RU2462727C2 - Способ для определения места замыкания на линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением - Google Patents

Способ для определения места замыкания на линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением Download PDF

Info

Publication number
RU2462727C2
RU2462727C2 RU2010119932/28A RU2010119932A RU2462727C2 RU 2462727 C2 RU2462727 C2 RU 2462727C2 RU 2010119932/28 A RU2010119932/28 A RU 2010119932/28A RU 2010119932 A RU2010119932 A RU 2010119932A RU 2462727 C2 RU2462727 C2 RU 2462727C2
Authority
RU
Russia
Prior art keywords
line
station
circuit
fault
phase
Prior art date
Application number
RU2010119932/28A
Other languages
English (en)
Other versions
RU2010119932A (ru
Inventor
Пжемыслав БАЛЬЦЕРЕК (PL)
Пжемыслав БАЛЬЦЕРЕК
Марек ФУЛЬЧИК (PL)
Марек ФУЛЬЧИК
Эугениуш РОСОЛОВСКИ (PL)
Эугениуш РОСОЛОВСКИ
Ян ИЗИКОВСКИ (PL)
Ян ИЗИКОВСКИ
Мурари САХА (SE)
Мурари САХА
Original Assignee
Абб Рисерч Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Абб Рисерч Лтд filed Critical Абб Рисерч Лтд
Publication of RU2010119932A publication Critical patent/RU2010119932A/ru
Application granted granted Critical
Publication of RU2462727C2 publication Critical patent/RU2462727C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)
  • Transmitters (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Изобретение относится к области электроэнергетики и может быть использовано для нескомпенсированных и последовательно скомпенсированных воздушных линий электропередачи. Сущность: расстояние до места замыкания и сопротивление замыкания определяют посредством значений напряжений и токов, измерения на станциях (А) и (В) до и после появления замыкания. На основе предположения, что замыкание имеет место на участке линии между станцией А и устройством из последовательного конденсатора и металл-оксидного варистора, определяют угол δA синхронизации в единицах
Figure 00000247
. На основе предположения, что замыкания имеют место на участке линии между станцией В и устройством из последовательного конденсатора и металл-оксидного варистора, определяют угол δB синхронизации в единицах
Figure 00000248
. Затем, принимая во внимание модель линии с распределенными параметрами, определяют расстояние до замыкания (dA) или (dB) из формулы:
Figure 00000249
Figure 00000250
где: dLA, dLB - гипотетическое расстояние до замыкания, выраженное в отношении к длине (pSCℓ), значение которого получается посредством итеративного способа с использованием
Figure 00000248
и
Figure 00000247
. Затем эквивалентный импеданс компенсирующего блока на стадии замыкания
Figure 00000251
и
Figure 00000252
вычисляют с использованием значений после замыкания измеренного напряжения и токов, а эквивалентный импеданс компенсирующего блока до замыкания (ZSC1_pre) вычисляют для того, чтобы определить, какое из расстояний (dA) или (dB) является окончательным результатом. Технический результат - снижение расчетной нагрузки, обеспечение точной синхронизации. 2 н.п. ф-лы, 12 ил., 4 табл.

