RU2485169C1 - Способ очистки нефти, газоконденсата и их фракций от сероводорода и меркаптанов - Google Patents
Способ очистки нефти, газоконденсата и их фракций от сероводорода и меркаптанов Download PDFInfo
- Publication number
- RU2485169C1 RU2485169C1 RU2012118406/04A RU2012118406A RU2485169C1 RU 2485169 C1 RU2485169 C1 RU 2485169C1 RU 2012118406/04 A RU2012118406/04 A RU 2012118406/04A RU 2012118406 A RU2012118406 A RU 2012118406A RU 2485169 C1 RU2485169 C1 RU 2485169C1
- Authority
- RU
- Russia
- Prior art keywords
- reagent
- mercaptans
- oil
- dioxazine
- hydrogen sulfide
- Prior art date
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Изобретение относится к нефтехимии. Изобретение касается очистки нефти, газоконденсата и их фракций от меркаптанов и сероводорода путем обработки исходного сырья органическим реагентом, в качестве которого используют диоксазин R-[N(CH2)3O2]n, где n=1, 2, R - алкил, циклоалкил, арил, алкиларил, оксиакил группы, предварительно синтезированный взаимодействием водного раствора формальдегида с первичными аминами R-NH2 и последующей обработкой исходного сырья полученным реагентом, в состав которого дополнительно вводят третичные амины N(R')3, где R' для первичных и третичных аминов имеет значения, аналогичные для диоксазина, при этом третичные амины в количестве 0,5-2,0 мас.% предварительно вводят в формальдегид при температуре 20-80°С. Технический результат - повышение степени очистки нефти, газоконденсата и их фракций от меркаптанов и сероводорода, повышение содержания диоксазина в реагенте, снижение удельного расхода реагента для очистки нефти. 1 табл., 10 пр.
Description
Изобретение относится к нефтехимии, в частности к способам очистки нефти, газоконденсата и их фракций от меркаптанов и сероводорода, и может быть использовано в нефтяной, газовой, нефтегазоперерабатывающей, нефтехимической и других отраслях промышленности для нейтрализации низкомолекулярных меркаптанов и сероводорода при добыче, подготовке, хранении и переработке сернистых нефтей, газоконденсатов и их фракций.
Известен способ очистки нефти, газоконденсата и их фракций от меркаптанов и сероводорода путем обработки исходного сырья органическим реагентом, в качестве которого используют метанолэтаноламин, диметаноламин, метанолдиэтаноламин или их смеси, которые берут в количестве 0,3-2 моль на 1 моль меркаптановой и сероводородной смеси [патент РФ №2121492, 1995 г.].
Недостатком известного способа является недостаточно высокая степень очистки сырья от сероводорода, метил - и этилмеркаптанов. Недостатком способа является также длительность обработки сырья реагентом и значительный расход реагента, что существенно снижает эффективность процесса в целом и препятствует его широкому использованию в промышленности.
Наиболее близким к заявляемому является способ очистки нефти, газоконденсата и их фракций от меркаптанов и сероводорода путем обработки исходного сырья органическим реагентом, при этом в качестве органического реагента используют диоксазины структуры R-[N(CH2)3O2]n, где n=1, 2, R - алкил, диалкил, арил, оксиалкил, алкиларил группы или их смеси, которые получают взаимодействием водного раствора формальдегида с первичными аминами R-NH2. Затем в состав реагента вводят третичные амины N(R')3 в количестве 0,01-0,05 мас.%, где R' - алкил, арил, оксиалкил группы. Реагент берут в количестве 0,25-0,05 на 1 моль меркаптановой и сероводородной серы. Обработку исходного сырья ведут при 10-40°C [патент №2242499, кл. C10G 29/20, опубл. 20.12.2004 г.].
