RU2473168C2 - Оптимизация работы процессора в обрабатывающей системе, содержащей один или более цифровых фильтров - Google Patents

Оптимизация работы процессора в обрабатывающей системе, содержащей один или более цифровых фильтров Download PDF

Info

Publication number
RU2473168C2
RU2473168C2 RU2011107282/08A RU2011107282A RU2473168C2 RU 2473168 C2 RU2473168 C2 RU 2473168C2 RU 2011107282/08 A RU2011107282/08 A RU 2011107282/08A RU 2011107282 A RU2011107282 A RU 2011107282A RU 2473168 C2 RU2473168 C2 RU 2473168C2
Authority
RU
Russia
Prior art keywords
filter coefficients
processing system
filter
digital
digital filters
Prior art date
Application number
RU2011107282/08A
Other languages
English (en)
Other versions
RU2011107282A (ru
Inventor
Крейг Б. МАКАНАЛЛИ
Пол Дж. ХЕЙЗ
Original Assignee
Майкро Моушн, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Майкро Моушн, Инк. filed Critical Майкро Моушн, Инк.
Publication of RU2011107282A publication Critical patent/RU2011107282A/ru
Application granted granted Critical
Publication of RU2473168C2 publication Critical patent/RU2473168C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0223Computation saving measures; Accelerating measures
    • H03H17/0227Measures concerning the coefficients
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformation of program code
    • G06F8/41Compilation
    • G06F8/44Encoding
    • G06F8/443Optimisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0223Computation saving measures; Accelerating measures
    • H03H2017/0245Measures to reduce power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H2017/0298DSP implementation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2220/00Indexing scheme relating to structures of digital filters
    • H03H2220/08Variable filter length

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Measuring Volume Flow (AREA)
  • Complex Calculations (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Power Sources (AREA)
  • Feedback Control In General (AREA)
  • Image Processing (AREA)
  • Saccharide Compounds (AREA)

Abstract

Изобретение относится к вычислительной технике, а именно к способу оптимизации работы процессора в обрабатывающей системе вибрационного расходомера. Техническим результатом является сокращение и/или оптимизация потребляемой мощности в промышленном расходомере, используемом при определении характеристик потока для рабочей жидкости. Способ оптимизации работы процессора в обрабатывающей системе вибрационного расходомера включает в себя один или более цифровых фильтров, причем способ включает в себя: генерацию начальных коэффициентов фильтра для одного или более цифровых фильтров; определение одного или более начальных коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен; исключение одного или более начальных коэффициентов фильтра, причем исключение одного или более начальных коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, используемых обрабатывающей системой; и программное внесение оставшихся коэффициентов фильтра в обрабатывающую систему. 3 н. и 18 з.п. ф-лы, 6 ил.

