RU2562931C2 - Способ и устройство для определения места замыкания на землю - Google Patents

Способ и устройство для определения места замыкания на землю Download PDF

Info

Publication number
RU2562931C2
RU2562931C2 RU2013152729/28A RU2013152729A RU2562931C2 RU 2562931 C2 RU2562931 C2 RU 2562931C2 RU 2013152729/28 A RU2013152729/28 A RU 2013152729/28A RU 2013152729 A RU2013152729 A RU 2013152729A RU 2562931 C2 RU2562931 C2 RU 2562931C2
Authority
RU
Russia
Prior art keywords
sequence
zero sequence
zero
direct
voltage drop
Prior art date
Application number
RU2013152729/28A
Other languages
English (en)
Other versions
RU2013152729A (ru
Inventor
Жун ЛИ
Original Assignee
Шнейдер Электрик Эндюстри Сас
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шнейдер Электрик Эндюстри Сас filed Critical Шнейдер Электрик Эндюстри Сас
Publication of RU2013152729A publication Critical patent/RU2013152729A/ru
Application granted granted Critical
Publication of RU2562931C2 publication Critical patent/RU2562931C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/40Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current
    • H02H3/405Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current using phase sequence analysing arrangements

Abstract

Изобретение относится к локализации места замыкания на землю в электрической сети. Технический результат: повышение точности результата локализации независимо от процента подземных кабелей. Сущность: вычисляют падение напряжения нулевой последовательности в точке измерения и падение напряжения прямой последовательности в точке измерения в электрической сети с использованием распределенной шунтирующей емкости. Определяют расстояние до точки измерения от точки замыкания на землю, используя составляющую обратной последовательности, вычисленное падение напряжения нулевой последовательности в точке измерения и вычисленное падение напряжения прямой последовательности в точке измерения. 2 н. и 12 з.п. ф-лы, 3 табл., 6 ил.

Description

Область техники
Настоящее изобретение относится к локализации замыкания на землю в электрической сети.
Предшествующий уровень техники
Локализация замыкания на землю всегда представляет собой трудную задачу. Имеются многочисленные факторы, которые ухудшают точность определения места замыкания, такие как сопротивление замыкания и нагрузка. Распределительные сети требуют особых усилий, поскольку они имеют специфические особенности, которые дополнительно усложняют задачу для алгоритма локализации замыкания. Эти специфические особенности включают в себя, например, неоднородность линии, отводы нагрузки и т.д.
В современных микропроцессорных реле защиты алгоритмы локализации замыкания на основе полного сопротивления становятся промышленным стандартом. Причина популярности их заключается в том, что их можно легко реализовать, поскольку для них используются те же самые сигналы, что и для выполнения других функций.
Однако в существующих алгоритмах локализации замыкания не принимается во внимание распределенная шунтирующая емкость питающей линии. Характеристики этих алгоритмов являются весьма перспективными для воздушной сети или комбинированной воздушной/подземной сети, когда процент подземных кабелей является низким (например, меньше чем 30% общей длины питающей линии, отходящей от интеллектуального электрического устройства (ИЭУ)). Однако когда процент подземных кабелей возрастает, распределенная шунтирующая емкость также возрастает, и поэтому точность вычислений по существующим алгоритмам локализации замыкания значительно ухудшается, когда процент подземного кабеля становится высоким.
Краткое изложение сущности изобретения
Согласно вариантам осуществления настоящего раскрытия предложены способ и устройство для определения места замыкания на землю, которыми может гарантироваться точность результата локализации независимо от процента подземных кабелей.
Согласно одному аспекту настоящего раскрытия предложен способ определения места замыкания на землю, содержащий вычисление составляющей нулевой последовательности и составляющей прямой последовательности в электрической сети на основании распределенной шунтирующей емкости; и определение расстояния до точки измерения от точки замыкания на землю с использованием составляющей обратной последовательности, вычисленной составляющей нулевой последовательности и вычисленной составляющей прямой последовательности.
Согласно другому аспекту настоящего раскрытия предложено устройство для определения места замыкания на землю, содержащее средство вычисления для вычисления составляющей нулевой последовательности и составляющей прямой последовательности в электрической сети на основании распределенной шунтирующей емкости; и средство определения для определения расстояния до точки измерения от точки замыкания на землю с использованием составляющей обратной последовательности, вычисленной составляющей нулевой последовательности и вычисленной составляющей прямой последовательности.
Следовательно, согласно вариантам осуществления настоящего раскрытия составляющая нулевой последовательности и составляющая прямой последовательности вычисляются с учетом распределенной шунтирующей емкости, так что точность определения места замыкания может гарантироваться даже в случае, когда процент подземного кабеля является высоким.
