% is explained by a fundamentally different mechanism of electric energy transmission not in the form of traveling current and voltage waves, as in ordinary three-phase AC transmission lines, but in a stationary mode, when antinodes and standing wave nodes are formed in a single-conductor high-voltage line voltage and current and the
В качестве однопроводниковой линии могут быть использованы неметаллические проводники, в том числе проводящие каналы с концентрацией заряженных частиц 1012-1018 см-3, созданные излучением лазера, микроволнового генератора и пучков релятивистских электронов сверхвысоких энергий.Non-metallic conductors can be used as a single-conductor line, including conducting channels with a concentration of charged particles of 10 12 -10 18 cm -3 , created by laser radiation, a microwave generator, and beams of relativistic electrons of superhigh energies.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007111459/09A RU2340064C1 (en) | 2007-03-29 | 2007-03-29 | Method and device for electrical energy transmission (versions) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007111459/09A RU2340064C1 (en) | 2007-03-29 | 2007-03-29 | Method and device for electrical energy transmission (versions) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2340064C1 true RU2340064C1 (en) | 2008-11-27 |
Family
ID=40193349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007111459/09A RU2340064C1 (en) | 2007-03-29 | 2007-03-29 | Method and device for electrical energy transmission (versions) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2340064C1 (en) |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102510136A (en) * | 2011-10-29 | 2012-06-20 | 常熟市董浜镇华进电器厂 | On-line energy supply way on high-voltage side of electronic type current transformer |
RU2502170C1 (en) * | 2012-05-03 | 2013-12-20 | Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) | Device for non-contact transfer of electric energy to underwater object (versions) |
RU2529186C2 (en) * | 2009-03-17 | 2014-09-27 | Сони Корпорейшн | Electric power transmission system and electric power output device |
RU2554723C2 (en) * | 2013-06-13 | 2015-06-27 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Aircraft power supply method and device (versions) |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
RU199452U1 (en) * | 2020-05-15 | 2020-09-02 | Общество с ограниченной ответственностью НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР «ТОР-ТЕХНО» | Power transmission device |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
CN113410828A (en) * | 2020-03-16 | 2021-09-17 | 大众汽车股份公司 | High voltage system |
WO2022067407A1 (en) * | 2020-09-29 | 2022-04-07 | Rodrigues Da Cunha Aloysio | Auxiliary system for electrical energy distribution based on bio-generator sets with tesla coil feedback |
-
2007
- 2007-03-29 RU RU2007111459/09A patent/RU2340064C1/en not_active IP Right Cessation
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2529186C2 (en) * | 2009-03-17 | 2014-09-27 | Сони Корпорейшн | Electric power transmission system and electric power output device |
CN102510136A (en) * | 2011-10-29 | 2012-06-20 | 常熟市董浜镇华进电器厂 | On-line energy supply way on high-voltage side of electronic type current transformer |
RU2502170C1 (en) * | 2012-05-03 | 2013-12-20 | Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) | Device for non-contact transfer of electric energy to underwater object (versions) |
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
RU2554723C2 (en) * | 2013-06-13 | 2015-06-27 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Aircraft power supply method and device (versions) |
US10224589B2 (en) | 2014-09-10 | 2019-03-05 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10998604B2 (en) | 2014-09-10 | 2021-05-04 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10320045B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10320200B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10355480B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10381843B2 (en) | 2014-09-11 | 2019-08-13 | Cpg Technologies, Llc | Hierarchical power distribution |
US10193353B2 (en) | 2014-09-11 | 2019-01-29 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10355481B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US10177571B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10153638B2 (en) | 2014-09-11 | 2018-12-11 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10135298B2 (en) | 2014-09-11 | 2018-11-20 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US10132845B2 (en) | 2015-09-08 | 2018-11-20 | Cpg Technologies, Llc | Measuring and reporting power received from guided surface waves |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10467876B2 (en) | 2015-09-08 | 2019-11-05 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10320233B2 (en) | 2015-09-08 | 2019-06-11 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10516303B2 (en) | 2015-09-09 | 2019-12-24 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10148132B2 (en) | 2015-09-09 | 2018-12-04 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US10536037B2 (en) | 2015-09-09 | 2020-01-14 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US9882606B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10425126B2 (en) | 2015-09-09 | 2019-09-24 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10333316B2 (en) | 2015-09-09 | 2019-06-25 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
US10601099B2 (en) | 2015-09-10 | 2020-03-24 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US10355333B2 (en) | 2015-09-11 | 2019-07-16 | Cpg Technologies, Llc | Global electrical power multiplication |
US10326190B2 (en) | 2015-09-11 | 2019-06-18 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
CN113410828A (en) * | 2020-03-16 | 2021-09-17 | 大众汽车股份公司 | High voltage system |
RU199452U1 (en) * | 2020-05-15 | 2020-09-02 | Общество с ограниченной ответственностью НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР «ТОР-ТЕХНО» | Power transmission device |
WO2022067407A1 (en) * | 2020-09-29 | 2022-04-07 | Rodrigues Da Cunha Aloysio | Auxiliary system for electrical energy distribution based on bio-generator sets with tesla coil feedback |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2340064C1 (en) | Method and device for electrical energy transmission (versions) | |
RU2474031C2 (en) | Method and device for electrical energy transmission (versions) | |
RU2459340C2 (en) | Method and device for transmission of power | |
RU2423772C1 (en) | Method and device of electric energy transfer (versions) | |
RU2273939C1 (en) | Method and device for transferring electric energy (variants) | |
RU2255406C2 (en) | Method and device for electrical energy transmission | |
EP2719062B1 (en) | High voltage dc/dc converter with cascaded resonant tanks | |
US8134345B2 (en) | Cryogenic exciter | |
CN108092371B (en) | Charging and discharging device | |
KR102241145B1 (en) | On-line wireless power transfer system and wireless power transmission coil thereof | |
CN109792811B (en) | Converter-fed electric arc furnace with capacitor means in the secondary circuit | |
US9584040B2 (en) | Double-rectifier for a multi-phase contactless energy transmission system | |
US10027238B2 (en) | Electrical assembly | |
CN110112928B (en) | Electric energy transmission equipment | |
RU2003120864A (en) | METHOD AND DEVICE FOR TRANSMISSION OF ELECTRIC ENERGY | |
RU2662796C1 (en) | Electrical lighting system | |
Ota et al. | A capacitance design guideline of snubber capacitors for soft switching in bi-directional inductive power transfer system considering battery charging cycle | |
CN114303313A (en) | Dual active bridge converter unit with split energy transfer inductors for optimizing current balance in an intermediate frequency transformer MFT | |
RU2521108C2 (en) | Device for electric energy transmission in rocket and space complexes (versions) | |
Morren et al. | Design study and scaled experiments for high-power DC-DC conversion for HVDC-systems | |
Mabuchi et al. | Multi-level power converter using series-connected solid-state transformers | |
RU2819862C1 (en) | Method and device for transmission of electric energy | |
CN211456995U (en) | DC switch and DC energy supply device thereof | |
RU184462U1 (en) | Integrator of currents and voltages high-voltage ITN-V | |
RU2665030C1 (en) | Power supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20090330 |