Диоксазины на практике получают взаимодействием водного раствора формальдегида с первичными аминами. При этом выход диоксазинов не превышает 55-60% [Хафизова С.Р., Ахметова В.Р., Кулакова Р.В., и др. Гетероциклизация первичных аминов под действием формальдегида // XVII Менделеевский съезд по общей и прикладной химии «Достижения и перспективы химической науки», Казань, 2003, №1, с.102]. Невысокий выход диоксазина обусловлен тем, что параллельно реакции получения диоксазина образуются побочные продукты, к которым относятся алкиламинометанолы и циклические триоксиалкилтриметилентриамины [Уокер Дж.Ф. Формальдегид. Пер. с англ., М., Госхимиздат, 1957, с.315-316].
Недостатком способа является высокий удельный расхода реагента (4-10 кг реагента на 1 тонну нефти), что связано с невысоким выходом действующего вещества в реагенте - диоксазинов. Невысокий выход диоксазинов приводит и к снижению их концентрации в водном растворе реагента, что замедляет скорость поглощения сероводорода и меркаптанов из-за кинетических факторов. Значительный удельный расход реагента связан с повышенными затратами амина и формальдегида для синтеза реагента, что удорожает очистку нефти.
Технический результат - повышение степени очистки нефти, газоконденсата и их фракций, повышение содержания диоксазина в реагенте, снижение удельного расхода реагента для очистки нефти.
Указанный технический результат достигается тем, что в известном способе очистку нефти, газоконденсата и их фракций от меркаптанов и сероводорода осуществляют путем обработки исходного сырья органическим реагентом, в качестве которого используют диоксазин R-[N(СН2)3O2]n, где n=1, 2, R - алкил, циклоалкил, арил, алкиларил, оксиакил группы, предварительно синтезированный взаимодействием водного раствора формальдегида с первичными аминами R-NH2 и последующей обработкой исходного сырья полученным реагентом, в состав которого дополнительно вводят третичные амины N(R')3, где R' для первичных и третичных аминов имеет значения, аналогичные для диоксазина, отличием является то, что третичные амины в количестве 0,5-2,0 мас.% предварительно вводят в формальдегид при температуре 20-80°C.
Обработка исходного сырья органическим реагентом, в качестве которого используют диоксазин R-[N(CH2)3O2]n, где n=1, 2, R - алкил, циклоалкил, арил, алкиларил, оксиакил группы, предварительно синтезированный взаимодействием водного раствора формальдегида с первичными аминами R-NH2 и последующей обработкой исходного сырья полученным реагентом, обеспечивает высокий выход реагента, повышение выхода диоксазина приводит к повышению его концентрации в растворе реагента. Повышение концентрации диоксазина в водном растворе реагента ускоряет поглощение сероводорода и меркаптанов.
Высокое содержание диоксазина в реагенте ведет и к снижению удельного расхода реагента в исходном продукте - в 1,5 раза меньше, чем в известном способе очистки, что в конечном итоге обеспечивает снижение затрат на очистку исходного продукта.
Предварительное введение третичных аминов в количестве 0,1-2,0 мас.% в водный раствор формальдегида при температуре 20-80°C позволяет создать благоприятные условия для повышения выхода диоксазинов при их синтезе за счет стабилизации основности реакционной среды, что увеличивает селективность реакции по диоксазинам и, следовательно, приводит к повышению его концентрации в реагенте. Кроме того, введение третичных аминов в формальдегид обеспечивает равномерное распределение его в реакционной смеси из-за меньшей вязкости водного раствора формальдегида по сравнению с аминами. Третичные амины не расходуются в реакции, выполняя роль катализирующего вещества при обработке нефти реагентом.
Способ осуществляют следующим образом.