Краткое описание чертежей
Раскрытие станет без труда понятным с помощью нижеследующего подробного описания при обращении к сопровождающим чертежам, на которых одинаковые позиции относятся к блокам или элементам с одинаковой структурой и на которых:
фиг. 1 - блок-схема последовательности действий, на которой схематично показан способ определения места замыкания на землю, согласно варианту осуществления настоящего раскрытия;
фиг. 2 - эквивалентная схема симметричных компонентов при замыкании на землю одной фазы;
фиг. 3 - эквивалентная схема питающей сети;
фиг. 4 - эквивалентная схема двухполюсника, представляющего схему прямой последовательности, расположенного ниже относительно интеллектуального электрического устройства, при этом полное сопротивление питающей линии не учитывается;
фиг. 5 - упрощенная схема электрических соединений, предназначенная для оценивания общей длины l отходящей питающей линии; и
фиг. 6 - структурная схема устройства для определения места замыкания на землю согласно варианту осуществления настоящего раскрытия.
Описание предпочтительных вариантов воплощения
Для содействия полному пониманию специалистами в данной области техники примеров вариантов осуществления настоящего раскрытия, определенных в формуле изобретения и ее эквивалентах, последующие описания приводятся ниже с обращением к сопровождающим чертежам. Последующие описания могут включать в себя различные подробности для содействия пониманию, и эти подробности не должны толковаться как иллюстративные. Поэтому специалистам в данной области техники должно быть понятно, что различные модификации и варианты форм и деталей могут быть сделаны в примерах вариантов осуществления без отступления от сущности или объема изобретения. Кроме того, ради краткости и ясности описания хорошо известных функций и структур опущены.
Должно быть понятно, что, хотя термины «первый», «второй», «третий» и т.д. могут использоваться в этой заявке для описания различных элементов, составляющих, областей, слоев и/или секций, эти элементы, составляющие, области, слои и/или секции не следует ограничивать этими терминами. Эти термины используются только для отличия одного элемента, составляющей, области, слоя или секции от другого элемента, составляющей, области, слоя или секции. Поэтому «первые» элемент, составляющая, область, слой или секция, рассматриваемые ниже, могут именоваться «вторыми» элементом, составляющей, областью, слоем или секцией без отступления от идей настоящего изобретения.
Терминология, используемая в этой заявке, служит для описания конкретных вариантов осуществления и не предполагается ограничивающей настоящее раскрытие. Используемые в этой заявке сингулярные формы единственного числа предполагаются охватывающими также и множественные формы, если из контекста ясно не следует иное. Кроме того, должно быть понятно, что терминами «содержит» и/или «содержащий» или «включает в себя» и/или «включающий в себя», когда они используются в этом описании, точно определяется наличие сформулированных признаков, областей, единых целых, этапов, операций, элементов и/или составляющих, но не исключается наличие или добавление одного или нескольких признаков, областей, единых целых, этапов, операции, элементов, составляющих и/или групп из них.
Если не указано иное, все термины (включая технические и научные термины), используемые в настоящей заявке, имеют значения, аналогичные обычно понимаемым специалистом в данной области техники, к которому настоящее раскрытие имеет отношение. Кроме того, должно быть понятно, что термины, такие как термины, определяемые в обычно используемых словарях, необходимо интерпретировать как имеющие значения, которые согласуются с их значениями в контексте релевантной области техники и настоящего раскрытия, и не следует интерпретировать их в идеализированном или чрезмерно формальном смысле, если в этой заявке ясно не определено иное.
Применения вариантов осуществления настоящего раскрытия не ограничены какой-либо конкретной системой, а могут использоваться с любой трехфазной системой для определения места замыкания фазы на землю в трехфазных питающих линиях в электрической сети. Например, питающие линии могут быть воздушными линиями, подземными кабелями или комбинацией воздушных линий и подземных кабелей.
Ниже варианты осуществления настоящего раскрытия описываются в качестве примера применительно к распределительной сети, но специалистам в данной области техники должно быть понятно, что энергосистема, в которой варианты осуществления настоящего раскрытия могут применяться, может быть сетью электропередачи, распределительной сетью или элементами в сети электропередачи или распределительной сети и может включать в себя одну или несколько питающих линий. Кроме того, использование вариантов осуществления настоящего раскрытия не ограничено системами с принятой основной частотой 50 Гц или 60 Гц и не ограничено никаким конкретным уровнем напряжения.
Ниже варианты осуществления настоящего раскрытия будут подробно описаны с обращением к сопровождающим чертежам.
На фиг. 1 представлена блок-схема последовательности действий, схематично иллюстрирующая способ 100 определения места замыкания на землю, согласно варианту осуществления настоящего раскрытия.
Как показано на фиг. 1, на этапе 101 способа 100 составляющую нулевой последовательности и составляющую прямой последовательности в электрической сети вычисляют на основании распределенной шунтирующей емкости. На этапе 102 способа 100 расстояние до точки измерения от точки замыкания на землю определяют, используя составляющую обратной последовательности, вычисленную составляющую нулевой последовательности и вычисленную составляющую прямой последовательности.
Следовательно, согласно варианту осуществления настоящего раскрытия, составляющую нулевой последовательности и составляющую прямой последовательности в электрической сети вычисляют с учетом распределенной шунтирующей емкости, так что точность определяемого места замыкания может гарантироваться даже в случае, когда процент подземного кабеля является высоким.
