RU2470905C1 - Способ получения 1-бутена и изобутена или/и его производных - Google Patents

Способ получения 1-бутена и изобутена или/и его производных Download PDF

Info

Publication number
RU2470905C1
RU2470905C1 RU2011114577/04A RU2011114577A RU2470905C1 RU 2470905 C1 RU2470905 C1 RU 2470905C1 RU 2011114577/04 A RU2011114577/04 A RU 2011114577/04A RU 2011114577 A RU2011114577 A RU 2011114577A RU 2470905 C1 RU2470905 C1 RU 2470905C1
Authority
RU
Russia
Prior art keywords
isobutene
butene
butenes
zone
isomerization
Prior art date
Application number
RU2011114577/04A
Other languages
English (en)
Other versions
RU2011114577A (ru
Inventor
Олег Станиславович Павлов
Дмитрий Станиславович Павлов
Станислав Юрьевич Павлов
Original Assignee
Олег Станиславович Павлов
Дмитрий Станиславович Павлов
Станислав Юрьевич Павлов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Станиславович Павлов, Дмитрий Станиславович Павлов, Станислав Юрьевич Павлов filed Critical Олег Станиславович Павлов
Priority to RU2011114577/04A priority Critical patent/RU2470905C1/ru
Publication of RU2011114577A publication Critical patent/RU2011114577A/ru
Application granted granted Critical
Publication of RU2470905C1 publication Critical patent/RU2470905C1/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения 1-бутена и изобутена или/и его соединения(й) со спиртом(ами), водой, либо продуктов ди- и тримеризации изобутена из смеси С4-углеводородов, содержащей преимущественно 2-бутены, с использованием скелетной и позиционной изомеризации 2-бутенов и как минимум ректификации, характеризующемуся тем, что катализируемую изомеризацию 2-бутенов проводят при температуре от 100°С до 500°С в общей реакционной зоне, где проходят позиционная и скелетная изомеризация в 1-бутен и изобутен, или в отдельных реакционных зонах, в одной из которых проходит позиционная изомеризация в 1-бутен и в другой одновременно проходят скелетная и позиционная изомеризация в изобутен и 1-бутен, образующийся изобутен извлекают из смеси первоначально в форме алкил-трет-бутилового(ых) эфира(ов) и/или трет-бутанола, и/или димеров и тримеров изобутена и при необходимости указанное(ые) соединение(я) подвергают катализируемому разложению с выделением изобутена, а из потока(ов), в котором(ых) преобладают 1-бутен и 2-бутены, с помощью ректификации выделяют поток, содержащий преимущественно 1-бутен, и остаток, содержащий преимущественно 2-бутены, как минимум частично рециркулируют в зону, включающую скелетную изомеризацию. Настоящий способ позволяет получать 1-бутен и изобутен в общем процессе, что позволяет сократить количество необходимого оборудования и более рационально организовать потоки. 10 з.п. ф-лы, 8 пр., 3 табл., 2 ил.