Description

Область техники
Настоящее изобретение относится к способу определения места замыкания на линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением, используемому в области электроэнергетики и для некомпенсированных и последовательно скомпенсированных воздушных линий электропередачи.
Предшествующий уровень техники
Техника определения места замыкания на линиях электропередачи с последовательной компенсацией известна из EP 1051632 B1. В данном решении было предложено вычислить расстояние до замыкания с использованием местных измерений от одного конца линии передачи с последовательной компенсацией, где помещено устройство обнаружения места замыкания. Этот способ использует преобразование параллельного соединения последовательного конденсатора и металл-оксидного варистора (MOV) в модельно эквивалентный импеданс в виде последовательного соединения активного и реактивного сопротивлений, оба из которых существенно зависимы от величины тока. Этот эквивалентный импеданс используется для вычисления расстояния до замыкания. Этот способ требует знания параметров блоков последовательных конденсаторов, а также элементов MOV.
Способ измерения протяженности для дистанционного реле и устройств обнаружения места замыкания для линий передачи с последовательной компенсацией известен из патента США 6336059 B1. В способе согласно этому изобретению оценка места замыкания выполняется с использованием только локальной информации. В способе измеряется некоторое количество образцов линейных токов, причем такие образцы представляют значения форм волны линейного тока в последовательные моменты времени в линии с последовательной компенсацией. Значения напряжений конденсатора вычисляются на основе измеренных токов в соответствии с уравнением, которое учитывает нелинейное устройство защиты - металл-оксидный варистор, подключенный параллельно установленному последовательному конденсатору. Расстояние до замыкания вычисляется с учетом ранее вычисленных значений напряжения конденсатора.
В патенте США 2006/0142964 A1 раскрыт способ определения места замыкания с использованием измерений токов и напряжений на двух концах. Способ характеризуется тем, что после определения насыщения трансформатора тока на первом конце линии A или втором конце B, расстояние до замыкания вычисляется с использованием напряжения с обоих концов линии и токов только с данной стороны линии, где трансформаторы тока не насыщены. Вычисление расстояния до замыкания выполняется на основе обобщенной модели замкнутого контура. В этой модели общий ток замыкания определяется с использованием модели сосредоточенной линии и сигналов тока с одного конца и сигналов напряжения с двух концов. Тем не менее, способ не подходит для обнаружения места замыкания на линиях с последовательной компенсацией.
Другой способ для определения места замыкания на линиях с последовательной компенсацией с использованием двухконцевых измерений известен из статьи Chi-Shan Yu, Chih-Wen Liu, Sun-Li Yu and Joe-Air Jiang "A New PMU-Based Fault Location Algorithm for Series Compensated Lines", IEEE Transactions on Power Delivery (Чи-Шан Ю, Чин-Вэн Лиу, Сун-Ли Ю и Джо-Аир Джианг "Новый алгоритм обнаружения места замыкания на основе PMU для линий с последовательной компенсацией", Операции IEEE при передаче энергии), том 17, №1, январь 2002, стр. 33-46. Этот способ использует сигналы напряжения и тока, измеренные синхронно на обоих концах одной линии с последовательной компенсацией. Таким образом, указанный способ отличается от подхода настоящего изобретения способом измерения (синхронное измерение) и типом линии (одиночная линия с последовательной компенсацией). Настоящий способ разработан для использования в более общем случае асинхронных измерений и в применении к одно- и двухконтурным некомпенсированным линиям и линиям с последовательной компенсацией. Более того, упомянутый подход не обеспечивает аналитическую формулу для отыскиваемого расстояния до замыкания, но основан на сканировании вдоль всего участка линии для нахождения положения замыкания, на котором определенное напряжение замыкания и общий ток замыкания находятся в фазе (поскольку путь замыкания имеет резистивный характер). Для каждой проверенной точки на линии напряжение замыкания и общий ток замыкания должен быть определен из симметричных составляющих тока и напряжения. Это приводит к высоким накладным расходам, требующимся для определения места замыкания. В противоположность этому подход согласно настоящему изобретению дает компактную формулу для искомого расстояния до замыкания, выведенную строго с учетом модели линии с распределенными параметрами.
Из статьи Claude Fecteau "Accurate Fault Location Algorithm for Series Compensated Lines Using Two-Terminal Unsynchronized Measurements and Hydro- Quebec's Field Experience" (Клод Фекто «Алгоритм точного определения места повреждения для линий с последовательной компенсацией с использованием двухконцевых несинхронизированных измерений и практического опыта компании Хайдро-Квебек»), представленной на 33-ю ежегодную западную конференцию, посвященную релейной защите, Споукане, Вашингтон, 17-10 октября 2006 года, известно решение, которое в некоторой степени связано с подходом согласно настоящему изобретению. Некоторые могут отметить, что разработанный подход является более общим (одно- и двухконтурные линии, нескомпенсированные линии и линии с последовательной компенсацией). Упомянутый подход не предоставляет аналитической формулы для искомого расстояния до замыкания. Вместо этого расстояние до замыкания определяется итеративно посредством минимизации целевой функции для реактивного сопротивления импеданса замыкания. Это приводит к большим расчетным нагрузкам, чем при подходе по настоящему изобретению.
Более того, подход согласно изобретению дополнительно обеспечивает определение угла синхронизации в случае однофазных замыканий фазы на землю и замыканий фазы на фазу (являющихся большинством замыканий на практике) с использованием величин после замыкания. Это является преимуществом с точки зрения обеспечения точной синхронизации.
Краткое изложение существа изобретения
Сущность способа согласно настоящему изобретению для определения места замыкания в линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением, где расстояние до замыкания и сопротивление замыкания определяются посредством измерения значений напряжений и токов на станциях A и B до и после появления замыкания, состоит в следующем:
делают два предположения, первое: если замыкание возникло на участке LA линии между станцией A и устройством SC&MOV последовательного конденсатора и металл-оксидного варистора; второе: если замыкание возникло на участке линии LB между станцией B и устройством SC&MOV последовательного конденсатора и металл-оксидного варистора.
Если замыкание возникло на участке LA линии между станцией A и устройством SC&MOV последовательного конденсатора и металл-оксидного варистора, то расстояние для места замыкания dA определяют согласно процедуре I на следующих этапах, на которых:
определяют угол синхронизации δA в единицах
Figure 00000001
для известного типа замыканий, которое является замыканием фазы на землю или замыканием фазы на фазу, определяют из формулы:
Figure 00000002
где:
индекс ph-g обозначает замыкание фазы на землю: а-g, b-f, с-g, а индекс ph-ph обозначает замыкания фазы на фазу а-b, b-с, с-а,
Figure 00000003
Figure 00000004
обозначают коэффициенты, зависящие от типа замыкания,
Figure 00000005
обозначает ток прямой последовательности от станции В после аналитического преобразования к блокам SC&MOV последовательных конденсаторов,
Figure 00000006
обозначает ток обратной последовательности от станции В после аналитического преобразования к блокам SC&MOV последовательных конденсаторов,
Figure 00000007
Figure 00000008
обозначают коэффициенты, зависимые от токов прямой и обратной последовательности и напряжения, снимаемого на станции А соответственно, так же как и от параметров линии,
и для замыканий, не являющихся замыканиями фазы на землю или замыканиями фазы на фазу, определяют из формулы:
Figure 00000009
где:
Figure 00000010
Figure 00000011
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') напряжения, измеренного на концах А и В, соответственно,
Figure 00000012
Figure 00000013
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') измеренного тока, линии замыкания на концах А и В, соответственно,
Z 1A, Y 1A обозначают импеданс и полную проводимость участка LA линии,
Z 1B, Y 1B обозначают импеданс и полную проводимость участка LB линии,
LA - часть линии между станцией A линии и блоком последовательных конденсаторов,
LB - часть линии между станцией B линии и блоком последовательных конденсаторов,
затем принимают во внимание модель линии с распределенными параметрами и решают уравнение
Figure 00000014
,
где:
pSC обозначает расстояние (на.ед.) на единицу общей длины
Figure 00000015
линии, на котором удаленно от станции A установлен компенсирующий блок SC&MOV,
d LA обозначает гипотетическое расстояние до замыкания, выраженное в отношении к длине
Figure 00000016
и которое получается с использованием известного итеративного способа посредством решения уравнения по замкнутому контуру:
Figure 00000017
для одиночной линии,
Figure 00000018
для двухконтурной линии,
в котором:
RFA обозначает неизвестное сопротивление замыкания, значение которого получают с использованием известного итеративного способа посредством решения вышеуказанного уравнения по замкнутому контуру,
a 1, a 2, a 0, a m0 обозначают весовые коэффициенты, зависимые от типа замыкания, собранные в таблице 3,