На фиг. 2 схематично показана эквивалентная схема симметричных составляющих при замыкании одной фазы на землю, в которой точкой замыкания определяется место на расстоянии x до точки измерения, в которой расположено интеллектуальное электрическое устройство (ИЭУ). Способ 100 определения места замыкания на землю, согласно варианту осуществления настоящего раскрытия, показанный на фиг. 1, можно выполнять с помощью интеллектуального электрического устройства, а интеллектуальное электрическое устройство может быть реализовано в виде различных устройств, таких как реле защиты, индикаторы распространения замыкания (ИРЗ), выносные терминалы (ВТ) и т.д., но вариант осуществления настоящего раскрытия не ограничен ими. В дальнейшем термины «в точке измерения» и «на интеллектуальном электрическом устройстве» могут взаимно заменяться.
Обозначения, показанные на фиг. 2, поясняются в нижеследующей таблице 1.
Таблица 1
Обозначение Определение
Es - фазное напряжение на месте нахождения ИЭУ (то есть в точке измерения) до замыкания
Zt1, Zt2, Zt0 - полное сопротивление трансформатора тока прямой, обратной и нулевой последовательностей соответственно
Zn - полное сопротивление заземления нейтрали трансформатора (бесконечность для незаземленной)
zl1, zl2, zl0 - полное сопротивление питающей линии прямой, обратной и нулевой последовательностей на единицу длины (комбинации воздушной линии и подземного кабеля) соответственно (вводится пользователем отдельно)
l - полная длина отходящей питающей линии
x - расстояние до ИЭУ (точки измерения) от точки замыкания
Zch1, Zch2 - положительное и отрицательное полное сопротивление эквивалентной нагрузки соответственно
Rdef - полное сопротивление в точке замыкания фазы на землю
Im1, Im2, Im0 - ток прямой, обратной и нулевой последовательностей соответственно, вычисляемый по фазному току, измеряемому в месте нахождения ИЭУ
Vm1, Vm2, Vm0 - напряжение прямой, обратной и нулевой последовательностей соответственно, вычисляемое по фазному напряжению, измеряемому на месте нахождения ИЭУ
Vk1, Vk2, Vk0 - напряжение прямой, обратной и нулевой последовательностей соответственно в месте замыкания
If - ток замыкания на землю, деленный на 3
Ich1, Ich2 - ток нагрузки прямой и обратной последовательностей соответственно во время замыкания
C1, C0 - распределенная шунтирующая емкость прямой и нулевой последовательностей на единицу длины соответственно, при этом шунтирующая емкость нулевой последовательности вводится пользователем
Что касается замыкания одной фазы на землю, то можно получить следующие уравнения (1) и (2):
Es=(Zt1+zl1·x)·Im1+(Zt2+zl2·x)·Im2+If·3Rdef+Zt0·Im0+zl0×Im0, (1)
Vm=Vm1+Vm2+Vm0.
Figure 00000001
(2)
При этом Vm представляет фазное напряжение, измеряемое в точке измерения (то есть на месте нахождения интеллектуального электрического устройства), и, в частности, представляет собой фазное напряжение поврежденной фазы.
Что касается If, то, как показано в уравнении (3) ниже, его можно вычислить на основании схемы обратной последовательности, поскольку If изменяется по меньшей мере в схеме обратной последовательности:
If=Im2-Ich2,
Ich2=Vm2/Zch,
Figure 00000001
(3)
Zch=Vmprefault/Imprefault.
При этом Vmprefault представляет напряжение, измеряемое на месте нахождения интеллектуального электрического устройства до возникновения замыкания на землю, и Imprefault представляет ток, измеряемый в месте нахождения интеллектуального электрического устройства до возникновения замыкания на землю.
В соответствии с теорией составной последовательной схемы можно получить следующие уравнения (4):
Vm1=Es-Im1·Zt1,
Vm2=-Zt2·Im2,
Figure 00000001
(4)
Vm0=-Zt0·Im0.
Следующее уравнение (5) можно получить подстановкой уравнений (4) в уравнение (2):
Vm=Es-Im1·Zt1-Zt2·Im2-Zt0·Im0.
Figure 00000001
(5)
Следующее уравнение (6) можно получить подстановкой уравнения (1) в уравнение (5) и заменой Im0 на If:
Vm=zl1×Im1+zl2×Im2+If·3·Rdef+zl0×If.
Figure 00000001
(6)
В общем случае на основании того, что полное сопротивление Rdef в точке замыкания имеет только действительную часть, можно вычислить расстояние x, то есть вычислить расстояние x в соответствии со следующим уравнением (7):
i m a g ( V m z l 1 · x · I m 1 z l 2 · x · I m 2 I f ) = i m a g ( z l 0 · x )
Figure 00000002
.