Пример 1 (по прототипу). В реакционную колбу помещают 1000 г исходного углеводородного сырья - нефти Ольховского месторождения, содержащей сероводорода - 398 ppm, меркаптанов - 64 ppm. Затем ее обрабатывают органическим реагентом, удельный расход которого составляет 3,6 г/кг нефти. В качестве реагента используют диоксазин структуры R-N(CH2)3O2, предварительно синтезированный взаимодействием водного раствора формальдегида с первичными аминами, например моноэтаноламином (оксиэтиламином), и последующей обработкой исходного сырья полученным реагентом, в состав которого дополнительно вводят триэтаноламин в количестве 0,1 мас.%. Полученную смесь перемешивают, затем определяют содержание сероводорода и меркаптанов в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 30 ppm, меркаптанов - метил- и этилмеркаптанов - 12 ppm. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 94,0 и 90,9% соответственно. Содержание диоксазина в полученном реагенте составляет 26,0 мас.%. Из примера следует, что степень очистки нефти по остаточному содержанию сероводорода и меркаптанов не соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Пример 2. Исходную нефть аналогично примеру 1 обрабатывают органическим реагентом, удельный расход которого составляет 2,6 г/кг нефти. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - оксиэтиламином - и последующей обработкой исходного сырья полученным реагентом. При этом предварительно в водный раствор формальдегида вводят третичный амин - трибутиламин в количестве 0,1 мас.% при температуре 20°C. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 18 ppm, метил- и этилмеркаптанов - 15 ppm. Содержание диоксазина в реагенте составляет 34,5 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 95,2% и 90,3% соответственно. Из примера следует, что степень очистки нефти по остаточному содержанию сероводорода и меркаптанов соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Пример 3. Аналогично примерам 1 и 2 исходную нефть обрабатывают органическим реагентом, удельный расход которого составляет 2,4 г/кг. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - бутиламином, при этом предварительно в водный раствор формальдегида вводят третичный амин - триэтаноламин в количестве 0,5 мас.% при температуре 40°C. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 20 ppm, метил- и этилмеркаптанов - 5 ppm. Содержание диоксазина в полученном реагенте составляет 41 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 94,9 и 92,3%, что соответствует остаточному содержанию сероводорода и меркаптанов в нефти, соответствующей 1-му виду качества товарной нефти классификации в соответствии с ГОСТ Р 51585-2002.
Пример 4. Аналогично примерам 1 и 2 исходную нефть обрабатывают органическим реагентом, удельный расход которого составляет 2,8 г/кг нефти. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - пентиламином, и последующей обработкой исходного сырья полученным реагентом. При этом предварительно в водный раствор формальдегида вводят третичный амин - триэтаноламин в количестве 0,1 мас.% при температуре 20°С. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. Содержание диоксазина в реагенте составляет 36,4 мас.%. По результатам анализа остаточная концентрация сероводорода - 15 ppm, метил- и этилмеркаптанов - 5 ppm. Содержание диоксазина в реагенте составляет 36,4 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 96,2% и 92,4% соответственно. Содержание диоксазина в реагенте составляет 36,4 мас.%. Из примера следует, что степень очистки нефти по остаточному содержанию сероводорода и меркаптанов соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Пример 5. Аналогично примерам 1 и 2 исходную нефть обрабатывают органическим реагентом, удельный расход которого составляет 2,5 г/кг нефти. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - гексиламином, и последующей обработкой исходного сырья полученным реагентом. При этом предварительно в водный раствор формальдегида вводят третичный амин - N-метилдиэтаноамин в количестве 0,5 мас.% при температуре 50°C. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 8 ppm, метил- и этилмеркаптанов - 5 ppm. Содержание диоксазина в реагенте составляет 32,8 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 97,9% и 92,0% соответственно. Из примера следует, что степень очистки нефти по остаточному содержанию сероводорода и меркаптанов соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Пример 6. Аналогично примерам 1 и 2 исходное сырье - прямогонную бензиновую фракцию газоконденсата, содержащую суммарно 520 ppm метил- и этилмеркаптанов и 46 ppm сероводорода, обрабатывают органическим реагентом, удельный расход которого составляет 2,5 г/кг. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - гептиламином, и последующей обработкой исходного сырья полученным реагентом. При этом предварительно в водный раствор формальдегида вводят третичный амин - N,N-диметиланилин (диметилфениламин) в количестве 2,0 мас.