M i обозначает числовые составляющие для прямой и обратной последовательностей,
a F1, a F2 обозначают долевые коэффициенты, зависимые от типа замыкания, собранные в таблице 4,
Z 0m - импеданс взаимной связи для нулевой последовательности,
I Aparal_0 обозначает ток нулевой последовательности от станции A, измеренный в исправной параллельной линии,
затем эквивалентный импеданс компенсирующего блока на стадии
Figure 00000019
замыкания вычисляют с использованием значений измеренного напряжения и токов после замыкания, а эквивалентный импеданс компенсирующего блока до замыкания Z SC1_pre вычисляют из следующего уравнения, представленного на этапе 106a:
Figure 00000020
где:
Figure 00000021
,
Figure 00000022
Figure 00000023
,
Figure 00000024
,
для того, чтобы определить окончательный результат d A, который выбирается на последующих этапах, на которых:
сначала проверяют, являются ли величины сопротивлений замыкания R FA положительными, и если нет, то процедура I отклоняется,
затем вещественная (“real”) и мнимая (“imag”) части оцененной эквивалентной цепи компенсирующих блоков SCs&MOVS проверяют, и если каждая из них удовлетворяет следующей зависимости:
Figure 00000025
,
Figure 00000026
и
Figure 00000027
тогда предположение, что замыкание возникло между станцией A и блоком SC&MOV, является верным и результат d A обозначает расстояние до замыкания.
Если замыкание появилось на участке LB линии между станцией B и устройством SC&MOV из последовательного конденсатора и металл-оксидного варистора, то расстояние dB для места замыкания определяется в процедуре II в следующих этапах, на которых:
определяют угол синхронизации δB в единицах
Figure 00000028
для известного типа замыканий, который является замыканием фазы на землю или замыканием фазы на фазу, из формулы:
Figure 00000029
где:
Figure 00000030
Figure 00000031
обозначают коэффициенты, зависящие от типа замыкания,
Figure 00000032
обозначает ток прямой последовательности от станции А после аналитического преобразования к последовательным блокам SC&MOV конденсаторов,
Figure 00000033
обозначает ток обратной последовательности от станции А после аналитического преобразования к последовательным блокам SC&MOV конденсаторов,
Figure 00000034
Figure 00000035
обозначают коэффициенты, зависимые от токов прямой и обратной последовательности и напряжения, снимаемого на станции В соответственно, так же как и от параметров линии,
для замыканий, не являющихся замыканиями фазы на землю или замыканиями фазы на фазу, из формулы:
Figure 00000036
где:
Figure 00000037
,
Figure 00000038
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') напряжения, измеренного на концах А и В, соответственно,
Figure 00000039
,
Figure 00000040
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') измеренного тока, линии замыкания на концах А и В, соответственно,
Figure 00000041
Figure 00000042
обозначают импеданс и полную проводимость участка LA линии,
Z 1B, Y 1B обозначают импеданс и полную проводимость участка LB линии.
LA - часть линии между станцией A линии и блоком последовательных конденсаторов,
LB - часть линии между станцией B линии и блоком последовательных конденсаторов,
затем принимают во внимание модель линии с распределенными параметрами и решают уравнение:
Figure 00000043
где:
(1-pSC) обозначает расстояние (на.ед.) на единицу общей длины
Figure 00000044
линии, на котором установлен компенсирующий блок SC&MOV удаленно от станции B,
d LB обозначает гипотетическое расстояние до замыкания, выраженное в отношении к длине (1-
Figure 00000045
) и которое получается с использованием известного итеративного способа посредством решения уравнения по замкнутому контуру:
Figure 00000046
для одиночной линии,
Figure 00000047
для двухконтурной линии,
где:
R FB обозначает неизвестное сопротивление замыкания, значение которого получается с использованием известного итеративного способа посредством решения вышеуказанного уравнения по замкнутому контуру,
M i обозначает числовые коэффициенты для прямой и обратной последовательностей,
a 1, a 2, a 0, a m0 обозначают весовые коэффициенты, зависимые от типа замыкания, собранные в таблице 3,
a F1, a F2 обозначают долевые коэффициенты, зависимые от типа замыкания, собранные в таблице 4,
Z 0m - импеданс взаимной связи для нулевой последовательности,
I Bparal_0 обозначает ток нулевой последовательности от станции A, измеренный в исправной параллельной линии,
затем эквивалентный импеданс компенсирующего блока на стадии
Figure 00000048
замыкания вычисляют с использованием значений после замыкания измеренного напряжения и токов, а эквивалентный импеданс компенсирующего блока до замыкания (Z SC1_pre) вычисляют из следующего уравнения, представленного на этапе 106b:
Figure 00000020
где:
Figure 00000021
,
Figure 00000049
Figure 00000023
,
Figure 00000024
,
для того, чтобы определить окончательный результат (d B), который выбирают на последующих этапах:
сперва проверяют, являются ли величины сопротивлений замыкания (R FB) положительными, и если нет, то процедура II отклоняется,
затем вещественная (“real”) и мнимая (“imag”) части вычисленной эквивалентной цепи компенсирующих блоков SCs&MOVS проверяют, и если каждая из них удовлетворяет следующей зависимости:
Figure 00000050
,
Figure 00000051
и
Figure 00000052
,
тогда допущение, что замыкание возникло между станцией В и блоком SC&MOV, является верным и результат d B обозначает расстояние до замыкания.
Защитное реле, оборудованное устройством FL обнаружения места замыкания, содержит средства для выполнения этапов способа по п.1 формулы изобретения.
Компьютерный программный продукт, содержащий компьютерную программную последовательность, которая при выполнении на вычислительном устройстве выполняет этапы по способу по п.1 формулы изобретения.
Преимуществом способа согласно изобретению является преодоление всех ограничений и недостатков известных способов, что означает, что параметры и статус блока последовательных конденсаторов не обязательно должны быть известны, поскольку они не используются для определения расстояния до замыкания и сопротивления замыкания, т.е. должно быть известно только положение, на котором компенсирующие блоки установлены. Дополнительно реактивное сопротивление последовательных конденсаторов измеряется с использованием измерений до замыкания. Угол синхронизации определяется с использованием измерений до замыкания или в качестве альтернативы для однофазных замыканий фазы на землю и замыканий фазы на фазу, которые являются наиболее общими замыканиями с использованием измерений после замыкания и строго учитывающими модель линии с распределенными параметрами, что позволяет достичь точной аналитической синхронизации измерений, получаемых асинхронно. Затем расстояние до замыкания вычисляется посредством ввода компенсации для шунтирующих емкостей линии с использованием модели линии с распределенными параметрами. Выбор подходящей процедуры выполняется на основе многокритериальной процедуры, что позволяет достигнуть идентификации надежных верных результатов в очень широком диапазоне условий замыкания, даже для очень больших сопротивлений замыкания.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:
фиг.1 представляет общую схему электрической сети для реализации способа согласно изобретению;
фиг.2 - схему эквивалентной цепи линии с последовательной компенсацией для прямой последовательности до замыкания, рассматриваемую для определения угла синхронизации;
фиг.3 - схему эквивалентной цепи для замыкания FA линии с последовательной компенсацией для прямой последовательности - часть, содержащая SC&MOV и часть между SC&MOV и станцией B;
фиг.4 - схему эквивалентной цепи для замыкания FA линии с последовательной компенсацией для прямой последовательности - часть, содержащая SC&MOV и участок между SC&MOV и станцией А;
фиг.5 - схему эквивалентной цепи для замыкания FA линии с последовательной компенсацией для обратной последовательности - часть, содержащая SC&MOV и участок между SC&MOV и станцией B;
фиг.6 - схему эквивалентной цепи для замыкания FA линии с последовательной компенсацией для обратной последовательности - часть, содержащая SC&MOV и участок между SC&MOV и станцией A;
фиг.7 - схему эквивалентной цепи для замыкания FB линии с последовательной компенсацией для прямой последовательности - часть, содержащая SC&MOV и участок между SC&MOV и станцией A;
фиг.8 - схему эквивалентной цепи для замыкания FB линии с последовательной компенсацией для прямой последовательности - часть, содержащая SC&MOV и участок между SC&MOV и станцией B;
фиг.9 - схему эквивалентной цепи для замыкания FB линии с последовательной компенсацией для обратной последовательности - часть, содержащая SC&MOV и участок между SC&MOV и станцией A;
фиг.10 - схему эквивалентной цепи для замыкания FB линии с последовательной компенсацией для обратной последовательности - часть, содержащая SC&MOV и участок между SC&MOV и станцией B;
фиг.11 - схему эквивалентной цепи линии с последовательной компенсацией для прямой последовательности до замыкания, рассматриваемую для измерения импеданса компенсирующего блока;
фиг.12 - схему последовательности этапов способа обнаружения места замыкания согласно настоящему изобретению.
Описание предпочтительных вариантов воплощения изобретения