Figure 00000001
(7)
Как описывалось выше, приведенное выше уравнение (7) получено в предположении, что влиянием на электрическую сеть, обусловленным распределенной шунтирующей емкостью питающей линии, можно пренебречь. Однако когда процент подземного кабеля в электрической сети становится, например, больше 30% общей длины отходящей питающей линии к интеллектуальному электрическому устройству, распределенная шунтирующая емкость подземного кабеля может быть в 35 раз больше, чем распределенная шунтирующая емкость воздушной сети, так что погрешность, вносимая уравнением (7), будет превышать 5%. Такой результат является весьма нежелательным и будет приводить к некоторым излишним затруднениям при последующем процессе устранения замыкания и т.п. В дополнение к этому точность алгоритма в уравнении (7) будет также сильно ухудшаться и может приводить к большей погрешности при дополнительном повышении процента подземного кабеля.
В частности, следует учитывать распределенные шунтирующие емкости в схеме прямой последовательности и схеме нулевой последовательности, показанные на фиг. 2, поскольку полное сопротивление источника (Es) питания в схеме прямой последовательности и полное сопротивление Zn заземления нейтрали трансформатора в схеме нулевой последовательности являются высокими, когда процент подземного кабеля в электрической сети является высоким. Только распределенная шунтирующая емкость прямой последовательности и распределенная шунтирующая емкость нулевой последовательности учитываются в последующих подробных описаниях, поскольку распределенная шунтирующая емкость в схеме обратной последовательности оказывает небольшое влияние. Однако специалистам в данной области техники должно быть понятно, что место замыкания можно определять при одновременном учете распределенной шунтирующей емкости прямой последовательности, распределенной шунтирующей емкости обратной последовательности и распределенной шунтирующей емкости нулевой последовательности, что дополнительно повысит точность локализации замыкания на землю.
Согласно варианту осуществления настоящего раскрытия составляющую прямой последовательности и составляющую нулевой последовательности в уравнении (6) заменяют на падение напряжения прямой последовательности и падение напряжения нулевой последовательности соответственно, и тем самым может быть получено уравнение (8):
Vm=ΔV1+zl2×Im2+If·3·Rdef+ΔV0.
Figure 00000001
(8)
При этом ΔV1 представляет падение напряжения прямой последовательности и ΔV0 представляет падение напряжения нулевой последовательности.
Чтобы получить ΔV1 и ΔV0 с использованием распределенной шунтирующей емкости прямой последовательности и распределенной шунтирующей емкости нулевой последовательности, питающую линию можно представить последовательным соединением элементов на бесконечно малой длине dx.
На фиг. 3 показана эквивалентная схема питающей линии, в которой питающая линия представлена последовательным соединением элементов на бесконечно малой длине dx, при этом каждый элемент имеет полное сопротивление R0dx и реактивное сопротивление L0dx, а между линиями имеются проводимость G0dx утечки и емкость C0dx соответственно.
Как показано на фиг. 3, если напряжение и ток на левой стороне dx представляют собой u и i соответственно, напряжение и ток на правой стороне dx должны быть u + u x d x
Figure 00000003
и i + i x d x
Figure 00000004
соответственно.
Применяя закон Кирхгофа для токов (ЗКТ) к узлу b, можно получить следующее уравнение (9):
i ( i + i x d x ) = G 0 ( u + u x d x ) d x + C 0 x ( u + u x d x ) d x
Figure 00000005
.
Figure 00000001
(9)
Применяя закон Кирхгофа для напряжений (ЗКН) к контуру «a-b-c-d-a», получаем следующее уравнение (10):
u ( u + u x d x ) = R 0 i d x + L 0 i t d x
Figure 00000006
.
Figure 00000001
(10)
Приведенное выше уравнение (10) можно перезаписать в виде следующего уравнения (11) при пренебрежении бесконечно малой составляющей второго порядка и исключении dx:
u x = R 0 i + L 0 i t , i x = G 0 u + C 0 u t .
Figure 00000007
Figure 00000001
(11)
После использования фазорного метода приведенное выше уравнение (11) также можно перезаписать в виде следующего уравнения (12):
d U d x = ( R 0 + j ω L 0 ) I = Z 0 I , d I x = ( G 0 + j ω C 0 ) U = Y 0 U .
Figure 00000008
Figure 00000001
(12)
При этом Z0 является полным сопротивлением на единицу длины и оно может быть представлено в виде следующего уравнения (13), а Y0 является полной проводимостью на единицу длины и она может быть представлена в виде следующего уравнения (14):
Z0=(R0+jωL0).
Figure 00000001
(13)
Y0=(G0+jωC0).
Figure 00000001
(14)
Как показано в следующем уравнении (15), после решения дифференциального уравнения (12) можно получить напряжение и ток в точке замыкания на расстоянии x от точки измерения.
U = A 1 e γ x + A 2 e γ x , I = ( A 1 e γ x A 2 e γ x ) / Z C , A 1 = 1 2 ( U 1 + Z C · I 1 ) , A 2 = 1 2 ( U 1 Z C · I 1 ) .
Figure 00000009
Figure 00000001
(15)
При этом U1 представляет напряжение на интеллектуальном электрическом устройстве, I1 представляет ток в цепи интеллектуального электрического устройства, U представляет напряжение на месте, находящемся на расстоянии x от точки измерения, I представляет ток в месте, находящемся на расстоянии x от точки измерения, γ является коэффициентом распространения и γ = Z 0 Y 0
Figure 00000010
, ZC является характеристическим полным сопротивлением и Z C = Z 0 Y 0
Figure 00000011
.