Description

Уровень техники
Область техники, к которой относится изобретение
Настоящее изобретение относится к обрабатывающим системам, более конкретно - к оптимизации работы процессора в обрабатывающей системе, включающей в себя один или более цифровых фильтров.
Постановка задачи
Вибрационные расходомеры обычно включают в себя обрабатывающую систему, которая управляет приводом таким образом, чтобы он создавал вибрации в узле трубки-расходомера, принимает ответные сигналы чувствительного элемента, обрабатывает ответные сигналы чувствительного элемента и сообщается с внешними устройствами. Обрабатывающая система обрабатывает ответные сигналы чувствительного элемента с целью получения одного или более измерений, таких как одна или более характеристик потока. Одна или более характеристик потока могут включать в себя частоту вибрации, разность фаз или временную разность между передним и задним участками трубки или трубок-расходомеров, массовую скорость потока, плотность, вязкость, давление и другие.
Обрабатывающая система может получать и оцифровывать аналоговые входные сигналы. Оцифровка может потребовать дискретизации аналогового сигнала (сигналов). Обрабатывающая система работает при фиксированной частоте задающего генератора и дискретизирует ответные сигналы чувствительного элемента с фиксированной частотой дискретизации. В соответствии с теоремой Найквиста частота дискретизации должна быть по меньшей мере в два раза больше дискретизируемой частоты.
Одним из применений обрабатывающей системы является расходомер, такой как вибрационный расходомер, в котором обрабатывающая система получает аналоговые сигналы вибрации и, среди прочего, определяет частотные и фазовые характеристики сигналов вибрации. В прошлом частота дискретизации устанавливалась на достаточно большую величину, чтобы подходить к различным моделям расходомеров, включая низкочастотные расходомеры и высокочастотные расходомеры. Это может быть сделано по экономическим соображениям, таким как желание избежать производства и отслеживания многочисленных моделей электронных устройств расходомеров. Обычно частота дискретизации устанавливалась на величину 2000 герц (то есть 2 кГц), в то время как большинство расходомеров работают на частотах ниже 1 кГц.
Скорость обработки обрабатывающих систем предшествующего уровня техники обычно никого не заботила. Обрабатывающая система предшествующего уровня техники обычно выбиралась исходя из соображений срока службы и пропускной способности. Если обрабатывающая система имеет достаточно высокую задающую частоту, то эта обрабатывающая система будет в состоянии адекватно обрабатывать 2 килогерцовые стробы для получения одной или более характеристик потока (и может быть в состоянии выполнять дополнительную обработку, а также функции связи и управления). Задающая частота и частота дискретизации электроники расходомера обычно сконфигурированы под широкий диапазон прикладных задач и поэтому были выбраны такими, чтобы значительно превышать частоты вибрации расходомеров. В прошлом потребление энергии также никого не волновало, и поэтому общепринятой практикой была установка высокой частоты дискретизации.
Недостатком использования высокой частоты дискретизации является то, что это требует высокой частоты задающего генератора системы. Высокая задающая частота, в свою очередь, приводит к высокому потреблению энергии.
В некоторых практических применениях потребление энергии необходимо поддерживать на как можно более низком уровне. Следовательно, в этом случае большая потребляемая энергия обрабатывающей системы создает определенные проблемы.
Аспекты изобретения
В одном аспекте настоящего изобретения способ оптимизации работы процессора в обрабатывающей системе, содержащей один или более цифровых фильтров, включает в себя:
- генерацию начальных коэффициентов фильтра для одного или более цифровых фильтров;
- определение одного или более начальных коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен; и
- исключение одного или более начальных коэффициентов фильтра, причем исключение одного или более начальных коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, которые будут использованы обрабатывающей системой.
Предпочтительно способ содержит последующий этап программного внесения коэффициентов фильтра в обрабатывающую систему.
Предпочтительно это исключение дополнительно содержит исключение одного или более начальных коэффициентов фильтра из одного или более предварительно определенных цифровых фильтров.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя несимметричные коэффициенты фильтра.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра, и симметричные коэффициенты фильтра исключаются по одному или парами.
Предпочтительно данный способ дополнительно включает в себя сравнение одного или более измерений обрабатывающей системы относительно предварительно определенного порога потребления энергии во время работы; если одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии, то - определение одного или более рабочих коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен, и - исключение одного или более рабочих коэффициентов фильтра, причем исключение одного или более рабочих коэффициентов фильтра уменьшает общее количество рабочих коэффициентов фильтра, которые будут использованы обрабатывающей системой во время по крайней мере текущей итерации в основном контуре обратной связи.
В одном аспекте настоящего изобретения способ адаптивной оптимизации работы процессора в обрабатывающей системе, содержащей один или более цифровых фильтров, включает в себя:
- сравнение одного или более измерений обрабатывающей системы относительно предварительно определенного порога потребления энергии во время работы;
- если одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии, то - определение одного или более коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен; и
- исключение одного или более коэффициентов фильтра, причем исключение одного или более коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, которые будут использованы обрабатывающей системой.
Предпочтительно это исключение дополнительно содержит исключение одного или более коэффициентов фильтра из одного или более предварительно определенных цифровых фильтров.
Предпочтительно данный способ дополнительно содержит итерационное выполнение этапов сравнения, определения и обработки.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя несимметричные коэффициенты фильтра.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра, и в котором симметричные коэффициенты фильтра исключаются по одному или парами.
Предпочтительно данный способ дополнительно содержит определение количества рабочих коэффициентов фильтра, которые должны быть исключены, на основании величины, на которую одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии.
Предпочтительно данный способ дополнительно содержит предварительные этапы генерации начальных коэффициентов фильтра для одного или более цифровых фильтров; определение одного или более начальных коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен; и исключение одного или более начальных коэффициентов фильтра, причем исключение одного или более начальных коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, которые будут использованы обрабатывающей системой.
В одном варианте объект настоящего изобретения способ оптимизации работы процессора в обрабатывающей системе, содержащей один или более цифровых фильтров, включает в себя:
- генерацию коэффициентов фильтра для одного или более цифровых фильтров;
- определение одного или более начальных коэффициентов фильтра и одного или более рабочих коэффициентов фильтра для одного или более цифровых фильтров из одного или более цифровых фильтров, которые могут быть исключены; и
- исключение одного или более начальных коэффициентов фильтра, причем исключение одного или более начальных коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, которые будут использованы обрабатывающей системой;