Description

Изобретение относится к области получения 1-бутена и изобутена и/или его соединения(й) из смесей, содержащих преимущественно 2-бутены и возможно примесь н-бутана. Более конкретно изобретение включает позиционную и скелетную изомеризацию 2-бутенов с образованием 1-бутена и изобутена и последующую переработку реакционной(ых) смеси(ей).
Известны способы [US-pat №6242662, 05.06.2001; US-pat №6768038, 27.07.2004] получения 1-бутена, для чего в качестве сырья используют смеси, содержащие преимущественно 2-бутены и примеси других С4-углеводородов, извлеченные из более сложных С4-фракций, при которых проводят катализируемую позиционную изомеризацию 2-бутенов в 1-бутен при повышенной температуре и образующийся 1-бутен отделяют в качестве дистиллята ректификацией от непрореагировавших 2-бутенов и н-бутана.
Способы имеют два существенных недостатка:
- из-за неблагоприятного химического равновесия в 1-бутен превращается лишь меньшая часть 2-бутенов;
- при наличии в сырье н-бутана, в результате рекуперации в реакционную зону получаемого при отгонке 1-бутена кубового остатка, содержащего 2-бутены и н-бутан, происходит чрезмерное накопление н-бутана в системе.
Известны способы [US-pat №5510560, 23.04.1996; US-pat №5523510, 04.06.1996] получения изобутена из н-бутенов путем их катализируемой высокотемпературной скелетной изомеризации в изобутен с использованием цеолитов в качестве катализатора при высокой температуре 400-600°С. Конверсия н-бутенов проходит не полностью. Обычно изобутен извлекают из смеси путем превращения в высококипящие компоненты при взаимодействии со спиртами или водой. Непрореагировавшие н-бутены (обычно вместе с н-бутаном) возвращают в зону изомеризации.
Недостатками способов являются:
- узкая направленность на получение изобутена и не использование возможности одновременного получения другого весьма ценного мономера - бутена-1;
- высокая температура изомеризации, коксование катализатора и необходимость его частой выжиговой регенерации.
Известные способы получения 1-бутена и изобутена не позволяют производить их одновременно в общем процессе, что могло бы дать возможность сократить количество необходимого оборудования и более рационально организовать потоки.
Нами установлено, что катализируемая позиционная изомеризация 2-бутена в 1-бутен и скелетная изомеризация в изобутен могут быть совмещены в общей реакционной зоне с последующим разделением продуктов. Одновременно с ней может быть использована дополнительная реакционная зона позиционной изомеризации 2-бутенов в 1-бутен и осуществлена эффективная комбинация зон разделения с получением чистого 1-бутена и чистого изобутена или/и его производных.
Мы заявляем:
Способ получения 1-бутена и изобутена или/и его соединения(й) со спиртом(ами), водой, либо продуктов ди- и тримеризации изобутена из смеси С4-углеводородов, содержащей преимущественно 2-бутены, с использованием скелетной и позиционной изомеризации 2-бутенов и как минимум ректификации, отличающийся тем, что катализируемую изомеризацию 2-бутенов проводят при температуре от 100°С до 500°С в общей реакционной зоне, где проходят позиционная и скелетная изомеризация в 1-бутен и изобутен, или в отдельных реакционных зонах, в одной из которых проходит позиционная изомеризация в 1-бутен и в другой одновременно проходят скелетная и позиционная изомеризация в изобутен и 1-бутен, образующийся изобутен извлекают из смеси первоначально в форме алкил-трет-бутилового(ых) эфира(ов) и/или трет-бутанола, и/или димеров и тримеров изобутена и при необходимости указанное(ые) соединение(я) подвергают катализируемому разложению с выделением изобутена, а из потока(ов), в котором(ых) преобладают 1-бутен и 2-бутены, с помощью ректификации выделяют поток, содержащий преимущественно 1-бутен, и остаток, содержащий преимущественно 2-бутены, как минимум частично рециркулируют в зону, включающую скелетную изомеризацию.
В качестве способов, способствующих реализации способа по п.1, мы заявляем такие способы, отличающиеся тем, что:
- как минимум из части исходной и/или образуемой в процессе смеси, содержащей 2-бутены с примесью н-бутана, отделяют н-бутан путем экстрактивной ректификации с полярным экстрагентом;
- из смеси, содержащей преимущественно 2-бутены, возможно включающей также более легкокипящие примеси бутадиена, и/или изобутена, и/или изобутана, указанные примеси отделяют ректификацией в качестве дистиллята;
- указанное извлечение изобутена осуществляют с помощью катализируемого взаимодействия со спиртом(ами) с получением алкил-трет-бутилового(ых) эфира(ов) и/или водой с получением трет-бутанола, и/или превращения изобутена в его димеры и тримеры, с непрерывной или последующей отгонкой непрореагировавших углеводородов;
- в указанную зону извлечения изобутена дополнительно подают С4-фракцию, содержащую преимущественно бутан(ы), изобутен и н-бутены;
- получаемый(е) 1-бутен и/или изобутен дополнительно очищают от примесей путем ректификации и/или водной отмывки;
- до подачи потока, образующегося в зоне, включающей скелетную изомеризацию н-бутенов, на ректификацию с целью выделения 1-бутена, из указанного потока удаляют изобутен до остаточного содержания, не превышающего допустимой нормы его в 1-бутене, предпочтительно не более 0,1% мас. в расчете на 1-бутен;