Следовательно, напряжение Vk1 прямой последовательности и напряжение Vk0 нулевой последовательности в точке замыкания можно получить на основании уравнения (15) и, в свою очередь, падение ΔV1 напряжения прямой последовательности и падение ΔV0 напряжения нулевой последовательности в точке замыкания можно получить при использовании ΔV1=Vm1-Vk1 и ΔV0=Vm0-Vk0.
Ниже будут подробно описаны вычисления падения ΔV0 напряжения нулевой последовательности относительно точки измерения в схеме нулевой последовательности и падения ΔV1 напряжения прямой последовательности относительно точки измерения в схеме прямой последовательности.
Падение ΔV0 напряжения нулевой последовательности относительно точки измерения
Для схемы нулевой последовательности имеем Z0=zl0.
При пренебрежении емкостью утечки питающей линии можно пренебречь G0. В предположении, что нагрузка обычно соединена с распределительной сетью треугольником или звездой с незаземленной нейтралью, нагрузка в схеме нулевой последовательности отсутствует. Поэтому распределенная шунтирующая емкость С0 будет определять только полную проводимость в схеме нулевой последовательности, которая имеет вид Y0=jωC0.
В таком случае, в соответствии с уравнением (15), можно получить падение ΔV0 напряжения нулевой последовательности, показанное в нижеследующем уравнении (16):
Δ V 0 = V m 0 V k 0 = V m 0 ( A 1 0 e γ 0 x + A 2 0 e γ 0 x ) , A 1 0 = 1 2 ( V m 0 + Z C 0 · I m 0 ) , A 2 0 = 1 2 ( V m 0 Z C 0 · I m 0 ) , Z C 0 = z l 0 j ω C 0 , γ 0 = z l 0 · j ω C 0 .
Figure 00000012
Figure 00000001
(16)
При этом Vm0 и Im0 можно получить путем измерений и/или вычислений, а С0 может вводиться пользователем. В данном случае С0 представляет собой распределенную шунтирующую емкость нулевой последовательности на единицу длины, но вариант осуществления настоящего раскрытия не ограничен этим, и могут также существовать другие формы. В дальнейшем для упрощения описания С0 будет относиться к распределенной шунтирующей емкости нулевой последовательности.
Можно видеть, что согласно варианту осуществления настоящего раскрытия, падение ΔV0 напряжения нулевой последовательности относительно точки измерения можно вычислить на основании распределенной шунтирующей емкости С0 нулевой последовательности.
В частности, полное сопротивление zl0 питающей линии нулевой последовательности на единицу длины и распределенная шунтирующая емкость С0 питающей линии сначала вводятся пользователем, а затем можно получить напряжение Vm0 нулевой последовательности и ток Im0 нулевой последовательности, то есть можно получить падение напряжения нулевой последовательности.
Кроме того, полное сопротивление Z0 на единицу длины в схеме нулевой последовательности можно вычислить при использовании полного сопротивления zl0 питающей линии нулевой последовательности, полную проводимость Y0 на единицу длины в схеме нулевой последовательности можно вычислить при использовании распределенной шунтирующей емкости С0 нулевой последовательности, а первый параметр А 1 0
Figure 00000013
нулевой последовательности, второй параметр А 2 0
Figure 00000014
нулевой последовательности, коэффициент Z C 0
Figure 00000015
распространения нулевой последовательности и характеристическое полное сопротивление γ0 нулевой последовательности можно вычислить по напряжению Vm0 нулевой последовательности, току Im0 нулевой последовательности, полному сопротивлению Z0 на единицу длины в схеме нулевой последовательности, полной проводимости Y0 на единицу длины в схеме нулевой последовательности, и, наконец, падение ΔV0 напряжения нулевой последовательности можно получить по А 1 0
Figure 00000016
, А 2 0
Figure 00000017
, Z C 0
Figure 00000018
и γ0.
Падение напряжения прямой последовательности относительно точки измерения
Влияние нагрузки должно учитываться в схеме прямой последовательности. То есть в схеме прямой последовательности помимо распределенной шунтирующей емкости прямой последовательности также имеется полное сопротивление прямой последовательности, относящееся к нагрузке с отводами, распределенными по питающей линии.
На фиг. 4 показана эквивалентная схема двухполюсника, представляющего схему прямой последовательности, расположенную ниже относительно интеллектуального электрического устройства, в которой полное сопротивление питающей линии не принято во внимание.
На фиг. 4 соединение между полным сопротивлением нагрузки и емкостью прямой последовательности интерпретируется как параллельное соединение двух сосредоточенных элементов, то есть эквивалентного полного сопротивления Zch1Σ нагрузки и эквивалентной емкости С1Σ, при этом C1Σ=С1·l и l является полной длиной питающей линии, отходящей от интеллектуального электрического устройства.
В соответствии с фиг. 4 можно вычислить полную проводимость на единицу длины для уравнения (14):
Y 0 = ( 1 Z c h 1 1 + j ω C 1 · l ) · 1 l
Figure 00000019
.