- программное внесение коэффициентов фильтра в обрабатывающую систему;
- сравнение одного или более измерений обрабатывающей системы относительно предварительно определенного порога потребления энергии во время работы; и
- если одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии, тогда - исключение одного или более рабочих коэффициентов фильтра, причем исключение одного или более коэффициентов фильтра еще более уменьшает общее количество коэффициентов фильтра, которые будут использованы обрабатывающей системой.
Предпочтительно это исключение дополнительно содержит исключение одного или более начальных коэффициентов фильтра из одного или более предварительно определенных цифровых фильтров.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя несимметричные коэффициенты фильтра.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра.
Предпочтительно цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра, и в котором симметричные коэффициенты фильтра исключаются по одному или парами.
Предпочтительно данный способ дополнительно включает в себя итерационное выполнение этапов сравнения и исключения для одного или более рабочих коэффициентов фильтра.
Предпочтительно данный способ дополнительно включает в себя определение количества рабочих коэффициентов фильтра, которые должны быть исключены, на основании величины, на которую одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии.
Описание чертежей
Одни и те же ссылочные позиции на чертежах обозначают одноименные элементы чертежей. Следует иметь в виду, что чертежи не обязательно выполнены в масштабе.
Фиг.1 показывает обрабатывающую систему в соответствии с вариантом осуществления настоящего изобретения.
Фиг.2 представляет собой блок-схему способа оптимизации работы процессора в обрабатывающей системе, включающей в себя один или более цифровых фильтров в соответствии с вариантом осуществления настоящего изобретения.
Фиг.3 показывает реакцию фильтра для стандартного цифрового фильтра Гильберта, сформированного из ста пятидесяти коэффициентов фильтров.
Фиг.4 показывает фиг.3, на которой некоторые из коэффициентов фильтров в соответствии с вариантом осуществления настоящего изобретения были исключены.
Фиг.5 показывает обрабатывающую систему после того, как в ней некоторые из коэффициентов фильтров были исключены в соответствии с вариантом осуществления настоящего изобретения.
Фиг.6 представляет собой блок-схему способа адаптивной оптимизации работы процессора в обрабатывающей системе, включающей в себя один или более цифровых фильтров в соответствии с вариантом осуществления настоящего изобретения.
Подробное описание изобретения
На фиг.1-6 и в нижеследующем описании приводятся конкретные примеры, предназначенные для обучения специалистов в данной области техники исполнению и использованию настоящего изобретения наилучшим образом. С целью разъяснения принципов изобретения некоторые обычные аспекты его были упрощены или вообще исключены. Специалистам в данной области техники будут понятны отклонения от этих примеров, которые соответствуют объему изобретения. Специалистам в данной области техники будет понятно, что описанные ниже признаки могут быть различным образом скомбинированы, образуя многочисленные варианты осуществления изобретения. В результате, настоящее изобретение ограничено не конкретными описанными ниже примерами, а только лишь пунктами формулы изобретения и их эквивалентами.
Фиг.1 показывает обрабатывающую систему 103 в соответствии с вариантом осуществления настоящего изобретения. Обрабатывающая система 103 может включать в себя интерфейс 101. Обрабатывающая система 103 некоторым образом получает сигналы от чувствительного элемента. Например, в одном варианте осуществления настоящего изобретения датчик содержит узел вибрационного расходомера, включающего в себя приемник сигналов чувствительного элемента датчика скорости, который чувствует ответный сигнал на вибрационное возбуждение узла расходомера и генерирует соответствующие аналоговые ответные сигналы на вибрационное возбуждение. Обрабатывающая система 103 обрабатывает сигналы датчика для того, чтобы получить одно или большее количества измерений системы, такие как, например, характеристики 112 потока материала, протекающего по вибрационному расходомеру. Следовательно, обрабатывающая система 103 по сигналам с датчика узла расходомера, например, может определить одну или более характеристик, из таких как разность фаз, частота, временная разность (Δt), плотность, массовая скорость потока, вязкость и объемная скорость потока.
Обрабатывающая система 103 может содержать компьютер общего назначения, микропроцессорную систему, логический контур или некоторое другое устройство общего назначения или устройство, выполненное под заказчика. Обрабатывающая система 103 может быть распределена между множеством обрабатывающих устройств. Обрабатывающая система 103 может включать в себя любой тип встроенного или автономного электронного носителя информации, такого как запоминающая система 104.
Запоминающая система 104 может хранить параметры и информацию, программы, постоянные величины и переменные величины. Кроме того, запоминающая система 104 может хранить один или более цифровых фильтров, которые используются обрабатывающей программой 110, где цифровой фильтр включает в себя последовательность коэффициентов.
В показанном варианте осуществления настоящего изобретения запоминающая система 104 хранит первый цифровой фильтр А 120, второй цифровой фильтр В 121, третий цифровой фильтр С 122 и четвертый цифровой фильтр D 123. Показанные комплекты фильтров даны просто для иллюстрации. Следует понимать, что обрабатывающая система 103 может включать в себя любое необходимое количество цифровых фильтров.
Цифровые фильтры могут содержать любые виды цифровых фильтров, включая фильтры, имеющие конечную импульсную характеристику (КИХ-фильтры) и фильтры с бесконечной импульсной характеристикой (БИХ-фильтры). Цифровые фильтры могут содержать низкочастотные, полосовые и высокочастотные фильтры. Цифровые фильтры помимо других функций могут выполнять функции фильтрации, сдвига по фазе и дискретизации. В объеме настоящего описания и пунктов формулы изобретения предполагается использование фильтров других типов и назначений.
Цифровой фильтр может использоваться для подавления частот, лежащих вне интересующего диапазона таким образом, как с использованием низкочастотного, полосового и высокочастотного фильтра.
Цифровой фильтр может использоваться для прореживания, при котором некоторые выборки исключаются для того, чтобы уменьшить скорость дискретизации. Прореживание может использоваться, например, для изменения количества подлежащих обработке частотных диапазонов.
Цифровой фильтр может использоваться для внесения сдвига по фазе формы цифрового сигнала, например, с использованием преобразования Гильберта или с помощью фильтра Гильберта. Преобразование Гильберта или фильтр Гильберта может выполнять сдвиг по фазе формы входного сигнала, например, на 90 градусов. Фазовый сдвиг может использоваться при определении одной или более характеристик потока.
Цифровой фильтр может использоваться для выделения частотных окон, при котором частоты вне окна подавляются. Выделение частотных окон может выполняться после этапа обработки, такого как обрезка "хвостов", что выполняется Фурье-обработкой.
В некоторых вариантах осуществления измерение может производиться в результате фазового сдвига одного или более полученных сигналов. Это выгодно сокращает требуемое время обработки.
Цифровой фильтр включает в себя набор или цепочку коэффициентов, которые соответствуют цифровым образом дискретизированному анализируемому сигналу и через которые он пропускается. Фильтр построен исходя из желательного выходного сигнала, который должен быть получен из формы входного сигнала. Когда входной цифровой сигнал подвергается фильтрации с использованием коэффициентов цифрового фильтра, процессу фильтрации подвергается по крайней мере интересующий участок частот или частотный диапазон при отбрасывании ненужных частот или частотных диапазонов.