Система электропередачи, показанная на фиг.1, состоит из линии передачи с последовательной компенсацией, соединяющей две электростанции A и B. Установленный последовательный конденсатор (SC-series capacitor) включает в себя металл-оксидный варистор (MOV - metal oxide varistor), подключенный параллельно (SC&MOV), что ограничивает напряжение на конденсаторе определенным способом. Станция A расположена в начале линии, станция B - в конце этой линии. На станции A имеется устройство FL обнаружения места замыкания. Устройство обнаружения места замыкания может быть также расположено на станции B или отдельно (не показано на фиг.1). Обнаружение места замыкания выполняется с использованием модели линии с распределенными параметрами, модели замыканий и замкнутого контура для симметричных компонентов прямых, обратных и нулевых и различных типов замыканий посредством применения подходящих долевых коэффициентов, определяющих отношение между симметричными компонентами общего тока замыкания, когда оценивается падение напряжение на сопротивлении замыкания, заданных как
Figure 00000053
,
Figure 00000054
,
Figure 00000055
и весовых коэффициентов
Figure 00000056
,
Figure 00000057
,
Figure 00000058
,
Figure 00000059
, определяющих долю отдельных составляющих в общей модели замкнутого контура.
Несинхронизированные измерения трехфазных токов от станции A, B и трехфазных напряжений от станции A и B подаются на устройство FL обнаружения места замыкания. Устройство обнаружения места замыкания снабжается информацией о типе замыкания и времени возникновения. Затем предполагаются две гипотетические точки замыканий и расстояния d A и d B между началом участка A и B данной линии и точки замыкания (FA, FB) вычисляются для того, чтобы определить верные результаты, т.е. согласующиеся со случаем настоящего замыкания, исходя из следующих допущений:
вычисляют угол δA синхронизации, расстояние d A от начала линии на станции A до точки FA замыкания, сопротивление R FA замыкания и импеданс компенсирующего блока в состоянии
Figure 00000060
замыкания, импеданс компенсирующего блока в состоянии
Figure 00000061
до замыкания, предполагая, что замыкание возникло на участке LA линии - этапы 103a, 104a, 105a, 106a, где LA является участком линии, где возникло замыкание между станцией A линии и блоком конденсаторов,
вычисляют угол δB синхронизации, расстояние d B от начала линии на станции B до точки FB замыкания, сопротивление R FB замыкания и импеданс компенсирующего блока в состоянии
Figure 00000062
замыканий, импеданс компенсирующего блока в состоянии
Figure 00000063
до замыкания, предполагая, что замыкание возникло на участке LB линии, где LB является участком линии, где возникло замыкание между станцией B линии и блоком конденсаторов - этапы 103b, 104b, 105b, 106b.
Затем между этими двумя расстояниями до замыкания d A и d B выбирается действительный верный результат - этап 107.
Этап 101. На станциях A и B измеряют входные сигналы тока и напряжения от отдельных фаз для условий замыкания IA_a, IA_b, IA_c, VA_a, VA_b, VA_c, IB_a, IB_b, IB_c, VB_a, VB_b, VB_c для условий до замыкания IA_pre_a, IA_pre_b, IA_pre_c, VA_pre_a, VA_pre_b, VA_pre_c, IB_pre_a, IB_pre_b, IB_pre_c, VB_pre_a, VB_pre_b, VB_pre_c и в случае токов двухконтурной линии от исправной параллельной линии IAparal_a, IAparal_b, IAparal_c, IBparal_a, IBparal_b, IBparal_c или только токов нулевой последовательности I Aparal_0, I Bparal_0 .
Этап 102. На этом этапе вычисляют симметричные составляющие фазовых токов, измеренных на станциях A и B, и симметричные составляющие фазовых напряжений, измеренных на станциях A и B для условий до замыкания и условий замыкания. Подробности этого вычисления хорошо известны специалисту в данной области техники.
Этап 103a. На данном этапе вычисляют угол
Figure 00000064
синхронизации следующим образом:
- если присутствуют замыкания фазы на землю или фазы на фазу, тогда из анализа общего тока замыкания фиг.3, фиг.4, фиг.5, фиг.6 на основе предположения, что замыкания имеют место на участке линии между A и устройством SC&MOV из последовательного конденсатора и металл-оксидного варистора угол δA синхронизации в единицах
Figure 00000065
определяется по формуле:
Figure 00000066
(1)
где:
индекс ph-g обозначает замыкание фазы на землю: a-g, b-g, с-g, и
индекс ph-ph обозначает замыкания фазы на фазу а-b, b-с, с-а,
Figure 00000067
Figure 00000068
обозначают коэффициенты, зависящие от типа замыкания, собранные в таблице 1,
Figure 00000069
Figure 00000070
обозначает ток прямой последовательности от станции В после аналитического преобразования к блокам SC&MOV последовательных конденсаторов,
Figure 00000071
Figure 00000072
обозначает ток обратной последовательности от станции В после аналитического преобразования к блокам SC&MOV последовательных конденсаторов,
Figure 00000073
Figure 00000074
где:
ℓ обозначает общую длину линии,
pSC обозначает расстояние (на.ед.) на единицу длины, на котором удаленно от станции А установлен компенсирующий блок (SC&MOV), которая не представлена на чертежах,
Figure 00000075
обозначает характеристический импеданс линии для прямой последовательности,
Figure 00000076
обозначает постоянную распространения линии для прямой последовательности,
Figure 00000077
Figure 00000078
обозначают импеданс прямой последовательности и полную проводимость линии на единицу длины.
Для определения величин обратной последовательности согласно уравнениям (3) и (5) учитывается, что параметры линии для прямой и обратной последовательности идентичны, как в реальности. Для обеих последовательностей использованы параметры линии для прямой последовательности (нижний индекс 1). Это также применено в последующих рассуждениях.
Анализ граничных условий для различных типов замыканий показывает, что существует определенный уровень свободы при определении долевых коэффициентов, определяющих отношение между симметричными составляющими общего тока замыкания, когда оценивается падение напряжения на сопротивлении замыкания. Их выбор зависит от принятого предпочтения использования составляющих индивидуальной последовательности в зависимости от типа замыкания. В представленном примере варианта осуществления изобретения для того, чтобы обеспечить высокую точность определения места замыкания, оценивается падение напряжения на сопротивлении замыкания с использованием составляющих прямой и обратной последовательности.
Существует два альтернативных характеристических набора (среди других возможных) долевых коэффициентов для замыканий фазы на землю a-g, b-g, c-g и фазы на фазу a-b, b-c, c-a, как собрано в таблице 1.
Figure 00000079
В противоположность вышеприведенным типам замыканий другой ситуацией являются оставшиеся типы замыканий (фаза на фазу и на землю и симметричные трехфазные замыкания). Это объясняется тем, что для этих оставшихся замыканий не существует альтернативных наборов долевых коэффициентов для прямой и обратной последовательности - как собрано в таблице 2.
Figure 00000080
Тип замыкания обозначен символами: a-g, b-g, c-g , a-b, b-c, c-a, a-b-g, a-b-c, a-b-c-g, b-c-g, c-a-g, где буквы a, b, c обозначают отдельные фазы, а буква g обозначает заземление (землю), индекс 1 обозначает составляющую прямой последовательности, индекс 2 - составляющую обратной последовательности.
Если не присутствуют замыкания фазы на землю и не присутствуют замыкания фазы на фазу, тогда угол δA синхронизации в единицах
Figure 00000081
из анализа протекания тока для условий до замыкания (фиг.2) с использованием модели линии c распределенными параметрами вычисляется из формулы:
Figure 00000082
(6)
где:
Figure 00000083
Figure 00000084
Figure 00000085
Figure 00000086
Figure 00000087
,
Figure 00000088
,
Figure 00000089
,
Figure 00000090
,
Figure 00000091
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') напряжения, измеренного на концах A и B, соответственно,
Figure 00000092
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') измеренного тока, линии замыкания на концах A и B, соответственно.
Этап 104a. Определив угол δA синхронизации и, следовательно, оператор
Figure 00000081
синхронизации, вычисляют вектора сигналов от станции A посредством этого оператора. Это гарантирует общую точку отсчета для векторов сигналов, полученных асинхронно на обоих концах линии.
Учитывая модель линии с распределенными параметрами, применяется последующая обобщенная модель по замкнутому контуру, покрывающая различные типы замыканий, что отражается использованием соответствующих весовых коэффициентов: a i и долевых коэффициентов: a Fi, оба из которых зависимы от типа замыкания, где i=0, 1, 2 и обозначает i-й симметричную составляющую, где a 1, a 2, a 0, a m0- весовые коэффициенты, собранные в таблице 3, а a F1, a F2 - долевые коэффициенты, собранные в таблице 4.
Figure 00000093
(7)
для одиночной линии,
Figure 00000094
(8)
для двухконтурной линии,
где:
d LA обозначает неизвестное гипотетическое расстояние до замыкания в (о.е.), выраженное в отношении к длине участка (
Figure 00000095
) линии между станцией A и блоком последовательных конденсаторов,
RFA обозначает неизвестное сопротивление замыкания,
Figure 00000096
Figure 00000097
a 1, a 2, a 0, a m0 обозначают весовые коэффициенты, зависимые от типа замыкания, собранные в таблице 3,
a F1, a F2 обозначают долевые коэффициенты, зависимые от типа замыкания, собранные в таблице 4,
Z 0m - импеданс взаимной связи для нулевой последовательности,
I Aparal_0 обозначает ток нулевой последовательности от станции A, измеренный в исправной параллельной линии.
Таблица 3
Весовые коэффициенты для составления напряжения и тока замкнутого контура
Замыкание
Figure 00000098
Figure 00000099
Figure 00000100
Figure 00000101
a-g 1 1 1 1
b-g
Figure 00000102
Figure 00000103
1 1
c-g
Figure 00000104
Figure 00000105
1 1
a-b, a-b-g,
a-b-c, a-b-c-g
Figure 00000106
Figure 00000107
0 0
b-c, b-c-g
Figure 00000108
Figure 00000109
0 0
c-a, c-a-g
Figure 00000110
Figure 00000111
0 0
Figure 00000112