В дополнение к этому для схемы прямой последовательности Z0=zl1.
На практике нагрузку можно рассматривать как равномерно распределенную, хотя конкретное распределение нагрузки неизвестно. Поэтому, если Im1/Vm1 известно, то Y 0 = ( Im 1 V m 1 ) · 1 l
Figure 00000020
.
Кроме того, l можно оценивать при использовании схемы нулевой последовательности.
На фиг. 5 показана упрощенная схема электрических соединений, предназначенная для оценивания l.
Как видно из фиг. 5, можно обосновать следующие соотношения:
If=IN+IC1B+IC1C+IC2B+IC2C,
Im0=IN+IC1B+IC1C+IC2B+IC2C-(IC2B+IC2C)=If-IC,
IC=IC2B+IC2C=If-Im0.
В дополнение к этому IC представляет собой емкостный ток, обусловленный емкостью фаза-земля поврежденной питающей линией, отходящей от интеллектуального электрического устройства, и поэтому он может быть оценен при использовании произведения напряжения Vm0 нулевой последовательности и реактивной проводимости jωC0 емкости нулевой последовательности, что показано в нижеследующем уравнении (17):
IC≈-Vm0·jωC0·l.
Figure 00000001
(17)
Таким образом, общая длина l питающей линии, отходящей от интеллектуального электрического устройства, может быть выражена в виде следующего уравнения (18):
l r e a l ( I f I m 0 V m 0 · j ω C 0 )
Figure 00000021
.
Figure 00000001
(18)
В таком случае можно получить в упрощенной форме падение ΔV1 напряжения прямой последовательности, показанное в нижеследующем уравнении (19):
Δ V 1 = V m 1 V k 1 = V m 1 ( A 1 1 e γ 1 x + A 2 1 e γ 1 x ) , A 1 1 = 1 2 ( V m 1 + Z C 1 · I m 1 ) , A 2 1 = 1 2 ( V m 1 Z C 1 · I m 1 ) , Z C 1 = z l 1 · V m 1 · l I m 1 , γ 1 = z l 1 · I m 1 V m 1 · l .
Figure 00000022
Figure 00000001
(19)
Следовательно, согласно варианту осуществления настоящего раскрытия падение ΔV1 напряжения прямой последовательности относительно точки измерения можно вычислить на основании только распределенной шунтирующей емкости С0 нулевой последовательности без распределенной шунтирующей емкости С1 прямой последовательности. В данном случае С1 представляет собой распределенную шунтирующую емкость прямой последовательности на единицу длины, но вариант осуществления настоящего раскрытия не ограничен этим и также могут существовать другие формы. В дальнейшем для упрощения описания С1 будет относиться к распределенной шунтирующей емкости прямой последовательности.
В частности, сначала полное сопротивление zl1 питающей линии прямой последовательности на единицу длины и распределенная шунтирующая емкость С0 нулевой последовательности, относящаяся к питающей линии, вводятся пользователем, а затем можно получить напряжение Vm1 прямой последовательности, ток Im1 прямой последовательности и ток 3·If замыкания на землю, то есть можно получить падение напряжения прямой последовательности.
Кроме того, полное сопротивление Z0 на единицу длины в схеме прямой последовательности можно вычислить при использовании полного сопротивления zl1 питающей линии прямой последовательности; общую длину питающей линии, отходящей от интеллектуального электрического устройства, можно вычислить при использовании тока 3·If замыкания на землю, напряжения Vm0 нулевой последовательности, тока Im0 нулевой последовательности и распределенной шунтирующей емкости С0 нулевой последовательности; и полную проводимость Y0 на единицу длины в схеме прямой последовательности можно вычислить при использовании общей длины питающей линии, отходящей от интеллектуального электрического устройства, напряжения Vm1 прямой последовательности и тока Im1 прямой последовательности; и первый параметр A 1 1
Figure 00000023
прямой последовательности, второй параметр A 2 1
Figure 00000024
прямой последовательности, коэффициент Z C 1
Figure 00000025
распространения прямой последовательности и характеристическое полное сопротивление γ1 прямой последовательности можно вычислить по напряжению Vm1 прямой последовательности, току Im1 прямой последовательности, полному сопротивлению Z0 на единицу длины в схеме прямой последовательности и полной проводимости Y0 на единицу длины в схеме прямой последовательности; и, наконец, падение ΔV1 напряжения прямой последовательности можно получить по А 1 1
Figure 00000026
, А 2 1
Figure 00000027
, Z C 1
Figure 00000028
и γ1.
Вычисление расстояния до точки измерения от точки замыкания
На основании того, что полное сопротивление Rdef в точке замыкания имеет только действительную часть, x можно вычислить при подстановке уравнений (16) и (17) в уравнение (8). То есть поскольку мнимая часть полного сопротивления Rdef в точке замыкания равна нулю, x можно вычислить в соответствии с нижеследующим уравнением (20):
i m a g ( V m I f ) i m a g ( Δ V 1 + z l 2 · x · I m 2 + Δ V 0 I f ) = 0
Figure 00000029
.