- при использовании раздельных зон позиционной и скелетно-позиционной изомеризации 2-бутенов углеводородную смесь после преимущественно скелетной изомеризации отгоняют от продуктов взаимодействия изобутена и как минимум частично возвращают непосредственно в зону скелетной изомеризации, а от другой части возможно отгоняют изобутан ректификацией или изобутан и н-бутан указанной экстрактивной ректификацией с полярным агентом, до или после изомеризации 1-бутена в 2-бутен;
- при отделении 1 -бутена от 2-бутенов и возможно н-бутана с помощью ректификации используют дополнительную зону катализируемой позиционной изомеризации 2-бутенов, расположенную внутри колонны ниже подачи разделяемой смеси или расположенную вне колонны и соединенную ее входным и выходным потоками с нижней частью колонны;
- более полное отделение 1-бутена от примеси н-бутана ректификацией достигают путем введения в верхнюю часть колонны ректификации 1-бутена алкана(ов) С57;
- в качестве катализатора(ов) позиционной изомеризации используют любой(ые) известный(е) катализатор(ы) изомеризации, не склонный(е) к существенному крекированию или дегидрированию бутенов, предпочтительно оксиды металлов, металлы на носителях или сульфокатиониты.
Способ позволяет в зависимости от потребности без изменения технологической схемы варьировать в широких пределах соотношение получаемых продуктов - 1-бутена и изобутена (и/или продуктов превращения изобутена) - от практически полного превращения бутенов в бутен-1 до практически полного превращения бутенов в изобутен (и/или его производные).
Использование изобретения иллюстрируется фигурами 1, 2 и примерами. Указанные фигуры и примеры не исчерпывают всех вариантов и возможно применение иных технических решений при соблюдении всех признаков, изложенных в п.1 формулы изобретения.
На фиг.1 и 2 аппараты, выполняющие одинаковые функции, для удобства сравнения схем обозначены одинаковыми номерами, причем на фиг.2 в части схемы, предназначенной для получения изобутена, применены индексы. Для новых зон, отсутствовавших на фиг.1, индексы не используются. С целью различения потоков фигуры 1 и фигуры 2, имеющих одинаковые численные обозначения, на фиг.2 используются верхние индексы («'»).
Согласно фиг.1 сырьевой поток, содержащий преимущественно 2-бутены, поступает по линии 1. Его подогревают и подают по линии 2 в зону 10 высокотемпературной газофазной каталитической изомеризации, в которой одновременно происходит позиционная изомеризация 2-бутенов в 1-бутен и скелетная изомеризация н-бутенов в изобутен.
Контактный газ из зоны 10 по линии 3 подают в зону разделения (ректификации) 20, где осуществляют конденсацию и возможно отделение легких (линия 4) и/или тяжелых (линия 5) примесей, после чего основной поток по линии 6 подают в узел 30, где осуществляется извлечение изобутена путем его превращения в алкил-трет-бутиловый(е) эфир(ы) при взаимодействии со спиртом(ами) и/или трет-бутиловый спирт (ТБС) при взаимодействии с водой, и/или в димеры изобутена. По линии 7 (далее линии 8) в узел 30 подают спирт(ы), предпочтительно С14 или воду.
Узел 30, кроме реакционной(ых) зоны(зон), содержит также ректификационные зоны и, при необходимости, зону рекуперации спирта(ов) из отгоняемого углеводородного потока. По линии 9 из узла 30 выводят поток, содержащий преимущественно относительно высококипящее(ие) соединение(я) изобутена. По линии 11 выводят смесь непрореагировавших углеводородов, содержащую преимущественно 2-бутены и 1-бутен.
Поток линии 9 далее выводят в качестве продукта по линии 12 или/и подают по линии 13 в узел разложения 40, включающий реакционную зону, зону(ы) ректификации и возможно зону водной отмывки. Из узла 40 выводят по линии 14 чистый изобутен и по линии 15 поток, включающий другой(ие) продукт(ы) разложения (спирт/ы и/или воду), который возвращают по линиям 10 и 8 в узел 30. Небольшую часть потока 15 возможно выводят по линии 16.
Углеводородный поток из зоны 30 по линии 11 (и далее 17) подают в ректификационную зону 60. Возможно в верхнюю часть зоны 60 подают по линии 23 поток алкана(ов) C5-C7. Возможно поток 11 или его часть сначала подают по линии 18 в зону 50 для отгонки С4-углеводородов от алкана(ов) C5-C7. Отогнанные из зоны 50 углеводороды по линии 19 (и далее 17) подают в среднюю часть зоны 60, а кубовый остаток по линии 21, возможно после смешения с дополнительным количеством алкана(ов) С57 (линия 22), подают в верхнюю часть зоны 60 по линии 23 и/или верхнюю часть зоны 70 по линии 28.
Из зоны 60 выводят сверху по линии 25 поток, содержащий преимущественно 1-бутен, а из куба по линии 24 выводят поток, содержащий преимущественно 2-бутены и возможно алканы С5-C7, который возвращают (через линию 2) в зону изомеризации 10.
Поток 25 выводят по линии 26 в качестве продукта или/и при завышенном содержании н-бутана, по линии 27 подают в среднюю часть ректификационной зоны 70, где ректификация ведется предпочтительно в присутствии алкана(ов) C5-C7, поступающего(их) по линиям 28 и 29. По линии 31 выводят чистый 1-бутен, снизу по линии 29 - алкан(ы) C5-C7, который(е) возвращают в верхнюю часть зоны 70. Часть потока 29 возможно выводят по линии 29б.
Из нижней части зоны 70 по линии 32 выводят в зону 80 поток, содержащий н-бутан. Часть потока конденсируют и возвращают по линии 33 в зону 70, а основной н-бутановый поток выводят по линии 34.
Возможна ректификация в зоне 70 без введения алкана(ов) C5-C7. В этом случае по линии 29б выводят из системы поток с большим содержанием н-бутана, а зону 80 не используют.
Достоинством варианта является совмещение позиционной и скелетной изомеризации. При этом, однако, необходимо тщательное извлечение изобутена из потока 6, чтобы его содержание в потоке 11 по отношению к 1-бутену не превышало допустимых в целевом 1-бутене значений (как правило 0,1-0,2% мас.).