% при температуре 70°C. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 2,0 ppm, метил- и этилмеркаптанов - 19 ppm. Содержание диоксазина в реагенте составляет 40,8 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 95,6% и 96,4% соответственно. Из примера следует, что степень исходного продукта по остаточному содержанию сероводорода и меркаптанов соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Пример 7. Аналогично примерам 1 и 2 исходное сырье - газоконденсат Астраханского ГКМ, содержащий суммарно 220 ppm метил- и этилмеркаптанов и 130 ppm сероводорода, обрабатывают органическим реагентом, удельный расход которого составляет 2,4 г/кг. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - октиламином, и последующей обработкой исходного сырья полученным реагентом. При этом предварительно в водный раствор формальдегида вводят третичный амин - триэтаноламин в количестве 1,5 мас.% при температуре 80°C. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 7 ppm, метил- и этилмеркаптанов - 18 ppm. Содержание диоксазина в реагенте составляет 42,2 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 94,6% и 92,0% соответственно. Из примера следует, что степень очистки исходного продукта по остаточному содержанию сероводорода и меркаптанов соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Пример 8. Аналогично примерам 1 и 2 исходную нефть обрабатывают органическим реагентом, удельный расход которого составляет 2,5 г/кг. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - циклогексиламином, и последующей обработкой исходного сырья полученным реагентом. При этом предварительно в водный раствор формальдегида вводят третичный амин - N,N-диметилэтаноламин в количестве 1,5% маc. при температуре 80°C. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 18 ppm, метил- и этилмеркаптанов - 15 ppm. Содержание диоксазина в реагенте составляет 42,2 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 95,5% и 92,0% соответственно. Из примера следует, что степень очистки нефти по остаточному содержанию сероводорода и меркаптанов соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Пример 9. Аналогично примерам 1 и 2 исходную нефть обрабатывают органическим реагентом, удельный расход которого составляет 2,7 г/кг. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - фениламином (анилином), и последующей обработкой исходного сырья полученным реагентом. При этом предварительно в водный раствор формальдегида вводят третичный амин - триэтаноламин в количестве 0,5% маc. при температуре 65°C. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 20 ppm, метил- и этилмеркаптанов - 6 ppm. Содержание диоксазина в реагенте составляет 40,0 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 95,0% и 91,1% соответственно. Из примера следует, что степень очистки нефти по остаточному содержанию сероводорода и меркаптанов соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Пример 10. Аналогично примерам 1 и 2 исходную нефть обрабатывают органическим реагентом, удельный расход которого составляет 2,8 г/кг. В качестве реагента используют диоксазин, предварительно синтезированный взаимодействием водного раствора формальдегида с первичным амином - метилфениламином (метиланилин или 1-амино-4-метилбензол), и последующей обработкой исходного сырья полученным реагентом. При этом предварительно в водный раствор формальдегида вводят третичный амин - триэтаноламин в количестве 0,5% маc. при температуре 30°C. Полученную смесь перемешивают, затем определяют содержание меркаптанов и сероводорода в обработанной нефти. По результатам анализа остаточная концентрация сероводорода - 19 ppm, метил- и этилмеркаптанов - 6 ppm. Содержание диоксазина в реагенте составляет 39,9 мас.%. Степень очистки обработанной реагентом нефти по сероводороду и меркаптанам составляет 95,1% и 91,2% соответственно. Из примера следует, что степень очистки нефти по остаточному содержанию сероводорода и меркаптанов соответствует 1-му виду качества товарной нефти в соответствии с ГОСТ Р 51585-2002.
Данные примеров сведены в таблицу.
Из таблицы видно, что проведение очистки нефти, газоконденсата и их фракций при предварительном введении в водный раствор формальдегида третичных аминов в количестве 0,1-2,0 мас.% при температуре 20-80°C обеспечивает повышение степени очистки от сероводорода и меркаптанов до 95-97%, повышается содержание диоксазина в реагенте с 26% в прототипе до 34-42%, а также снижается удельный расход реагента - диоксазина - с 3,6% в прототипе до 2,4-2,8 г/кг нефти.
Предлагаемый способ очистки нефти, газоконденсата и их фракций от сероводорода и меркаптанов находит широкое применение на многих объектах добычи, подготовки, хранения и переработки сернистых нефтей, газоконденсатов и их фракций.