Последовательность коэффициентов фильтров может быть симметричной. Например, первый и последний коэффициенты (А1 и А100) первого цифрового фильтра А 120 могут быть одинаковыми, одинаковыми могут быть второй и предпоследний коэффициенты (А2 и А99) и т.д.
Последовательность коэффициентов фильтров может быть несимметричной. Каждый коэффициент может быть уникальным, таким как показанный во втором цифровом фильтре В 121.
Количество коэффициентов фильтров может зависеть от различных факторов. Например, количество коэффициентов фильтров может быть выбрано в соответствии с диапазоном частоты входного сигнала, диапазоном частоты "профильтрованного результата" (то есть ширины передаточной функции), желательной формой передаточной функции фильтра, остроты или гладкости передаточной функции и т.д.
Если используется большее количество коэффициентов фильтра, то, вообще говоря, характеристика фильтра может быть улучшена и/или может быть получена передаточная функции более сложной формы. Однако увеличенное количество мультиплицирований (или иных фильтрующих операций), обусловленных большим количеством коэффициентов, увеличит требуемое время обработки. Следовательно, желательное разрешение и точность влекут за собой необходимость компромисса между разрешением по частоте и временем обработки.
Кроме того, обрабатывающая система 103 может оперировать множеством цифровых фильтров. Обработка формы входного сигнала множеством цифровых фильтров с одной итерацией может занять значительное рабочее время.
Высокая частота дискретизации ведет к большому количеству операций фильтрации. Большое количество операций фильтрации приводит затем к нежелательно большой длительности цикла и, следовательно, к более медленной реакции обрабатывающей системы 103. Однако частота дискретизации может быть ограничена, если инструмент, связанный с обрабатывающей системой 103, например, обеспечивающий частоту вибрации расходомер, медленный настолько, чтобы можно было уменьшить частоту выборки и при этом все еще соответствовать критерию Найквиста.
Большое время цикла может препятствовать обработке всех входящих выборок. Кроме того, большое время цикла приведет к более высокому уровню энергии, потребляемой обрабатывающей системой 103. Если обрабатывающей системе 103 на один цикл итерации требуется слишком много рабочего времени, то это может повлиять на другие вычисления и/или обрабатывающие программы. Конечным результатом может быть неточный или ненадежный результат работы и даже переустановка или отключение обрабатывающей системы 103.
Фиг.2 представляет собой блок-схему способа оптимизации работы процессора в обрабатывающей системе, включающей в себя один или более цифровых фильтров в соответствии вариантом осуществления настоящего изобретения. Этот способ может быть использован для оптимизации реакции системы по времени. На этапе 201 генерируется один или более цифровых фильтров, предназначенных для использования в обрабатывающей системе, включая начальные коэффициенты фильтра.
На этапе 202 определяется один или более начальных коэффициентов фильтра, по меньшей мере одного цифрового фильтра, которые могут быть исключены. Один или более начальных коэффициентов фильтра определены как те, которые могут быть исключены без неприемлемого влияния на операцию фильтрации. Исключение коэффициентов фильтра приведет к увеличению шума в выходном сигнале фильтра. Исключение коэффициентов фильтра приведет к уменьшению полосы пропускания процессора. Как следствие, исключение коэффициентов означает компромисс между скоростью обработки и потреблением энергии с одной стороны и величиной шума и полосой пропускания процессора - с другой.
Один или более начальных коэффициентов фильтра могут содержать коэффициенты любого из цифровых фильтров обрабатывающей системы. Один или более начальных коэффициентов фильтра могут быть выбраны из предварительно определенных фильтров.
На этапе 203 идентифицированный один или более начальных коэффициентов фильтра из соответствующих фильтров исключены. Исключение одного или более начальных коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, которые должны использоваться в обрабатывающей системе. Поэтому один или более начальных коэффициентов фильтра могут быть удалены из одного или более цифровых фильтров. В некоторых вариантах осуществления исключенные коэффициенты исключены с одной стороны или с обеих сторон строки коэффициентов, образующих цифровой фильтр. Однако исключенные коэффициенты фильтра могут появиться в любом месте строки коэффициентов фильтра. Оставшиеся начальные коэффициенты фильтра программно внесены в обрабатывающую систему.
Фиг.3 показывает передаточную характеристику фильтра для стандартного цифрового фильтра Гильберта, образованного с использованием ста пятидесяти коэффициентов фильтра. На этой иллюстрации передаточная характеристика фильтра сформирована и определена всеми ста пятьюдесятью коэффициентами фильтра. Увеличение количества коэффициентов может увеличить крутизну фронтов сигналов в направлении любого конца пакета фильтров и может изменить вид частотной характеристики. Как следствие, увеличение количества коэффициентов фильтра может улучшить результат фильтрации за счет увеличения времени обработки.
Фиг.4 показывает фильтр по фиг.3, в котором некоторые из коэффициентов фильтра в соответствии с вариантом осуществления настоящего изобретения были исключены. В этом примере было исключено тридцать коэффициентов. Можно видеть, что эффект проявился с левого края и с правого края передаточной функции фильтра, а центральная область передаточной функции фильтра является относительно ровной и неизменившейся. Изменения в центральной области могут в некоторой степени отразиться на конечном результате операции фильтрации. В отличие от этого исключенные коэффициенты по концам фильтра влияют, главным образом, на передаточную характеристику фильтра по краям и поэтому оказывают минимальное воздействие на требуемый сигнал.
Один или более коэффициентов фильтра могут включать в себя два или более коэффициентов, исключенных из одиночного цифрового фильтра. Например, если цифровой фильтр содержит симметричные или частично симметричные коэффициенты, пара коэффициентов может быть исключена. Кроме того, даже если цифровой фильтр не имеет симметричных коэффициентов, может быть исключено множество коэффициентов фильтра, таких как ряд соседних коэффициентов на конце фильтра.
Отрицательной стороной исключения коэффициентов фильтра может быть уменьшение повторяемости результатов фильтрации, обусловленное увеличенным шумом. Однако это не обязательно, и если исключено их минимальное количество, это может не оказать какого-либо эффекта на синусоидальную форму сигнала.
Обратившись снова к фиг.2, видим, что в обрабатывающей системе 103, показанной на фиг.1, на этапе 204 в соответствующем электронном элементе запрограммирован один или более цифровых фильтров 120-123. Например, один или более цифровых фильтров запрограммирован в запоминающую систему 104. Теперь обрабатывающей программой 110 может использоваться один или более цифровых фильтров 120-123. Следует понимать, что цифровые фильтры могут сохраняться любым способом, включая, как и показано, внутреннюю память обрабатывающей системы. Альтернативно, цифровые фильтры могут сохраняться любым способом во внешнем запоминающем устройстве, связанном с обрабатывающей системой 103.
Фиг.5 показывает обрабатывающую систему 103 после того, как в соответствии с вариантом осуществления настоящего изобретения цифровые фильтры были исключены. На иллюстрации показаны несколько примеров исключения коэффициентов фильтров по сравнению с обрабатывающей системой 103, показанной на фиг.1.
Первый цифровой фильтр А 120 не был изменен. Во втором цифровом фильтре В 121 из фильтра был исключен последний коэффициент фильтра, коэффициент В50. В третьем цифровом фильтре С 122 из фильтра были исключены первый и последний коэффициенты фильтра С1 и С100. В четвертом цифровом фильтре D 123 из фильтра были исключены два первых D1 и D2 и два последних коэффициента D99 и D100 фильтра. Каждый из подвергнувшихся изменению фильтров, как следствие, будет требовать меньшее количество операций фильтрации.