используется в случае двухконтурных линий для компенсации взаимной связи
Таблица 4
Долевые коэффициенты, используемые для вычисления общего тока замыкания
Замыкание
Figure 00000113
Figure 00000114
Figure 00000115
a-g 0 3 0
b-g 0
Figure 00000116
0
c-g 0
Figure 00000117
0
a-b 0
Figure 00000118
0
b-c 0
Figure 00000109
0
c-a 0
Figure 00000119
0
a-b-g
Figure 00000120
Figure 00000121
0
b-c-g
Figure 00000108
Figure 00000122
0
c-a-g
Figure 00000123
Figure 00000124
0
a-b-c
a-b-c-g
Figure 00000125
Figure 00000126
*)
0
Figure 00000127
, *) -
Figure 00000128
, тем не менее составляющие обратной последовательности не присутствуют в сигналах
Решение уравнения (7) или (8) в действительной/мнимой частях позволяет решить их для неизвестных d LA и R FA. В качестве примера, для этого может быть применен итеративный способ Ньютона-Рафсона. Этот способ требует установления начальных значений для искомых величин. Эти значения могут быть установлены в 0,5 (о.е.) для d LA и 0 для R FA.
После завершения решения (7) и (8) расстояние d A (о.е.) до замыкания, которое относится к общей длине
Figure 00000129
линии между станциями A и B, вычисляется как:
Figure 00000130
(9)
где d LA - результат из последнего итеративного решения уравнения (7) или (8).
Этап 105a. На этом этапе вычисляют эквивалентный импеданс компенсирующего блока в состоянии замыкания с использованием значений измеренного напряжения и токов после замыкания.
Figure 00000131
(10)
где:
Figure 00000132
,
Figure 00000133
,
Figure 00000134
,
Figure 00000135
обозначают фазовые величины напряжения и токов, вычисленные из i-й симметричной составляющей падения напряжения и i-й симметричной составляющей тока, входящего в блок SC&MOV, пренебрегая шунтирующими емкостями линии:
в случае замыкания одной фазы на землю: замыкаемой фазы,
в случае междуфазного замыкания: любой из замкнутых фаз,
Figure 00000136
обозначает i-ю симметричную составляющую падения напряжения на SCs&MOVs.
Figure 00000137
обозначает i-ю симметричную составляющую тока, входящего в блок SC&MOV, пренебрегая шунтирующими емкостями линии,
Figure 00000138
,
Figure 00000139
,
Figure 00000140
- комплексные коэффициенты, зависящие от типа замыкания, которые выбираются таким способом, как в случае:
замыкания одной фазы на землю - замкнутая фаза, как, например, для замыкания a-g определяется эквивалентный импеданс SC&MOV в фазе 'a',
замыкания между фазами - любая из замкнутых фаз, как, например, для замыкания a-b определяется эквивалентный импеданс SC&MOV в фазе 'a'.
Этап 106a. На этом этапе вычисляют эквивалентный импеданс блока компенсации в состоянии до замыкания
Figure 00000020
(11)
где:
Figure 00000021
,
Figure 00000141
Figure 00000023
,
Figure 00000024
.
Этап 103b. На данном этапе вычисляют угол синхронизации следующим образом:
- если присутствуют замыкания фазы на землю или фазы на фазу, тогда из анализа общего тока замыкания (фиг.7, фиг.8, фиг.9, фиг.10) на основе предположения, что замыкания имеют место на участке линии между станцией В и устройством SC&MOV из последовательного конденсатора и металл-оксидного варистора, угол синхронизации δВ в величине
Figure 00000142
определяется по формуле:
Figure 00000143
где:
Figure 00000144
Figure 00000145
обозначают коэффициенты, зависящие от типа замыкания, собранные в таблице 1,
Figure 00000146
Figure 00000147
обозначает ток прямой последовательности от станции А после аналитического преобразования к последовательным блокам SC&MOV конденсаторов,
Figure 00000148
Figure 00000149
обозначает ток обратной последовательности от станции А после аналитического преобразования к последовательным блокам SC&MOV конденсаторов,
Figure 00000150
Figure 00000151
где:
ℓ обозначает общую длину линии,
pSC обозначает расстояние (о.е.), на котором компенсирующий блок (SCs&MOVs) установлен удаленно от станции А,
Figure 00000152
обозначает характеристический импеданс линии для прямой последовательности,
Figure 00000153
обозначает постоянную распространения линии для прямой последовательности,
Figure 00000154
,
Figure 00000155
обозначают импеданс прямой последовательности и полную проводимость линии на единицу длины.
Для определения величин обратной последовательности согласно уравнениям (14) и (16) учитывается, что параметры линии для прямой и обратной последовательности идентичны, как в реальности. Для обеих последовательностей использованы параметры линии для прямой последовательности (нижний индекс 1). Это также применяется в последующих рассуждениях;
- если отсутствуют замыкания фазы на землю и отсутствуют замыкания фазы на фазу, тогда определяют угол δB синхронизации для замыкания фазы на землю и замыканий фазы на фазу в единицах
Figure 00000156
из формулы (6).
Этап 104b. Определив угол δB синхронизации и, следовательно, оператор
Figure 00000157
синхронизации, вычисляют вектор сигналов от станции B посредством этого оператора. Это обеспечивает общую точку отсчета для векторов сигналов, полученных асинхронно на обоих концах линии.
Учитывая модель линии с распределенными параметрами, применяется последующая обобщенная модель замкнутого контура, покрывающая различные типы замыканий, что отражается использованием соответствующих весовых коэффициентов: a i и долевых коэффициентов: a Fi, оба из которых зависимы от типа замыкания, где a 1, a 2, a 0, a m0- весовые коэффициенты, собранные в таблице 3, а a F1, a F2 - долевые коэффициенты, собранные в таблице 4.
Figure 00000046
(17)
для одиночной линии,
Figure 00000158
(18)
для двухконтурной линии,
где:
d LA обозначает неизвестное гипотетическое расстояние до замыкания в (о.е.), выраженное в отношении к длине участка (
Figure 00000159
) линии между станцией B и блоком последовательных конденсаторов,
RFB обозначает неизвестное сопротивление замыкания,
Figure 00000160
Figure 00000161
a 1, a 2, a 0, a m0 обозначают весовые коэффициенты, зависимые от типа замыкания, собранные в таблице 3,
a F1, a F2 обозначают долевые коэффициенты, зависимые от типа замыкания, собранные в таблице 4,
Z 0m - импеданс взаимной связи для нулевой последовательности,
I Bparal_0 обозначает ток нулевой последовательности от станции B, измеренный в исправной параллельной линии.
Решение уравнения (17) или (18) в действительной/мнимой части позволяет решить его для неизвестных d LB и R FB. В качестве примера, для этого может быть применен итеративный способ Ньютона-Рафсона. Этот способ требует установления начальных значений для искомых величин. Эти значения могут быть установлены в 0,5 (о.е.) для d LB и 0 для R FB.
После завершения решения (17) и (18) расстояние d B (о.е.) до замыкания, которое относится к общей длине
Figure 00000162
линии между станциями A и B, вычисляется как:
Figure 00000043
(19)
где d LB - результат из последнего итеративного решения уравнения (17) или (18).
Этап 105B. Вычисляется эквивалентный импеданс компенсирующего блока в состоянии замыкания с использованием значений измеренного напряжения и токов после замыкания:
Figure 00000163
(20)
где:
Figure 00000164
,
Figure 00000165
,
Figure 00000166
,
Figure 00000135
обозначают фазовые величины напряжения и токов, вычисленные из i-й симметричной составляющей падения напряжения и i-й симметричной составляющей тока, входящего в блок SC&MOV, пренебрегая шунтирующими емкостями линии
в случае замыкания одной фазы на землю: замыкаемой фазы,
в случае междуфазного замыкания: любой из замкнутых фаз,
Figure 00000138
,
Figure 00000139
,
Figure 00000140
обозначают комплексные коэффициенты, зависящие от типа замыкания, которые выбираются таким способом, как в случае:
замыкания одной фазы на землю: замыкаемая фаза, как, например, для замыкания a-g, определяется эквивалентный импеданс SC&MOV в фазе 'a',
замыкания между фазами: любая из замкнутых фаз, как, например, для замыкания a-b определяется эквивалентный импеданс SC&MOV в фазе 'a'.
Figure 00000167
обозначает падение напряжения на SCs&MOVs для i-го симметричного компонента,
Figure 00000168
обозначает i-й симметричный компонент тока, входящего в блок SC&MOV, пренебрегая шунтирующими емкостями линии.
Этап 106b. На этом этапе вычисляют эквивалентный импеданс блока компенсации в состоянии до замыкания, как на шаге 106a.
Этап 107: На этом этапе производят выбор конечных результатов.
Сначала проверяют, достигает ли конкретная процедура I и процедура II расстояния до замыкания в диапазоне участка и является ли сопротивление замыкания положительной величиной. Если это не так, тогда (если определенное расстояние до замыкания лежит вне диапазона участка и/или сопротивление замыкания отрицательное), тогда процедура отменяется.
Затем проверяются вещественная (“real”) и мнимая (”imag”) части оцененной эквивалентной цепи компенсирующих блоков SCs&MOVS.
Если это удовлетворяет следующей зависимости:
Figure 00000025
,
Figure 00000169
и
Figure 00000170
это обозначает, что замыкание возникло между станцией A и блоком SC&MOV, и результаты:
dA - расстояние до замыкания (о.е.), отсчитанное от станции A до точки F замыкания (фиг.1),
RFA - сопротивление замыкания,
являются действительными результатами, т.е. согласующимися с настоящим случаем замыкания.
Если удовлетворяются противоположные зависимости, что значит:
Figure 00000050
,
Figure 00000051
и
Figure 00000171
,
что обозначает, что замыкание возникло между станцией B и блоком SC&MOV, и результаты:
dB - расстояние до замыкания (о.е.), отсчитанное от станции B до точки F замыкания (фиг.1),
RFB - сопротивление замыкания,
являются действительными результатами, т.е. согласующимися с настоящим случаем замыкания.
Видно, что выбор d A или d B независим от состояния и/или величины последовательной емкости.