Согласно фиг.2 целенаправленную позиционную изомеризацию 2-бутенов в 1-бутен и скелетную изомеризацию 2-бутенов в изобутен, с частичной позиционной изомеризацией н-бутенов, проводят в отдельных реакционных зонах.
Предпочтительно в качестве указанных зон используются расположенные на единой площадке однотипные реакторы с однотипным способом регенерации катализатора (например, выжиговой регенерации) и осуществляют гибкое регулирование распределения подачи сырьевых потоков между зонами и возможно функциональную взаимозамену реакционных зон.
Подаваемый по линии 1 исходный поток, содержащий преимущественно 2-бутены, полностью направляют по линии 1а в зону 10а (позиционной изомеризации) или распределяют между зоной 10а и зоной 10б (преимущественно скелетной изомеризации), в которую поток подают по линии 1б. Если поток 1 содержит большое количество н-бутана и возможно изобутана, его возможно подают по линии 1в в зону экстрактивной ректификации 90, откуда по линии 44 удаляют н-бутан и возможно изобутан.
В качестве десорбата из зоны 90 выводят поток(и) преимущественно 2-бутенов по линии(ям) 2а и/или 2б, который(е) соответственно подают в зону 10а и/или зону 10б.
Из зоны 10б контактный газ по линии 3б поступает в зону разделения 20б, из которой выводят потоки легких (линия 4') и/или тяжелых (линия 5') компонентов и основной поток по линии 6', который подают в зону 30б извлечения изобутена. В зону 30б возможно также подают поток реагента по 10 линии 7' или 10' (далее 8') поток кислородсодержащего агента (предпочтительно спирта C1-C4 или воды).
Из зоны 30б по линии 9' выводят поток, в котором преобладают соединения изобутена, и по линии 11', возможно после рекуперации спирта, выводят поток, в котором преобладают 2-бутены, 1-бутен, частично н-бутан и изобутан.
Далее поток 9' выводят по линии 12' в качестве продукта или/и подают по линии 13' в зону 40б разложения соединений изобутена и вывода концентрированного изобутена. Из зоны 40б выводят изобутен по линии 14' и кислородсодержащий агент по линии 15'. Поток 15' возвращают в зону 30б (линии 10' и 8'). Возможно часть его выводят по линии 16'.
Из зоны позиционной изомеризации 10а по линии 3а выводят смесь, подаваемую по линии 17' в зону 60а отгонки 1-бутена или/и первоначально по линии 18' в зону 50а отгонки С4-углеводородов от алканов С57.
Дальнейшая схема переработки (разделения) в зонах 50а, 60а, 70а и 80а аналогична схеме переработки потока, подаваемого по линии 11 на фиг.1 (нумерация отличается наличием индекса «'»).
Поток 24' из зоны 60а, содержащий 2-бутены, возможно частично выводят из системы по линии 35'. Остальное (или все) количество потока 24' возвращают в рецикл в зону изомеризации 10а (линия 2'а) и/или подают по линии 41 в зону 90 для отделения н-бутана и возможно изобутана с помощью экстрактивной ректификации (его/их выводят по линии 44), и/или направляют в зону преимущественно скелетной изомеризации 10б.
Поток 11' (из зоны 30б), содержащий н-бутены и возможно бутаны, направляют по линии 36' и далее 2'а в зону 10а и/или по линии 37 и далее 2'б в зону преимущественно скелетной изомеризации 10б, и/или направляют по линии 38а в зону 100, где осуществляют гидрирование бутадиена(ов) и частично изомеризацию 1-бутена в 2-бутены, и/или по линии 38б направляют в зону 110, где от него отгоняют поток преимущественно изобутана, удаляемый из системы по линии 39, и/или по линиям 37 и 43 подают в зону экстрактивной ректификации 90. Выводимый(е) из зоны 100 и/или 110 по линии(ям) 40а или 40б поток(и) присоединяют к потоку линии 37.
Из зоны 90 поток преимущественно 2-бутенов направляют в зону позиционной изомеризации 10а и/или в зону преимущественно скелетной изомеризации 10б.
Примеры. В примерах используются сокращения «пот.» - поток и «мет.» - метанол.
Пример 1.
Переработке подвергают 20,1 т/ч исходного потока, содержащего 99,7% н-бутенов в пропорции транс-2-бутен:цис-2-бутен = 2,5:1 и 0,3% н-бутана. Переработку осуществляют согласно фиг.1 по схеме, в которой используются зоны 10, 20, 30 и 60.
В зоне изомеризации 10 используют металлооксидный катализатор на носителе и поддерживают температуру 400-420°С. В зоне 30 извлечения изобутена проводят синтез метил-трет-бутилового эфира (МТБЭ) на основе реакции изобутена с метанолом, подаваемым по линиям 7 и далее 8. Зона 30 включает прямоточный реактор, последующую реакционно-ректификационную систему (каталитическую дистилляцию) и узел рекуперации метанола из непрореагировавших С4-углеводородов. Катализатором в зоне 30 является сульфокатионит со статической обменной емкостью 5,0 мг-экв/г.
Характеристика основных потоков представлена в табл.1
Таблица 1
Характеристика потоков в примерах 1 и 2 (фиг.1)
Компо
нент (% маc.)
Пот. 1 Сырье Пот. 2 Пот. 3 Пот. 6 Пот. 7 Мет. Пот. 9 МТБЭ Пот. 11≡17 Пот. 24 Пот. 25≡26 Пот.14 к прим.2
Изобу
тан
0,02 0,02 0,05 0,2
н-Бутан 0,3 0,2 0,2 0,2 0,4 1,6
Изобу
тен
40,4 42,2 <0,05 <0,1 99,5
1-Бутен <0,2 12,4 12,9 22,3 0,5 >97,9 0,05
2-Бутены 99,7 >99,6 42,48 44,68 <0,1 77,2 99,5 0,2
Метанол ~100
МТБЭ 99,3
Легк. и тяж. примеси 4,5 0,6
Поток, т/ч 20,1 31,0 31,0 29,4 7,0 19,5 17,0 10,9 3,8 ~12,0
Пример 2.
Переработка потока 20,1 т/ч, содержащего 99,7% 2-бутенов и 0,3% н-бутана, осуществляется аналогично примеру 1. В отличие от примера 1 поток МТБЭ, выводимый из зоны 30 по линии 9, подают по линии 13 в зону (узел) 40, где осуществляется с применением реакционно-ректификационного процесса разложение МТБЭ, отгонка образующегося изобутена от метанола и отгонка примеси диметилового эфира от изобутена.