Figure 00000001
(20)
В дополнение к этому действительная часть Rdef может быть выражена в виде следующего уравнения (21):
R d e f = r e a l ( V m ( Δ V 1 + z l 2 · x · I m 2 + Δ V 0 I f ) = 0
Figure 00000030
.
Figure 00000001
(21)
Следовательно, согласно варианту осуществления настоящего раскрытия, составляющую нулевой последовательности (падение напряжения нулевой последовательности) и составляющую прямой последовательности (падение напряжения прямой последовательности) вычисляют с учетом распределенной шунтирующей емкости питающей линии, так что точность определения места замыкания может гарантироваться даже в случае, когда процент подземного кабеля является высоким. Как таковая, точность определения места замыкания может гарантироваться только при дополнительном вводе С0 пользователем.
В нижеследующих таблицах 2 и 3 показаны результаты определения места замыкания на землю согласно варианту осуществления настоящего раскрытия, при этом данные в таблице 2 получены для случая эффективного заземления нейтрали и в таблице 3 получены для случая компенсирующего заземления нейтрали.
Таблица 2
Figure 00000031
Таблица 3
Figure 00000032
Из таблиц 2 и 3 можно видеть, что вариант осуществления настоящего раскрытия позволяет получать точный результат локализации независимо от процента подземного кабеля.
На фиг. 6 показана структурная схема устройства 600 для определения места замыкания на землю согласно вариантам осуществления настоящего раскрытия. Устройство 600 может быть реле защиты, индикатором распространения замыкания (ИРЗ), выносным терминалом (ВТ) и т.д., или элементом в реле защиты, индикаторе распространения замыкания (ИРЗ) и выносном терминале (ВТ), или может быть отдельным устройством, взаимодействующим с реле защиты, индикатором распространения замыкания (ИРЗ) и выносным терминалом (ВТ).
Как показано на фиг. 6, устройство 600 включает в себя вычислительное средство 601 и определяющее средство 602.
Вычислительное средство 601 используется для вычисления составляющей нулевой последовательности и составляющей прямой последовательности в электрической сети на основании распределенной шунтирующей емкости. Определяющее средство 602 используется для определения расстояния до точки измерения от точки замыкания на землю при использовании составляющей обратной последовательности, вычисленной составляющей нулевой последовательности и вычисленной составляющей прямой последовательности.
Поэтому, согласно варианту осуществления настоящего раскрытия вычислительное средство 601 вычисляет составляющую нулевой последовательности и составляющую прямой последовательности с учетом распределенной шунтирующей емкости так, что точность определения места замыкания определяющим средством 602 может гарантироваться даже в случае, когда процент подземного кабеля является высоким.
В частности, вычислительное средство 601 может выполнять процесс вычисления падения ΔV0 напряжения нулевой последовательности и падения ΔV1 напряжения прямой последовательности при использовании уравнения (16) и уравнения (17) соответственно. Например, для вычисления падения ΔV0 напряжения нулевой последовательности вычислительное средство 601 может сначала принимать полное сопротивление zl0 питающей линии нулевой последовательности на единицу длину и распределенную шунтирующую емкость С0, вводимые пользователем, и затем получать напряжение Vm0 нулевой последовательности и ток Im0 нулевой последовательности, то есть получать падение напряжения нулевой последовательности.
Кроме того, вычислительное средство 601 может вычислять полное сопротивление Z0 на единицу длины в схеме нулевой последовательности при использовании полного сопротивления zl0 питающей линии нулевой последовательности, может вычислять полную проводимость Y0 на единицу длины в схеме нулевой последовательности при использовании распределенной шунтирующей емкости С0 нулевой последовательности и может вычислять первый параметр А 1 0
Figure 00000033
нулевой последовательности, второй параметр А 2 0
Figure 00000034
нулевой последовательности, коэффициент Z C 0
Figure 00000035
распространения нулевой последовательности и характеристическое полное сопротивление γ0 нулевой последовательности по напряжению Vm0 нулевой последовательности, току Im0 нулевой последовательности, полному сопротивлению Z0 на единицу длины в схеме нулевой последовательности, полной проводимости Y0 на единицу длины в схеме нулевой последовательности; и, наконец, может получать падение ΔV0 напряжения нулевой последовательности по А 1 0
Figure 00000036
, А 2 0
Figure 00000037
, Z C 0
Figure 00000038
и γ0.
В дополнение к этому для получения падения ΔV1 напряжения прямой последовательности вычислительное средство 601 может сначала принимать полное сопротивление zl1 питающей линии прямой последовательности на единицу длины и распределенную шунтирующую емкость С0 нулевой последовательности, вводимые пользователем, и затем может получать напряжение Vm1 прямой последовательности, ток Im1 прямой последовательности и ток 3·If замыкания на землю, то есть может получать падение ΔV1 напряжения прямой последовательности.