Claims (2)

1. Способ определения места повреждения на линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением, в котором расстояние до замыкания и сопротивление короткого замыкания определяют посредством измерения величин напряжений и токов на станциях (А) и (В) до и после появления замыкания, отличающийся тем, что делают два предположения, одно если замыкание появилось на участке (LA) линии между станцией (А) и устройством (SC&MOV) из последовательного конденсатора и металл-оксидного варистора, и другое - если замыкание появилось на участке (LB) между станцией (В) и последовательностью из конденсатора и металл-оксидного варистора устройства (SC&MOV), и
если замыкание появилось на участке (LA) линии между станцией (А) и устройством SC&MOV из последовательного конденсатора и металл-оксидного варистора, расстояние для места замыкания (dA) определяется в процедуре I по следующим этапам, на которых:
определяют угол (δА) синхронизации в единицах (
Figure 00000172
) для известного типа замыкания, которое являются замыканием фазы на землю или замыканием фазы на фазу, из формулы:
Figure 00000173

где индекс ph-g обозначает замыкание фазы на землю: a-g, b-g, c-g, а индекс ph-ph обозначает замыкания фазы на фазу а-b, b-с, с-а,
Figure 00000174
,
Figure 00000175
обозначают коэффициенты, зависящие от типа замыкания,
Figure 00000005
- обозначает ток прямой последовательности от станции В после аналитического преобразования к последовательным блокам SC&MOV конденсаторов,
Figure 00000006
- обозначает ток обратной последовательности от станции В после аналитического преобразования к последовательным блокам SC&MOV конденсаторов,
Figure 00000176
,
Figure 00000008
- обозначают коэффициенты, зависимые от токов прямой и обратной последовательности и напряжения, снимаемого на станции А соответственно, так же, как и от параметров линии,
и
для замыканий, не являющихся замыканиями фазы на землю или замыканиями фазы на фазу из формулы:
Figure 00000009

где
Figure 00000177
,
Figure 00000011
- обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') напряжения, измеренного на концах А и В, соответственно,
Figure 00000178
,
Figure 00000013
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') измеренного тока, линии замыкания на концах А и В, соответственно,
Figure 00000179
,
Figure 00000180
обозначают импеданс и полную проводимость участка LA линии,
Figure 00000181
,
Figure 00000182
обозначают импеданс и полную проводимость участка LB линии,
LA - часть линии между станцией А линии и блоком т последовательных конденсаторов,
LB - часть линии между станцией В линии и блоком последовательных конденсаторов,
затем принимают во внимание модель линии с распределенными параметрами и решают уравнение:
Figure 00000183
,
где pSC обозначает расстояние (на ед.) на единицу общей длины l линии, на котором удаленно от станции А установлен компенсирующий блок SC&MOV,
dLA - обозначает гипотетическое расстояние до замыкания, выраженное в отношении к длине pSCl, и которое получается с использованием известного итеративного способа посредством решения уравнения по замкнутому контуру:
Figure 00000184

для одиночной линии,
Figure 00000185

для двухконтурной линии, в котором:
RFA обозначает неизвестное сопротивление замыкания, значение которого получается с использованием известного итеративного способа посредством решения вышеуказанного уравнения по замкнутому контуру,
Figure 00000186
,
Figure 00000187
,
Figure 00000188
,
Figure 00000189
обозначают весовые коэффициенты для составления напряжения и тока замкнутого контура, зависимые от типа замыкания, в соответствии таблицей:
Замыкание
Figure 00000186
Figure 00000187
Figure 00000188
Figure 00000189

a-g 1 1 1 1 b-g
Figure 00000190
Figure 00000191
1 1
c-g
Figure 00000191
Figure 00000190
1 1
a-b, a-b-g a-b-c, a-b-c-g
Figure 00000192
Figure 00000193
Figure 00000194
0 0
b-c, b-c-g
Figure 00000195
Figure 00000196
0 0
c-a, c-a-g
Figure 00000197
Figure 00000190
0 0

Figure 00000189
- используется в случае двухконтурных линии для компенсации взаимной связи
Figure 00000198
обозначает числовые составляющие для прямой и обратной последовательностей,
Figure 00000199
,
Figure 00000200
обозначают долевые коэффициенты, зависимые от типа замыкания и используемые для вычисления общего тока замыкания, в соответствии с таблицей
замыкание
Figure 00000199
Figure 00000200
Figure 00000200
a-g 0 3 0 b-g 0
Figure 00000201
0
c-g 0
Figure 00000202
0
a-b 0
Figure 00000203
0
b-c 0
Figure 00000196
0
c-a 0
Figure 00000204
0
a-b-g
Figure 00000192
Figure 00000205
0
b-c-g
Figure 00000195
Figure 00000196
0
c-a-g
Figure 00000206
Figure 00000204
0
a-b-c a-b-c-g
Figure 00000192
Figure 00000205
0
Figure 00000207
, *)
Figure 00000200
≠0 тем не менее составляющие обратной последовательности не присутствуют в сигналах

Figure 00000208
импеданс взаимной связи для нулевой последовательности,
Figure 00000209
обозначает ток нулевой последовательности от станции А, измеренный в исправной параллельной линии,
затем эквивалентный импеданс компенсирующего блока на стадии (
Figure 00000210
) замыкания вычисляют с использованием значений после замыкания измеренного напряжения и токов, а эквивалентный импеданс компенсирующего блока до замыкания (
Figure 00000211
) вычисляют из следующего уравнения:
Figure 00000212

где
Figure 00000213

Figure 00000214
,
Figure 00000215

Figure 00000216
,
для того, чтобы определить окончательный результат (dA), который выбирают на последующих этапах:
сперва проверяют, являются ли величины сопротивлений замыкания (RFA) положительными, и если нет, то процедура I отклоняется, затем, действительная ("real") и мнимая ("imag") части оцененной эквивалентной цепи компенсирующих блоков SCs&MOVS проверяются и если каждая из них удовлетворяет следующей зависимости:
Figure 00000217
,
Figure 00000218
,
и
Figure 00000219

тогда
допущение, что замыкание возникло между станцией (А) и банком о
(SC&MOV) является верным и результат (dA) указывает расстояние до замыкания,
если замыкание появилось на участке (LB) линии между станцией (В) и последовательным конденсатором и устройством (SC&MOV) металл-оксидного варистора, расстояние для места замыкания (dB) определяют в процедуре II по следующим этапам, на которых:
определяют угол (δB) синхронизации в единицах (
Figure 00000220
) для известного типа замыкания, которое является замыканием фазы на землю или замыканием фазы на фазу, из формулы:
Figure 00000221

Figure 00000222
,
Figure 00000223
обозначают коэффициенты, зависящие от типа замыкания,
Figure 00000032
- обозначает ток прямой последовательности от станции А после аналитического преобразования к последовательным блокам SC&MOV конденсаторов,
Figure 00000033
- обозначает ток обратной последовательности от станции А после аналитического преобразования к последовательным блокам SC&MOV конденсаторов,
Figure 00000224
,
Figure 00000035
- обозначают коэффициенты, зависимые от токов прямой и обратной последовательности и напряжения, снимаемого на станции В соответственно, так же, как и от параметров линии, и
для замыканий, не являющихся замыканиями фазы на землю или замыканиями фазы на фазу из формулы:
Figure 00000036