По линии 14 получен поток 12,0 т/ч, содержащий 99,95% изобутена и 0,05% н-бутенов. Потоки МТБЭ и изобутена количественно и по составу аналогичны указанным в табл.1.
Пример 3.
Переработка потока 20,1 т/ч, содержащего 99,7% 2-бутенов и 0,3% н-бутана, осуществляется практически аналогично примеру 1. В отличие от примера 1, поток «1-бутен+» подают по линии 27 в среднюю часть зоны дополнительной ректификации 70. В верхнюю часть зоны 70 подают по линиям 28 и 29 н-пентан. По линии 31 из зоны 70 выводят поток концентрированного 1-бутена, содержащий 99,5% 1-бутена, ~0,35% н-бутана, не более 0,1% изобутена и не более 0,05% 2-бутенов.
Пример 4.
Осуществляют переработку 30,2 т/ч исходного потока 1, содержащего 99% 2-бутенов и 1% н-бутана. Переработку проводят согласно фиг.2 с использованием двух отдельных реакторов (реакционных зон) 10а и 10б. В зоне 10а проводят целенаправленную позиционную изомеризацию 2-бутенов в 1-бутен в присутствии металлооксидного катализатора при 220-360°С. В зоне 10б проводят предпочтительную скелетную изомеризацию 2-бутенов в изобутен на цеолитном катализаторе при 380-420°С, которая частично сопровождается изомеризацией 2-бутенов в 1-бутен.
В зону 10а подают большую часть потока из линии 1 и часть кубового остатка после отгонки 1-бутена из реакционной смеси, получаемой в 10а. В зону 10б подают меньшую часть потока из линии 1, часть указанного кубового остатка и углеводородный рецикл после извлечения изобутена из реакционной смеси, получаемой в зоне 10б.
Извлечение изобутена из потока 6' осуществляют в зоне 30б путем синтеза этил-трет-бутилового эфира (ЭТБЭ) из изобутена и подаваемого этанола. Из зоны 30б выводят поток преимущественно ЭТБЭ по линиям 9' и 12' и углеводородный поток по линии 11', содержащий преимущественно 2-бутены и 1-бутен с примесью изобутана и н-бутана.
Схема переработки соответствующего потока в эфир и далее в изобутен в зонах 10б, 20б, 30б и 40б, и схема переработки соответствующего потока в 1-бутен в зонах 10а, 50а, 60а, 70а и 80а практически аналогичны описанным в примерах 1-3. Основное отличие - раздельная изомеризация в зонах 10а и 10б.
Характеристика основных потоков дана в табл.2.
При переработке получено: 13,5 т/ч потока 1-бутена (99,0% 1-бутена, 0,8% н-бутана и 0,2% 2-бутенов), а также 26,0 т/ч ЭТБЭ (99,3% ЭТБЭ, 0,1% этанола, 0,1% 2-бутенов и 0,5% димеров изобутена) или 13,5 т/ч концентрированного изобутена (99,95% изобутена, 0,05% 1-бутена).
Пропорция получаемого ЭТБЭ и изобутена регулируется долей потока 9', подаваемого в зону 40б.
Пример 5.
Осуществляют переработку согласно фиг.2 37,6 т/ч исходного потока 1, содержащего 75% 2-бутенов, 20% н-бутана и 5% н-бутана.
Поток первоначально подают по линии 1в в узел экстрактивной ректификации 90. В качестве полярного экстрагента используется диметилформамид, и число тарелок в колонне экстрактивной ректификации составляет 120.
Из зоны 90 выводят 10,1 т/ч дистиллята, содержащего суммарно 97% изобутана и н-бутана, а также 3% н-бутенов, и по линиям 2а и 2б выводят суммарно 30,2 т/ч потока с содержанием 99% 2-бутенов и 1% н-бутана. Потоки 2а и 2б распределяют: 24,2 т/ч в узел 10а и 6,0 т/ч в узел 10б.
Остальная переработка проводится аналогично описанной в примере 4. Получено: 13,5 т/ч 1-бутена с концентрацией 99,3% и 26,0 т/ч потока с преимущественным (99,3%) содержанием ЭТБЭ, из половины которого в узле 40б получают 13,5 т/ч чистого изобутена.
Пример 6.
Осуществляют согласно фиг.2 переработку 30,2 т/ч исходного потока 1, содержащего 90% 2-бутенов и 10% н-бутана. Поток 1 распределяют между зонами 10а и 10б в соотношении 27,5 т/ч (поток 1а) к 2,7 т/ч (поток 1б). Переработку потоков проводят соответственно в зонах 10а, 50а, 60а, 70а, 80а и 10б, 20б, 30б, 40б подобно описанному в примере 4. Количество подаваемого этанола составляет 15,1 т/ч.
В отличие от примера 4, поток 11' подают в узел экстрактивной ректификации 90 по линиям 37 и 43. По линии 44 выводят поток преимущественно н-бутана, и по линиям 2а и 2б - поток преимущественно 2-бутенов и 1-бутена, содержащий 1% н-бутана. Поток распределяют между зонами 10а и 10б так, что подача потоков в 10а и 10б по линиям 2'а и 2'б составляет 45,9 т/ч и 43,4 т/ч.
В качестве целевых продуктов получают: 1-бутен, ЭТБЭ и изобутен, а также поток н-бутана, в количестве, указанном в таблице 3.
Пример 7.
Переработку осуществляют аналогично примеру 6. В отличие от примера 6, поток 11' первоначально направляют по линиям 38 и 38а в зону 100, где проводят жидкофазное гидрирование примеси 1,3-бутадиена и каталитическую изомеризацию при 50-60°С большей части (80%) присутствующего 1-бутена в 2-бутены. Из зоны 100 поток 40а подают через линию 43 в узел 90. Благодаря почти полному отсутствию 1-бутена отделение н-бутана в узле 90 резко облегчается по сравнению с примером 6. Энергозатраты в узле 90 снижаются в 2 раза.
Получают: 1-бутен, ЭТБЭ и изобутен в количестве и с составами аналогично примеру 6.
Пример 8.
Переработку осуществляют аналогично примеру 6. В отличие от примера 6, в качестве реагента в зону 30б вводят в количестве 9,1 т/ч метанол и производят кроме 1-бутена и изобутена также МТБЭ. Разложению с получением изобутена подвергают 90% полученного МТБЭ. Получают: 9,1 т/ч 1-бутена с концентрацией 99,0%, 13,6 т/ч изобутена с концентрацией 99,95% и 2,5 т/ч потока с концентрацией 99,1% МТБЭ.
Figure 00000001
Figure 00000002