Фиг.6 представляет собой блок-схему 600 способа адаптивной оптимизации работы процессора в обрабатывающей системе, включающей в себя один или более цифровых фильтров в соответствии с вариантом осуществления настоящего изобретения. Как говорилось ранее, для ускорения реакции обрабатывающей системы и/или для уменьшения потребления энергии коэффициенты фильтром могут быть исключены. На этапе 601, как говорилось ранее, создан один или более цифровых фильтров для использования в обрабатывающей системе.
На этапе 602 определены один или более коэффициентов по меньшей мере одного цифрового фильтра, которые, как говорилось ранее, могут быть исключены. Коэффициенты фильтра, которые могут быть исключены, могут включать в себя начальные коэффициенты фильтра, рабочие коэффициенты фильтра или и начальные, и рабочие коэффициенты фильтра. Начальные коэффициенты фильтра следует исключить до программирования обрабатывающей системы, а рабочие коэффициенты фильтра должны временно или постоянно исключаться во время работы обрабатывающей системы.
На этапе 603 в обрабатывающую систему программно вводятся один или более цифровых фильтров. Исключаемые рабочие коэффициенты фильтра могут быть все еще включены в цифровые фильтры и могут включать в себя обозначения коэффициентов фильтра, которые предназначены для адаптивного исключения во время работы или в какой-то момент в будущем.
Альтернативно, первая (начальная) часть обозначенных исключаемых коэффициентов фильтра может быть исключена до программирования электроники, а вторая (рабочая) часть может быть адаптивно исключена во время работы. Следовательно, эту блок-схему можно было бы изменить, включив в нее до этапа 603 на этом чертеже этап 203 по фиг.2.
На этапе 604 работа обрабатывающей системы завершена.
На этапе 605 обрабатывающей системой проверяются рабочие условия. Если есть изменение в работе, такие как изменение в одном или в большем количестве измеряемых параметров обрабатывающей системы, то способ переходит на этап 606. В противном случае, то есть если работа протекает в нормальных границах (см. ниже), то способ возвращается назад к этапу 605 для проверки рабочих условий.
Проверка может включать в себя сравнение одного или более измеряемых параметров обрабатывающей системы относительно предварительно определенного рабочего порога, где предварительно определенный рабочий порог отражает нежелательный уровень потребления энергии или относится к нему. Предварительно определенный рабочий порог может представлять собой фиксированный или динамический порог и может быть связан с внутренними переменными обрабатывающей системы или управляться ими.
В некоторых вариантах осуществления вибрационных расходомеров предварительно определенный рабочий порог может представлять собой порог временной разности (Δt). Временная разность (Δt) представляет собой временную разность сигналов с чувствительных элементов, то есть передней и задней частью проводника потока вибрационного расходомера. Следовательно, если временная разность (Δt) становится слишком большой, то амплитуда вибрации, получаемая от вибрационного расходомера, становится чрезмерно большой и, вероятнее всего, потребует высокого потребления энергии. Потребление энергии впоследствии может быть уменьшено за счет исключения некоторых из коэффициентов фильтров, временно или на неопределенный период времени. В некоторых вариантах осуществления предварительно определенный рабочий порог может представлять собой стандартное отклонение временной разности (Δt) от предварительно определенной величины.
В некоторых вариантах осуществления вибрационного расходомера предварительно определенный рабочий порог может представлять собой пороговый уровень частоты (f). Частота (f) представляет собой частотную характеристику, полученную с чувствительного элемента (элементов). Следовательно, если частота (f) вышла за обычный или ожидаемый диапазон, то работа вибрационного расходомера стала ненормальной и, по всей видимости, потребует потребления большого уровня энергии. В некоторых вариантах осуществления предварительно определенный рабочий порог может представлять собой стандартное отклонение частоты (f) от предварительно определенной величины.
В некоторых вариантах осуществления вибрационного расходомера предварительно определенный рабочий порог может представлять собой пороговый уровень разности фаз (Δθ). Разность фаз (Δθ) представляет собой разность фаз в ответных сигналах вибрационного возбуждения, полученных от чувствительных элементов вибрационного расходомера. Следовательно, если разность фаз (Δθ) выходит за обычный или ожидаемый диапазон, то работа вибрационного расходомера стала ненормальной и, по всей видимости, потребует потребления большого уровня энергии. В некоторых вариантах осуществления предварительно определенный рабочий порог может представлять собой стандартное отклонение разности фаз (Δθ) от предварительно определенной величины.
На этапе 606, поскольку обрабатывающая система определила, что один или более проведенных измерений обрабатывающей системы вышло за пределы обычного рабочего диапазона, намеченные ранее исключаемые рабочие коэффициенты фильтра исключаются. Исключение может производиться на любой необходимый период времени, включая неопределенный. Например, исключение может производиться на одно или более итераций в основном контуре обратной связи обрабатывающей системы. Однако допустимы и другие временные периоды в пределах объема настоящего описания и пунктов формулы изобретения.
Figure 00000001
На этапе 607 данный способ может далее определить, следует ли исключить дополнительные рабочие коэффициенты фильтра (притом, что некоторые рабочие коэффициенты фильтра уже были исключены). Способ определяет количество рабочих коэффициентов фильтра, которые подлежат исключению, на основании величины, на которую одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии. Этот этап может оценивать серьезность проблемы потребления энергии и может определить "градуировочный" уровень исключения рабочих коэффициентов. Например, если ранее исключенные рабочие коэффициенты фильтра дали недостаточный эффект, тогда в соответствии с данным способом по мере необходимости могут быть исключены дополнительные рабочие коэффициенты фильтра. Если следует исключить еще, то в соответствии с данным способом можно вернуться назад и исключить дополнительные рабочие коэффициенты. Таким образом, рабочие коэффициенты фильтра могут исключаться все увеличивающимся образом во избежание нежелательного воздействия на фильтрующие операции. Если больше рабочих коэффициентов фильтра исключать не следует, то в соответствии с данным способом производится отступление назад к этапу 605 и продолжается проверка рабочих изменений.
В некоторых вариантах осуществления пользователь может участвовать в выборе начальных и/или рабочих коэффициентов фильтра, которые надо будет исключить. Исключение коэффициентов фильтра позволит пользователю значительно увеличить скорость реакции обрабатывающей системы, а также связанного с ней инструмента или измерителя. Например, пользователь может специфицировать исключаемые рабочие коэффициенты фильтра. Сопряженный инструмент может нормально работать при определенных условиях. При неблагоприятных или ненормальных условиях, которые могут быть указаны пользователем, обрабатывающая система может исключить предварительно определенное количество коэффициентов фильтра и увеличить скорость реакции системы за счет увеличения шума. Это наделяет пользователя большим управлением и большей производственной гибкостью. Кроме того, это позволяет пользователю определить оптимальное время реакции и/или оптимальное потребление энергии в зависимости от приемлемого уровня шума и/или ширины полосы пропускания процессора в конкретной практической задаче. Это может быть достигнуто без переключения между различными фильтрами внутри обрабатывающей системы или инструмента.