где
Figure 00000037
,
Figure 00000038
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') напряжения, измеренного на концах А и В, соответственно,
Figure 00000225
,
Figure 00000226
обозначают величины прямой последовательности до замыкания (верхний индекс 'pre' и нижний индекс '1') измеренного тока, линии замыкания на концах А и В, соответственно,
Figure 00000227
,
Figure 00000042
обозначают импеданс и полную проводимость участка LA линии,
Figure 00000228
,
Figure 00000229
обозначают импеданс и полную проводимость участка LB линии,
LA - часть линии между станцией А линии и блоком последовательных конденсаторов,
LB - часть линии между станцией В линии и блоком последовательных конденсаторов,
затем принимают во внимание модель линии с распределенными параметрами и решают уравнение:
Figure 00000230

где (1-pSC) обозначает расстояние на единицу (на ед.) общей длины l линии, на котором удаленно от станции В установлен компенсирующий блок SC&MOV,
dLB - обозначает гипотетическое расстояние до замыкания, выраженное в отношении к длине (1-pSCl) и которое получается с использованием известного итеративного способа посредством решения уравнения по замкнутому контуру:
Figure 00000231

для одиночной линии,
Figure 00000232

для двухконтурной линии,
где RFB обозначает неизвестное сопротивление замыкания, значение которого получается с использованием известного итеративного способа посредством решения вышеуказанного уравнения по замкнутому контуру,
Figure 00000198
обозначает числовые коэффициенты для прямой и обратной последовательностей,
Figure 00000186
,
Figure 00000187
,
Figure 00000188
,
Figure 00000189
обозначает весовые коэффициенты, зависимые от типа замыкания,
Figure 00000233
,
Figure 00000234
обозначает долевые коэффициенты, зависимые от типа замыкания,
Figure 00000235
импеданс взаимной связи для нулевой последовательности,
Figure 00000236
обозначает ток нулевой последовательности от станции В, измеренный в исправной параллельной линии,
затем эквивалентный импеданс компенсирующего блока на стадии (
Figure 00000237
) замыкания вычисляют с использованием значений после замыкания измеренного напряжения и токов, а эквивалентный импеданс компенсирующего блока до замыкания (
Figure 00000238
) вычисляют из следующего уравнения:
Figure 00000239

где
Figure 00000240

Figure 00000241
,
Figure 00000242

Figure 00000243
,
для того, чтобы определить окончательный результат (dB), который выбирают на последующих этапах:
сперва проверяют, являются ли величины сопротивлений (RFB) замыкания положительными, и если нет, то процедура II отклоняется,
затем, вещественная ("real") и мнимая ("imag") части оцененной эквивалентной цепи компенсирующих блоков SCs&MOVS проверяют и, если каждая из них удовлетворяет следующей зависимости:
Figure 00000244
,
Figure 00000245

и
Figure 00000246
,
то допущение, что замыкание возникло между станцией (В) и блоком SC&MOV, является верным, и результат dB указывает расстояние до замыкания.
2. Защитное реле, оборудованное устройством обнаружения места замыкания (FL), содержащее средство для выполнения этапов способа по п.1.
RU2010119932/28A 2007-10-19 2008-10-03 Способ для определения места замыкания на линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением RU2462727C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07460030A EP2051085A1 (en) 2007-10-19 2007-10-19 Method for fault location on series compensated power transmission lines with two-end unsychronized measurement
EP07460030.5 2007-10-19

Publications (2)

Publication Number Publication Date
RU2010119932A RU2010119932A (ru) 2011-11-27
RU2462727C2 true RU2462727C2 (ru) 2012-09-27

Family

ID=39332132

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010119932/28A RU2462727C2 (ru) 2007-10-19 2008-10-03 Способ для определения места замыкания на линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением

Country Status (8)

Country Link
US (1) US8731853B2 (ru)
EP (2) EP2051085A1 (ru)
CN (1) CN101828119B (ru)
AT (1) ATE503190T1 (ru)
DE (1) DE602008005782D1 (ru)
ES (1) ES2362390T3 (ru)
RU (1) RU2462727C2 (ru)
WO (1) WO2009049803A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2508556C1 (ru) * 2012-10-24 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух ее концов
RU2531769C2 (ru) * 2013-07-23 2014-10-27 Степан Георгиевич Тигунцев Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107705B2 (en) * 2006-12-11 2015-08-18 M. Samy Abdou Dynamic spinal stabilization systems and methods of use
EP2051085A1 (en) 2007-10-19 2009-04-22 ABB Research Ltd. Method for fault location on series compensated power transmission lines with two-end unsychronized measurement
CN101951010B (zh) * 2010-08-23 2012-07-25 南京弘毅电气自动化有限公司 一种小电流接地系统的接地保护方法
CN102255292B (zh) * 2011-07-25 2014-03-12 西安交通大学 一种基于参数识别的高压输电线路距离保护方法
RU2505825C2 (ru) * 2012-02-17 2014-01-27 Общество с ограниченной ответственностью "Исследовательский центр "Бреслер" Способ определения мест двойного замыкания многопроводной электрической сети
RU2505827C1 (ru) * 2012-05-23 2014-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух ее концов (варианты)
CN103245886B (zh) * 2013-05-10 2015-12-23 国家电网公司 一种线路中间安装串联补偿电容装置的故障定位方法
JP2016530520A (ja) * 2013-08-20 2016-09-29 エスコム ホールディングス エスオーシー リミテッド 障害発生個所検出システムおよび方法
US20150177306A1 (en) * 2013-12-23 2015-06-25 Cooper Technologies Company Validation of Capacitor Bank Operation
RU2558266C1 (ru) * 2014-04-29 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ определения расстояния до мест замыканий на землю на двух линиях электропередачи в сетях с малыми токами замыкания на землю
RU2557375C1 (ru) * 2014-04-29 2015-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ определения расстояния до мест замыканий на землю на двух линиях электропередачи в сетях с малыми токами замыкания на землю
RU2558265C1 (ru) * 2014-04-29 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ определения расстояния до мест двойных замыканий на землю на линиях электропередачи в сетях с малыми токами замыкания на землю
US10436831B2 (en) 2015-07-01 2019-10-08 Abb Schweiz Ag Fault location method for series-compensated double-circuit transmission lines
CN105067950B (zh) * 2015-07-23 2018-05-15 西安工程大学 基于纵向阻抗的双端量故障测距方法
RU2610852C1 (ru) * 2015-12-18 2017-02-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ определения места короткого замыкания на воздушной линии электропередачи с выполнением расчетной синхронизации измерений с двух её концов
US20170227595A1 (en) * 2016-02-08 2017-08-10 General Electric Company Systems and Methods for Determining a Fault Location in a Three-Phase Series-Compensated Power Transmission Line
US10162015B2 (en) * 2016-02-08 2018-12-25 General Electric Company Systems and methods for determining a fault location in a three-phase series-compensated power transmission line
CN109275337A (zh) * 2016-06-14 2019-01-25 施瓦哲工程实验有限公司 行波故障检测系统的相选择
CN105977933B (zh) * 2016-06-17 2020-04-14 中国电力科学研究院 一种考虑概率分布的串补过电压保护动作定值的选取方法
CN105974271B (zh) * 2016-07-25 2018-09-25 山东理工大学 一种配电线路故障端口的节点阻抗矩阵计算方法
CN106066451B (zh) * 2016-08-01 2019-01-18 西安工程大学 一种基于纵向阻抗的t型线路保护计算方法
CN106130020B (zh) * 2016-08-16 2020-03-20 南京南瑞继保电气有限公司 一种适用于双回线路的串联补偿装置
JP6715740B2 (ja) * 2016-10-13 2020-07-01 株式会社日立製作所 電力系統の潮流監視装置、電力系統安定化装置および電力系統の潮流監視方法
EP3327453B1 (en) * 2016-11-23 2023-12-27 General Electric Technology GmbH Method of locating a fault in a power transmission scheme
CN108572021A (zh) * 2017-03-13 2018-09-25 上海融德机电工程设备有限公司 智能双浮子液位计
CN108196150B (zh) * 2018-01-19 2021-02-12 河海大学 一种同塔双回非对称输电线路参数测量方法
CN109375048B (zh) * 2018-07-26 2021-04-23 广东电网有限责任公司 一种基于故障录波数据的输电线路参数辨识方法及装置
RU2704394C1 (ru) * 2019-02-07 2019-10-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ дистанционного определения места замыкания фазы на землю
CN110308353A (zh) * 2019-07-23 2019-10-08 中国南方电网有限责任公司超高压输电公司南宁局 串补传感器测试仪及测试方法
CN112363016B (zh) * 2020-11-03 2024-05-28 珠海博威电气股份有限公司 基于分布式同步测量的故障定位方法和装置、存储介质
CN112684273B (zh) * 2021-01-06 2023-08-29 国核电力规划设计研究院重庆有限公司 一种110kV全电缆出线变电站接地短路故障入地电流分流方法
CN112345889B (zh) * 2021-01-11 2021-04-13 中国电力科学研究院有限公司 暂态电压和暂态电流融合的过电压故障诊断方法及系统
CN112946416A (zh) * 2021-01-21 2021-06-11 国网山东省电力公司沂南县供电公司 配网线路故障范围判别方法及系统
CN113466609B (zh) * 2021-05-21 2024-04-30 国网江苏省电力有限公司淮安供电分公司 一种配网故障诊断的微型同步测量终端部署方法
CN113671314B (zh) * 2021-08-17 2022-08-30 华北电力大学 一种配电网环网单相接地故障区段定位及测距方法
CN113848421B (zh) * 2021-09-15 2024-04-19 国网安徽省电力有限公司电力科学研究院 一种考虑变压器阻抗电压降落的电压暂降获取方法及装置
CN113891393B (zh) * 2021-09-24 2023-05-05 北京升哲科技有限公司 链路自适应传输方法、装置、设备及存储介质
CN114089058B (zh) * 2021-11-05 2024-05-14 许继集团有限公司 一种适用于母线电压的并联电抗器匝间保护方法及装置
CN117554753B (zh) * 2024-01-09 2024-04-12 山东大学 一种基于零序电压电流的单相接地故障测距方法及终端机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2066511C1 (ru) * 1992-07-16 1996-09-10 Юрий Яковлевич Лямец Дистанционный способ защиты и автоматики линии электропередачи
RU2107304C1 (ru) * 1995-11-13 1998-03-20 Чувашский государственный университет им.И.Н.Ульянова Способ определения места повреждения линии электропередачи с двусторонним питанием
US6256592B1 (en) * 1999-02-24 2001-07-03 Schweitzer Engineering Laboratories, Inc. Multi-ended fault location system
US6466031B1 (en) * 2000-12-29 2002-10-15 Abb Power Automation Ltd. Systems and methods for locating faults on a transmission line with multiple tapped loads