Claims (11)

1. Способ получения 1-бутена и изобутена или/и его соединения(й) со спиртом(ами), водой либо продуктов ди- и тримеризации изобутена из смеси С4-углеводородов, содержащей преимущественно 2-бутены, с использованием скелетной и позиционной изомеризации 2-бутенов и как минимум ректификации, отличающийся тем, что катализируемую изомеризацию 2-бутенов проводят при температуре от 100°С до 500°С в общей реакционной зоне, где проходят позиционная и скелетная изомеризация в 1-бутен и изобутен, или в отдельных реакционных зонах, в одной из которых проходит позиционная изомеризация в 1-бутен, и в другой одновременно проходят скелетная и позиционная изомеризация в изобутен и 1-бутен, образующийся изобутен извлекают из смеси первоначально в форме алкил-трет-бутилового(ых) эфира(ов) и/или трет-бутанола, и/или димеров и тримеров изобутена, и при необходимости указанное(ые) соединение(я) подвергают катализируемому разложению с выделением изобутена, а из потока(ов), в котором(ых) преобладают 1-бутен и 2-бутены, с помощью ректификации выделяют поток, содержащий преимущественно 1-бутен, и остаток, содержащий преимущественно 2-бутены, как минимум частично рециркулируют в зону, включающую скелетную изомеризацию.
2. Способ по п.1, отличающийся тем, что как минимум из части исходной и/или образуемой в процессе смеси, содержащей 2-бутены с примесью н-бутана, отделяют н-бутан путем экстрактивной ректификации с полярным экстрагентом.
3. Способ по п.1, отличающийся тем, что из смеси, содержащей преимущественно 2-бутены, возможно включающей также более легкокипящие примеси бутадиена, и/или изобутена, и/или изобутана, указанные примеси отделяют ректификацией в качестве дистиллята.
4. Способ по п.1, отличающийся тем, что указанное извлечение изобутена осуществляют с помощью катализируемого взаимодействия со спиртом(ами) с получением алкил-трет-бутилового(ых) эфира(ов) и/или водой с получением трет-бутанола, и/или превращения изобутена в его димеры и тримеры с непрерывной или последующей отгонкой непрореагировавших углеводородов.
5. Способ по п.1, отличающийся тем, что в указанную зону извлечения изобутена дополнительно подают С4-фракцию, содержащую преимущественно бутан(ы), изобутен и н-бутены.
6. Способ по п.5, отличающийся тем, что получаемый(е) 1-бутен и/или изобутен дополнительно очищают от примесей путем ректификации и/или водной отмывки.
7. Способ по п.1, отличающийся тем, что до подачи потока, образующегося в зоне, включающей скелетную изомеризацию н-бутенов, на ректификацию с целью выделения 1-бутена, из указанного потока удаляют изобутен до остаточного содержания, не превышающего допустимой нормы его в 1-бутене, предпочтительно не более 0,1 мас.% в расчете на 1-бутен.
8. Способ по п.1, отличающийся тем, что при использовании раздельных зон позиционной и скелетно-позиционной изомеризации 2-бутенов углеводородную смесь после преимущественно скелетной изомеризации отгоняют от продуктов взаимодействия изобутена и как минимум частично возвращают непосредственно в зону скелетной изомеризации, а от другой части возможно отгоняют изобутан ректификацией или изобутан и н-бутан указанной экстрактивной ректификацией с полярным агентом до или после изомеризации 1-бутена в 2-бутен.
9. Способ по п.1, отличающийся тем, что при отделении 1-бутена от 2-бутенов и возможно н-бутана с помощью ректификации используют дополнительную зону катализируемой позиционной изомеризации 2-бутенов, расположенную внутри колонны ниже подачи разделяемой смеси или расположенную вне колонны и соединенную ее входным и выходным потоками с нижней частью колонны.
10. Способ по п.1, отличающийся тем, что более полное отделение 1-бутена от примеси н-бутана ректификацией достигают путем введения в верхнюю часть колонны ректификации 1-бутена алкана(ов) С57.
11. Способ по п.1, отличающийся тем, что в качестве катализатора(ов) позиционной изомеризации используют любой(ые) известный(е) катализатор(ы) изомеризации, не склонный(е) к существенному крекированию или дегидрированию бутенов, предпочтительно оксиды металлов, металлы на носителях или сульфокатиониты.
RU2011114577/04A 2011-04-13 2011-04-13 Способ получения 1-бутена и изобутена или/и его производных RU2470905C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011114577/04A RU2470905C1 (ru) 2011-04-13 2011-04-13 Способ получения 1-бутена и изобутена или/и его производных