Claims (21)

1. Способ оптимизации работы процессора в обрабатывающей системе вибрационного расходомера, включающей в себя один или более цифровых фильтров, причем способ включает в себя:
генерацию начальных коэффициентов фильтра для одного или более цифровых фильтров;
определение одного или более начальных коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен;
исключение одного или более начальных коэффициентов фильтра, причем исключение одного или более начальных коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, используемых обрабатывающей системой; и
программное внесение оставшихся коэффициентов фильтра в обрабатывающую систему.
2. Способ по п.1, в котором исключение дополнительно содержит исключение одного или более начальных коэффициентов фильтра из одного или более предварительно определенных цифровых фильтров.
3. Способ по п.1, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя несимметричные коэффициенты фильтра.
4. Способ по п.1, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра.
5. Способ по п.1, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра и в котором симметричные коэффициенты фильтра исключаются по одному или парами.
6. Способ по п.1, дополнительно содержащий
сравнение одного или более измерений обрабатывающей системы с предварительно определенным порогом потребления энергии во время работы;
если одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии, то определение одного или более рабочих коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен; и
исключение одного или более рабочих коэффициентов фильтра, причем исключение одного или более рабочих коэффициентов фильтра уменьшает общее количество рабочих коэффициентов фильтра, используемых обрабатывающей системой во время по крайней мере текущей итерации в основном контуре обратной связи.
7. Способ адаптивной оптимизации работы процессора в обрабатывающей системе вибрационного расходомера, содержащей один или более цифровых фильтров, причем способ включает в себя
сравнение одного или более измерений обрабатывающей системы с предварительно определенным порогом потребления энергии во время работы; с одним или более измерениями обрабатывающей системы, содержащими измерения, сгенерированные обрабатывающей системой из одного или более ответных сигналов вибрационного возбуждения вибрационного расходомера;
если одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии, то определение одного или более коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен; и
исключение одного или более коэффициентов фильтра, причем исключение одного или более коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, используемых обрабатывающей системой.
8. Способ по п.7, в котором исключение дополнительно содержит исключение одного или более коэффициентов фильтра из одного или более предварительно определенных цифровых фильтров.
9. Способ по п.7, в котором итерационно выполняются этапы сравнения, определения и обработки.
10. Способ по п.7, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя несимметричные коэффициенты фильтра.
11. Способ по п.7, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра.
12. Способ по п.7, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра и в котором симметричные коэффициенты фильтра исключаются по одному или парами.
13. Способ по п.7, дополнительно содержащий определение количества исключаемых рабочих коэффициентов фильтра на основании величины, на которую одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии.
14. Способ по п.7, дополнительно содержащий предварительные этапы
создания начальных коэффициентов фильтра для одного или более цифровых фильтров;
определения одного или более начальных коэффициентов фильтра для по меньшей мере одного цифрового фильтра из одного или более цифровых фильтров, который может быть исключен; и
исключения одного или более начальных коэффициентов фильтра, причем исключение одного или более начальных коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, используемых обрабатывающей системой.
15. Способ оптимизации работы процессора в обрабатывающей системе вибрационного расходомера, включающей в себя один или более цифровых фильтров, причем способ включает в себя
генерацию коэффициентов фильтра для одного или более цифровых фильтров;
определение одного или более начальных коэффициентов фильтра и одного или более рабочих коэффициентов фильтра для одного или более цифровых фильтров из одного или более цифровых фильтров, который может быть исключен; и
исключение одного или более начальных коэффициентов фильтра, причем исключение одного или более начальных коэффициентов фильтра уменьшает общее количество коэффициентов фильтра, используемых обрабатывающей системой;
программное внесение коэффициентов фильтра в обрабатывающую систему;
сравнение одного или более 'измерений обрабатывающей системы с предварительно определенным порогом потребления энергии во время работы; и
если одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии, тогда исключение одного или более рабочих коэффициентов фильтра, причем исключение одного или более коэффициентов фильтра дополнительно уменьшает общее количество коэффициентов фильтра, используемых обрабатывающей системой.
16. Способ по п.15, в котором исключение дополнительно содержит исключение одного или более начальных коэффициентов фильтра из одного или более предварительно определенных цифровых фильтров.
17. Способ по п.15, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя несимметричные коэффициенты фильтра.
18. Способ по п.15, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра.
19. Способ по п.15, в котором цифровой фильтр из одного или более цифровых фильтров включает в себя симметричные коэффициенты фильтра и в котором симметричные коэффициенты фильтра исключаются по одному или парами.
20. Способ по п.15, в котором итерационно выполняются этапы сравнения и исключения для одного или более рабочих коэффициентов фильтра.
21. Способ по п.15, дополнительно содержащий определение количества исключаемых рабочих коэффициентов фильтра на основании величины, на которую одно или более измерений обрабатывающей системы превышает предварительно определенный порог потребления энергии.
RU2011107282/08A 2008-07-30 2008-07-30 Оптимизация работы процессора в обрабатывающей системе, содержащей один или более цифровых фильтров RU2473168C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2008/071627 WO2010014087A1 (en) 2008-07-30 2008-07-30 Optimizing processor operation in a processing system including one or more digital filters