Таблица | |||||||||
№ п/п | Значение R в формуле первичных аминов R-NH2 и диоксазина R-[N(CH2)3O2]n | Третичные амины N(R')3 | Т, °C | Содержание диоксазина в реагенте | Удельный расход реагента, г/кг нефти | Степень очистки, % | |||
Наименование | Кол-во, % мас. | H2S | R-SH | ||||||
Прототип | |||||||||
1 | Оксиэтил | триэтаноламин | 0,1 | 40 | 26 | 3,6 | 94,0 | 90,9 | |
Предлагаемый способ | |||||||||
2 | Оксиэтил | трибутиламин | 0,1 | 20 | 34,5 | 2,6 | 95,2 | 90,3 | |
3 | Бутил- | триэтаноламин | 0,5 | 40 | 41,0 | 2,4 | 94,9 | 92,3 | |
4 | Пентил- | триэтаноламин | 1,0 | 60 | 36,4 | 2,8 | 96,2 | 92,4 | |
5 | Гексил- | N-метилдиэтаноламин | 0,5 | 50 | 32,8 | 2,5 | 97,9 | 92,0 | |
6 | Гептил- | N,N-диметиланилин | 2,0 | 70 | 40,8 | 2,5 | 95,6 | 92,1 | |
7 | Октил- | триэтаноламин | 1,5 | 80 | 42,2 | 2,4 | 95,6 | 90,9 | |
8 | Циклогексил- | N,N-диметилэтаноламин | 1,0 | 35 | 37,5 | 2,5 | 95,5 | 92,0 | |
9 | Фенил- | триэтаноламин | 0,5 | 65 | 40,0 | 2,7 | 95,0 | 91,1 | |
10 | Метилфенил- | триэтаноламин | 0,5 | 30 | 39,9 | 2,8 | 95,1 | 91,2 |
Claims (1)
- Способ очистки нефти, газоконденсата и их фракций от сероводорода и меркаптанов путем обработки исходного сырья органическим реагентом, в качестве которого используют диоксазин структуры R-[N(CH2)3O2]n, где n=1, 2, R - алкил, циклоалкил, арил, алкиларил, оксиакил-группы, предварительно синтезированный взаимодействием водного раствора формальдегида с первичными аминами R-NH2, и последующей обработкой исходного сырья полученным реагентом, в состав которого дополнительно вводят третичные амины N(R')3, где R' для первичных и третичных аминов имеет значения, аналогичные для диоксазина, отличающийся тем, что третичные амины в количестве 0,1-2,0 мас.% предварительно вводят в формальдегид при температуре 20-80°С.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012118406/04A RU2485169C1 (ru) | 2012-05-03 | 2012-05-03 | Способ очистки нефти, газоконденсата и их фракций от сероводорода и меркаптанов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012118406/04A RU2485169C1 (ru) | 2012-05-03 | 2012-05-03 | Способ очистки нефти, газоконденсата и их фракций от сероводорода и меркаптанов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2485169C1 true RU2485169C1 (ru) | 2013-06-20 |
Family
ID=48786288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012118406/04A RU2485169C1 (ru) | 2012-05-03 | 2012-05-03 | Способ очистки нефти, газоконденсата и их фракций от сероводорода и меркаптанов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2485169C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190300515A1 (en) * | 2016-07-09 | 2019-10-03 | Kishor Prabhakar Kumbhar | 1,3, 5-Dioxazine Derivatives, Method of Preparation and Application Thereof as Sulfide Scavenger |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2160761C1 (ru) * | 1999-11-24 | 2000-12-20 | Всероссийский научно-исследовательский институт углеводородного сырья | Способ дезодорирующей очистки нефти и газоконденсата от сероводорода и меркаптанов |
US20020157989A1 (en) * | 2001-04-25 | 2002-10-31 | Clearwater, Inc. | Treatment of hydrocarbons Containing Sulfides |
RU2206497C1 (ru) * | 2002-01-08 | 2003-06-20 | Общество с ограниченной ответственностью "Астраханьгазпром" | Способ очистки жидкой серы |