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011114577/04A RU2470905C1 (ru) 2011-04-13 2011-04-13 Способ получения 1-бутена и изобутена или/и его производных

Publications (2)

Publication Number Publication Date
RU2011114577A RU2011114577A (ru) 2012-10-20
RU2470905C1 true RU2470905C1 (ru) 2012-12-27

Family

ID=47145025

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011114577/04A RU2470905C1 (ru) 2011-04-13 2011-04-13 Способ получения 1-бутена и изобутена или/и его производных

Country Status (1)

Country Link
RU (1) RU2470905C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161796B2 (en) 2018-09-18 2021-11-02 Sabic Global Technologies B.V. Systems and processes for efficient production of one or more fuel additives
RU2764601C1 (ru) * 2018-08-23 2022-01-18 ЛАММУС ТЕКНОЛОДЖИ ЭлЭлСи Процесс для производства высокочистого изобутилена
US11248181B2 (en) 2018-04-19 2022-02-15 Sabic Global Technologies B.V. Method of producing a fuel additive
US11407952B2 (en) 2018-05-07 2022-08-09 Saudi Arabian Oil Company Method of producing a fuel additive
US11414611B2 (en) 2018-05-07 2022-08-16 Sabic Global Technologies B.V. Method of producing a fuel additive
US11427518B2 (en) 2018-03-19 2022-08-30 Saudi Arabian Oil Company Method of producing a fuel additive
US11518951B2 (en) 2018-03-19 2022-12-06 Sabic Global Technologies B.V. Method of producing a fuel additive
US11613717B2 (en) 2017-07-27 2023-03-28 Sabic Global Technologies B.V. Method of producing a fuel additive
US11697626B2 (en) 2018-05-18 2023-07-11 Sabic Global Technologies B.V. Method of producing a fuel additive with a hydration unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU95101860A (ru) * 1994-02-11 1997-01-10 Снампрогетти С.п.А. (IT) Объединенный способ одновременного производства алкилтрет-бутиловых эфиров и 1-бутена
US6137023A (en) * 1996-12-23 2000-10-24 Institut Francais Du Petrole Process for the production of high purity isobutene combining reactive distillation with hydroisomerisation and skeletal isomerisation
US6215036B1 (en) * 1996-08-08 2001-04-10 Institut Francais Du Petrole Method for producing high purity isobutylene from a butane plus fraction containing isobutylene and butylene-1
KR20090099779A (ko) * 2008-03-18 2009-09-23 에스케이에너지 주식회사 2-부텐으로부터 위치 이성화를 통한 선택적 1-부텐의 제조공정