Publications (2)

Publication Number Publication Date
RU2011107282A RU2011107282A (ru) 2012-09-10
RU2473168C2 true RU2473168C2 (ru) 2013-01-20

Family

ID=40591820

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011107282/08A RU2473168C2 (ru) 2008-07-30 2008-07-30 Оптимизация работы процессора в обрабатывающей системе, содержащей один или более цифровых фильтров

Country Status (12)

Country Link
US (1) US9979380B2 (ru)
EP (1) EP2313974B1 (ru)
JP (1) JP5659157B2 (ru)
KR (1) KR101231080B1 (ru)
CN (1) CN102113215B (ru)
AR (2) AR072599A1 (ru)
AU (1) AU2008360010B2 (ru)
CA (1) CA2731109C (ru)
HK (1) HK1159339A1 (ru)
MX (1) MX2011000749A (ru)
RU (1) RU2473168C2 (ru)
WO (1) WO2010014087A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3044846B1 (en) * 2013-09-09 2019-10-30 GE Aviation Systems LLC Power system for an aircraft with dual hybrid energy sources
KR102177083B1 (ko) * 2016-02-26 2020-11-10 마이크로 모우션, 인코포레이티드 2개 또는 그 초과의 미터 어셈블리들용 미터 전자장치
WO2019032098A1 (en) * 2017-08-08 2019-02-14 Micro Motion, Inc. DEVICES AND METHODS FOR REMOVING FALSE TOTALIZATIONS FROM A FLOWMETER
EP3830530B1 (en) * 2018-07-30 2024-02-28 Micro Motion, Inc. Meter electronics and methods for verification diagnostics for a flow meter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633894B1 (en) * 1997-05-08 2003-10-14 Legerity Inc. Signal processing arrangement including variable length adaptive filter and method therefor
US20050008105A1 (en) * 1998-08-28 2005-01-13 Broadcom Corporation Dynamic regulation of power consumption of a high-speed communication system
US20050027768A1 (en) * 2003-06-28 2005-02-03 Zarlink Semiconductor Inc. Reduced complexity adaptive filter
RU2302707C2 (ru) * 2002-01-14 2007-07-10 Нокиа Корпорейшн Кодирующие динамические фильтры
US20080143984A1 (en) * 2002-04-29 2008-06-19 Carl Zeiss Smt Ag Projection method including pupillary filtering and a projection lens therefor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665171A (en) * 1970-12-14 1972-05-23 Bell Telephone Labor Inc Nonrecursive digital filter apparatus employing delayedadd configuration
JPS5952911A (ja) * 1982-09-20 1984-03-27 Nec Corp トランスバ−サル・フイルタ
US4785411A (en) * 1986-08-29 1988-11-15 Motorola, Inc. Cascade filter structure with time overlapped partial addition operations and programmable tap length
JPH03154435A (ja) * 1989-11-13 1991-07-02 Toshiba Corp 判定帰還形等化方式
US5228327A (en) 1991-07-11 1993-07-20 Micro Motion, Inc. Technique for determining a mechanical zero value for a coriolis meter
JP3394302B2 (ja) 1993-11-09 2003-04-07 大和製衡株式会社 デジタル秤用適応フィルタ
US5650951A (en) * 1995-06-02 1997-07-22 General Electric Compay Programmable data acquisition system with a microprocessor for correcting magnitude and phase of quantized signals while providing a substantially linear phase response
US5555190A (en) * 1995-07-12 1996-09-10 Micro Motion, Inc. Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement
US5909384A (en) 1996-10-04 1999-06-01 Conexant Systems, Inc. System for dynamically adapting the length of a filter
JP4326031B2 (ja) 1997-02-06 2009-09-02 ソニー株式会社 帯域合成フィルタバンク及びフィルタリング方法並びに復号化装置
JP3185709B2 (ja) * 1997-05-19 2001-07-11 日本電気株式会社 アダプティブフィルタおよびその適応化方法
US6199022B1 (en) * 1997-07-11 2001-03-06 Micro Motion, Inc. Drive circuit modal filter for a vibrating tube flowmeter
JPH1198023A (ja) 1997-09-19 1999-04-09 Matsushita Electric Ind Co Ltd 信号符号化及び復号化装置
JP3476662B2 (ja) * 1997-10-17 2003-12-10 富士通株式会社 ディジタル移動無線通信装置
US6636894B1 (en) * 1998-12-08 2003-10-21 Nomadix, Inc. Systems and methods for redirecting users having transparent computer access to a network using a gateway device having redirection capability
US6636561B1 (en) * 1999-06-29 2003-10-21 Nortel Networks Limited Channel equalisers
JP2001144824A (ja) * 1999-11-12 2001-05-25 Toyo Commun Equip Co Ltd ディジタル受信装置
JP2001230826A (ja) * 2000-02-18 2001-08-24 Toyo Commun Equip Co Ltd 受信装置
US7245686B2 (en) * 2001-12-17 2007-07-17 Mysticom Ltd. Fast skew detector
JP4546926B2 (ja) * 2003-09-05 2010-09-22 マイクロ・モーション・インコーポレーテッド 流量計フィルタ・システム及び方法
WO2005078925A1 (ja) * 2004-02-17 2005-08-25 Neuro Solution Corp. デジタルフィルタの設計方法および装置、デジタルフィルタ設計用プログラム、デジタルフィルタ
CA2608838C (en) * 2005-05-20 2013-05-14 Micro Motion, Inc. Meter electronics and methods for rapidly determining a mass fraction of a multi-phase fluid from a coriolis flow meter signal
CA2623101C (en) * 2005-09-20 2013-04-30 Micro Motion, Inc. Meter electronics and methods for generating a drive signal for a vibratory flowmeter
US8706785B2 (en) * 2011-02-15 2014-04-22 Samsung Electronics Co., Ltd. Communication system with signal processing mechanism and method of operation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633894B1 (en) * 1997-05-08 2003-10-14 Legerity Inc. Signal processing arrangement including variable length adaptive filter and method therefor
US20050008105A1 (en) * 1998-08-28 2005-01-13 Broadcom Corporation Dynamic regulation of power consumption of a high-speed communication system
RU2302707C2 (ru) * 2002-01-14 2007-07-10 Нокиа Корпорейшн Кодирующие динамические фильтры
US20080143984A1 (en) * 2002-04-29 2008-06-19 Carl Zeiss Smt Ag Projection method including pupillary filtering and a projection lens therefor
US20050027768A1 (en) * 2003-06-28 2005-02-03 Zarlink Semiconductor Inc. Reduced complexity adaptive filter