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455776A (en) * 1993-09-08 1995-10-03 Abb Power T & D Company Inc. Automatic fault location system
DE4441334C1 (de) * 1994-11-08 1996-07-11 Siemens Ag Verfahren zum Feststellen des Ortes eines Fehlers in einem vorgegebenen Überwachungsbereich eines mehrphasigen elektrischen Energieübertragungsleitungssystems
US5809045A (en) * 1996-09-13 1998-09-15 General Electric Company Digital current differential system
CN1138329C (zh) * 2000-11-08 2004-02-11 华中科技大学 电力线路保护与故障定位方法及用于该方法的行波传感器
SE519945C2 (sv) * 2000-12-14 2003-04-29 Abb Ab Fellokaliseringsmetod och anordning för krafttransmissionslinjer
SE524866C2 (sv) * 2001-11-23 2004-10-12 Abb Ab Metod och anordning för fellokalisering genom användande av mätningar från två ändar av en luftledning för transmission av växelström
CN1162715C (zh) * 2002-01-31 2004-08-18 国家电力公司武汉高压研究所 输电线路故障点定位方法和装置
KR100473798B1 (ko) * 2002-02-20 2005-03-08 명지대학교 전력 계통의 1선 지락 고장 지점 검출 방법
SE525185C2 (sv) * 2002-06-20 2004-12-21 Abb Ab Fellokalisering med hjälp av mätningar av ström och spänning från ena änden av en ledning
EP2051085A1 (en) 2007-10-19 2009-04-22 ABB Research Ltd. Method for fault location on series compensated power transmission lines with two-end unsychronized measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2066511C1 (ru) * 1992-07-16 1996-09-10 Юрий Яковлевич Лямец Дистанционный способ защиты и автоматики линии электропередачи
RU2107304C1 (ru) * 1995-11-13 1998-03-20 Чувашский государственный университет им.И.Н.Ульянова Способ определения места повреждения линии электропередачи с двусторонним питанием
US6256592B1 (en) * 1999-02-24 2001-07-03 Schweitzer Engineering Laboratories, Inc. Multi-ended fault location system
US6466031B1 (en) * 2000-12-29 2002-10-15 Abb Power Automation Ltd. Systems and methods for locating faults on a transmission line with multiple tapped loads

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2508556C1 (ru) * 2012-10-24 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух ее концов
RU2531769C2 (ru) * 2013-07-23 2014-10-27 Степан Георгиевич Тигунцев Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии

Also Published As

Publication number Publication date
CN101828119B (zh) 2013-07-24
CN101828119A (zh) 2010-09-08
ATE503190T1 (de) 2011-04-15
US20110082653A1 (en) 2011-04-07
EP2051085A1 (en) 2009-04-22
US8731853B2 (en) 2014-05-20
WO2009049803A1 (en) 2009-04-23
EP2201393A1 (en) 2010-06-30
RU2010119932A (ru) 2011-11-27
ES2362390T3 (es) 2011-07-04
DE602008005782D1 (de) 2011-05-05
EP2201393B1 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
RU2462727C2 (ru) Способ для определения места замыкания на линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением
EP2313791B1 (en) Method and device for fault location of series-compensated transmission line
RU2419802C2 (ru) Способ и устройство для определения места короткого замыкания в силовой линии электропередачи или распределительной линии с двумя терминалами
US10436831B2 (en) Fault location method for series-compensated double-circuit transmission lines
Indulkar et al. Estimation of transmission line parameters from measurements
Mora-Florez et al. Comparison of impedance based fault location methods for power distribution systems
Djuric et al. Distance protection and fault location utilizing only phase current phasors
CN108051700B (zh) 基于μPMU的配电线路参数辨识的相分量故障测距方法
RU2562931C2 (ru) Способ и устройство для определения места замыкания на землю
Al-Mohammed et al. An adaptive fault location algorithm for power system networks based on synchrophasor measurements
WO2007032697A1 (en) A method for fault location in electric power lines
Eisa et al. Accurate one-end fault location for overhead transmission lines in interconnected power systems
Xiu et al. Novel fault location methods for ungrounded radial distribution systems using measurements at substation
Liao A novel method for locating faults on distribution systems
Abdelaziz et al. Fault location of uncompensated/series-compensated lines using two-end synchronized measurements
Lin et al. Fault location for three-ended ring-topology power system using minimum GPS-based measurements and CVT/CT sensing
US20040169518A1 (en) Fault location method and device
Apostolopoulos et al. Fault location algorithms for active distribution systems utilizing two-point synchronized or unsynchronized measurements
Xia et al. Transmission line individual phase impedance and related pilot protection
US11327105B2 (en) Fault location in multi-terminal tapped lines
Taheri et al. A novel strategy for fault location in shunt-compensated double circuit transmission lines equipped by wind farms based on long short-term memory
Saha et al. A fault location method for application with current differential protective relays of series-compensated transmission line
Saha et al. Accurate location of faults on series-compensated lines with use of two-end unsynchronised measurements
Zhang et al. A robust fault location algorithm for single line-to-ground fault in double-circuit transmission systems
Saha et al. Fault location on series-compensated transmission line using measurements of current differential protective relays

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151004