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU95101860A (ru) * 1994-02-11 1997-01-10 Снампрогетти С.п.А. (IT) Объединенный способ одновременного производства алкилтрет-бутиловых эфиров и 1-бутена
US6215036B1 (en) * 1996-08-08 2001-04-10 Institut Francais Du Petrole Method for producing high purity isobutylene from a butane plus fraction containing isobutylene and butylene-1
US6137023A (en) * 1996-12-23 2000-10-24 Institut Francais Du Petrole Process for the production of high purity isobutene combining reactive distillation with hydroisomerisation and skeletal isomerisation
KR20090099779A (ko) * 2008-03-18 2009-09-23 에스케이에너지 주식회사 2-부텐으로부터 위치 이성화를 통한 선택적 1-부텐의 제조공정

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613717B2 (en) 2017-07-27 2023-03-28 Sabic Global Technologies B.V. Method of producing a fuel additive
US11427518B2 (en) 2018-03-19 2022-08-30 Saudi Arabian Oil Company Method of producing a fuel additive
US11518951B2 (en) 2018-03-19 2022-12-06 Sabic Global Technologies B.V. Method of producing a fuel additive
US11248181B2 (en) 2018-04-19 2022-02-15 Sabic Global Technologies B.V. Method of producing a fuel additive
US11407952B2 (en) 2018-05-07 2022-08-09 Saudi Arabian Oil Company Method of producing a fuel additive
US11414611B2 (en) 2018-05-07 2022-08-16 Sabic Global Technologies B.V. Method of producing a fuel additive
US11697626B2 (en) 2018-05-18 2023-07-11 Sabic Global Technologies B.V. Method of producing a fuel additive with a hydration unit
RU2764601C1 (ru) * 2018-08-23 2022-01-18 ЛАММУС ТЕКНОЛОДЖИ ЭлЭлСи Процесс для производства высокочистого изобутилена
US11161796B2 (en) 2018-09-18 2021-11-02 Sabic Global Technologies B.V. Systems and processes for efficient production of one or more fuel additives

Also Published As

Publication number Publication date
RU2011114577A (ru) 2012-10-20

Similar Documents

Publication Publication Date Title
RU2470905C1 (ru) Способ получения 1-бутена и изобутена или/и его производных
JP6039630B2 (ja) ブタジエンの製造法
KR101908251B1 (ko) C₄ 탄화수소 혼합물로부터 고순도 1-부텐을 얻는 공정
EP3218334B1 (de) Verfahren zur herstellung von 1,3-butadien durch dehydrierung von n-butenen unter bereitstellung eines butane und 2-butene enthaltenden stoffstromes
EP3293171A1 (de) Verfahren zur flexiblen herstellung von aldehyden
TWI586642B (zh) 使用少量乙烯或不使用乙烯之經由丙烯的複分解技術
JP5870028B2 (ja) イソプレンを製造する方法及びシステム
US20170253540A1 (en) Method and apparatus for producing hydrocarbons
US20170190636A1 (en) Method for producing product olefins by catalytic dehydration of suitable reactants
JP2691223B2 (ja) イソアミレン中の2‐メチル‐2‐ブテン濃度の増加
KR102051421B1 (ko) 부텐의 올리고머의 제조 방법
RU2329246C1 (ru) Способ получения 2-метил-2-бутена из изопентана и способ получения изопрена из изопентана
RU2304134C1 (ru) Способ получения чистого 1-бутена
CN112898112A (zh) 用于分离烃组分与含氧化合物的方法和设备
KR101291651B1 (ko) 이소부텐 및 부텐-1의 제조 방법 및 제조 장치
US9790146B2 (en) Process to produce linear pentenes and metathesis thereof
US11505512B2 (en) Co-production of high purity isobutane and butene-1 from mixed C4s
US20170253541A1 (en) Method and apparatus for producing hydrocarbons
US20220127208A1 (en) Dimerization and trimerization of c5 olefins via catalytic distillation
RU2271349C1 (ru) Способ переработки изобутена в углеводородной смеси

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150414