Also Published As

Publication number Publication date
US9979380B2 (en) 2018-05-22
MX2011000749A (es) 2011-03-21
JP2011529669A (ja) 2011-12-08
BRPI0822971A2 (pt) 2015-06-23
CA2731109A1 (en) 2010-02-04
AU2008360010B2 (en) 2014-02-13
AU2008360010A1 (en) 2010-02-04
RU2011107282A (ru) 2012-09-10
EP2313974B1 (en) 2020-09-16
CN102113215A (zh) 2011-06-29
JP5659157B2 (ja) 2015-01-28
CN102113215B (zh) 2013-12-25
EP2313974A1 (en) 2011-04-27
HK1159339A1 (en) 2012-07-27
CA2731109C (en) 2017-05-09
KR101231080B1 (ko) 2013-02-07
US20110138205A1 (en) 2011-06-09
WO2010014087A1 (en) 2010-02-04
KR20110042197A (ko) 2011-04-25
AR072599A1 (es) 2010-09-08
AR087110A2 (es) 2014-02-12

Similar Documents

Publication Publication Date Title
RU2473168C2 (ru) Оптимизация работы процессора в обрабатывающей системе, содержащей один или более цифровых фильтров
JP4546926B2 (ja) 流量計フィルタ・システム及び方法
JP2011511575A5 (ru)
CN110914649B (zh) 用于确定液体的质量流量的测量传感器
CN111912521A (zh) 一种非平稳信号的频率检测方法和存储介质
CN109997340A (zh) 用于样本流的采样率转换的方法和设备
CN108731714B (zh) 一种频率扫描数据的解码方法及装置
JP5086621B2 (ja) 時間同期システム用の有限インパルス応答フィルタおよびその方法
JP5376395B2 (ja) 波形測定装置
Svoboda et al. B-spline interpolation technique for digital signal processing
BR112019024696B1 (pt) Eletrônica de medidor, e, método de filtrar com um filtro rejeita-faixa um sinal de sensor em um medidor vibratório
US20170052641A1 (en) Touch calibration system and method thereof
JP5570787B2 (ja) 流量計フィルタ・システム及び方法
AU2013205299B2 (en) Optimizing processor operation in a processing system including one or more digital filters
JP2010078445A (ja) 有義波高算出装置、プログラム、及び有義波高算出方法
BRPI0822971B1 (pt) Métodos para otimizar a operação do processador, e, para adaptativamente otimizar a operação do processador em um sistema de processamento de um medidor de fluxo vibratório, o sistema de processamento incluindo um ou mais filtros digitais
JP2006331630A (ja) データ・セット・セパレータ・シーケンスを使用したメディア・システムでの等化器計算のための方法
JP4572536B2 (ja) サンプリング式測定装置
TWI557729B (zh) 語音信號處理裝置及語音信號處理方法
US11906554B2 (en) Meter for measuring an electrical parameter
Matiu-Iovan et al. A new filtering technique for B-spline interpolation in digital signal processing
CN117235455A (zh) 展频信号的处理方法、装置、电子设备和介质
Marcus et al. New interpolation tools for digital signal processing
CN116340299A (zh) 一种能耗数据的处理方法及系统
BR112021000205B1 (pt) Método para ajustar automaticamente a filtração interna usada nos cálculos de rigidez previstos para verificação do medidor para um medidor de fluxo, e, eletrônica de medidor