RU2242499C2 (ru) * | 2003-03-12 | 2004-12-20 | Исмагилов Фоат Ришатович | Способ очистки нефти, газоконденсата и их фракций от меркаптанов и сероводорода |
-
2012
- 2012-05-03 RU RU2012118406/04A patent/RU2485169C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2160761C1 (ru) * | 1999-11-24 | 2000-12-20 | Всероссийский научно-исследовательский институт углеводородного сырья | Способ дезодорирующей очистки нефти и газоконденсата от сероводорода и меркаптанов |
US20020157989A1 (en) * | 2001-04-25 | 2002-10-31 | Clearwater, Inc. | Treatment of hydrocarbons Containing Sulfides |
RU2206497C1 (ru) * | 2002-01-08 | 2003-06-20 | Общество с ограниченной ответственностью "Астраханьгазпром" | Способ очистки жидкой серы |
RU2242499C2 (ru) * | 2003-03-12 | 2004-12-20 | Исмагилов Фоат Ришатович | Способ очистки нефти, газоконденсата и их фракций от меркаптанов и сероводорода |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190300515A1 (en) * | 2016-07-09 | 2019-10-03 | Kishor Prabhakar Kumbhar | 1,3, 5-Dioxazine Derivatives, Method of Preparation and Application Thereof as Sulfide Scavenger |
US11053232B2 (en) * | 2016-07-09 | 2021-07-06 | Kishor Prabhakar Kumbhar | 1,3,5-dioxazine derivatives, method of preparation and application thereof as sulfide scavenger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU654966B2 (en) | pethods for reducing sulfides in sewage gas | |
RU2510615C2 (ru) | Нейтрализатор сероводорода и меркаптанов | |
AU2011328098A1 (en) | Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures | |
JP4772976B2 (ja) | 改良された色質を有するアルカノールアミンの製法 | |
RU2485169C1 (ru) | Способ очистки нефти, газоконденсата и их фракций от сероводорода и меркаптанов | |
GB1044771A (ru) | ||
US3340184A (en) | Process for removing sulfur from petroleum oils and synthesizing mercaptans | |
MXPA96001401A (es) | Uso de iminas olefinicas para depurar especies deazufre. | |
US4132631A (en) | Process for petroleum refining | |
US8524072B2 (en) | Catalyst and method for alkli-free purification of oil raw materials from mercaptans | |
RU2118649C1 (ru) | Способ очистки нефти и газоконденсата от сероводорода | |
RU2603635C1 (ru) | Способ демеркаптанизации углеводородного сырья | |
RU2370508C1 (ru) | Нейтрализатор сероводорода и способ его использования | |
RU2417248C2 (ru) | Способ очистки от сероводорода мазута и нефтяных фракций - компонентов мазута | |
RU2283856C2 (ru) | Способ подготовки сероводородсодержащей нефти | |
CN101263106A (zh) | 从变性乙醇制备乙基胺化合物的方法 | |
US2256753A (en) | Stabilizing cracked gasoline | |
RU2522459C1 (ru) | Нейтрализатор сероводорода и способ его использования | |
WO2017097685A1 (de) | Neue alkoxylate und deren verwendung | |
TWI566822B (zh) | 從碳氫化物液流移除有機胺類之方法 | |
RU2470988C1 (ru) | Нейтрализатор сероводорода и способ его использования | |
RU2783899C1 (ru) | Новое химическое соединение 1-(2-фенилпроп-1-ен-1-ил)-4-(2-фенилпропил)тетрасульфан | |
EP1671946B1 (de) | Verwendung von H2S-haltigen Abgasströmen zur Herstellung von schwefelhaltigen Produkten | |
RU2121491C1 (ru) | Способ очистки нефти, газоконденсата от сероводорода и меркаптанов | |
RU2808899C1 (ru) | Способ обессеривания сжиженных углеводородных газов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150504 |