Кроме того, вычислительное средство 601 может вычислять полное сопротивление Z0 на единицу длины в схеме прямой последовательности при использовании полного сопротивления zl1 питающей линии прямой последовательности; может вычислять общую длину питающей линии, отходящей от интеллектуального электрического устройства, при использовании тока 3·If замыкания на землю, напряжения Vm0 нулевой последовательности, тока Im0 нулевой последовательности и распределенной шунтирующей емкости С0 нулевой последовательности; может вычислять полную проводимость Y0 на единицу длины в схеме прямой последовательности при использовании общей длины l питающей линии, отходящей от интеллектуального электрического устройства, напряжения Vm1 прямой последовательности и тока Im1 прямой последовательности; и может вычислять первый параметр А 1 1
Figure 00000039
прямой последовательности, второй параметр А 2 1
Figure 00000040
прямой последовательности, коэффициент Z C 1
Figure 00000041
распространения прямой последовательности и характеристическое полное сопротивление γ1 прямой последовательности по напряжению Vm1 прямой последовательности, току Im1 прямой последовательности, полному сопротивлению Z0 на единицу длины в схеме прямой последовательности и полной проводимости Y0 на единицу длины в схеме прямой последовательности; и, наконец, может получать падение ΔV1 напряжения прямой последовательности по А 1 1
Figure 00000042
, А 2 1
Figure 00000043
, Z C 1
Figure 00000044
и γ1.
Затем на основании того, что мнимая часть полного сопротивления Rdef замыкания фазы на землю равна нулю в точке замыкания, средство 602 определения при использовании уравнения (20) может определить расстояние x до точки измерения от точки замыкания на землю.
Следует отметить, что ради краткости и ясности на отдельных чертежах показаны только части, относящиеся к вариантам осуществления настоящего раскрытия, но специалистам в данной области техники должно быть понятно, что устройство и прибор, показанные на чертежах, могут включать в себя другие необходимые блоки.
Специалисты в данной области техники должны представлять себе, что различные блоки или части, описанные с обращением к вариантам осуществления настоящего раскрытия, могут быть реализованы в виде электронного аппаратного обеспечения, программного обеспечения компьютера или сочетания их, а компоненты или этапы вариантов осуществления настоящего раскрытия, большей частью описаны функционально с тем, чтобы отчетливо показать взаимозаменяемость аппаратной реализации и программной реализации. Реализация одной из функций в виде аппаратного обеспечения или в виде программного обеспечения зависит от конкретной области применения, в которой используется техническое решение, и конкретных проектных ограничений. Для каждой конкретной области применения различные способы могут использоваться специалистами для получения описанных функциональных возможностей, но такое использование не следует интерпретировать как превышающее объем настоящего раскрытия.
Следует понимать, что варианты осуществления, представленные в настоящем раскрытии, в котором раскрыты системы и устройства, могут быть реализованы другими способами. Например, описанные выше варианты осуществления устройства являются только иллюстративными по характеру, в том числе разделение на блоки, также как и разделение логических функций, и другой способ разделения может быть принят в конкретной реализации, например множество блоков или компонентов может быть объединено или встроено в другую систему или некоторые признаки могут не приниматься во внимание или не выполняться. В дополнение к взаимной связи или непосредственной связи или коммуникационному соединению, рассмотренным выше, могут быть косвенная связь или коммуникационное соединение через посредство некоторого количества интерфейсов, устройств или блоков и они могут иметь электрическую, механическую или иную форму.
Блоки, описанные как отдельные элементы, могут быть или могут не быть разделены физически, а компоненты, показанные в виде элемента, могут быть или могут не быть физическими блоками, каждый может быть расположен на своем месте или может быть распределен по множеству сетевых блоков. В соответствии с реальными требованиями часть блоков или все блоки можно выбирать для решения технической задачи настоящего раскрытия.
Кроме того, отдельные функциональные блоки в различных вариантах осуществления настоящего раскрытия могут быть объединены в один блок обработки, или каждый блок может присутствовать физически, или два или большее количество блоков может быть объединено в один блок. Интегрированные блоки могут быть реализованы в виде аппаратного обеспечения и в виде программных функциональных блоков.
Указанный интегрированный блок можно сохранять на считываемом компьютером носителе данных, когда он реализован в виде программного функционального блока и продается или используется как независимый продукт. Исходя из этого соображения, техническое решение настоящего раскрытия в общем и целом или часть технического решения, привнесенные в техническое решение из предшествующего уровня техники, или все техническое решение или часть его можно реализовать в виде программных продуктов, при этом компьютерный программный продукт сохраняется на носителе данных и включает в себя команды вычислительному устройству (им может быть персональный компьютер, сервер или сетевое оборудование) на выполнение всех или части этапов способа, представленного в различных вариантах осуществления настоящего изобретения. Носитель данных может включать в себя U-диск, мобильный жесткий диск, постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ), магнитный диск или компакт-диск, доступный только для чтения, и другие носители, способные сохранять программные коды.
Следует также отметить, что, как должно быть очевидно, в устройстве настоящего изобретения различные компоненты можно разделять и/или объединять. Эти разделения и/или объединения следует рассматривать как эквивалентное техническое решение настоящего раскрытия.
Выше представлены только конкретные варианты осуществления настоящего раскрытия и объем настоящего раскрытия не ограничен ими. Любой специалист в данной области техники может легко сделать различные модификации и изменения, и предполагается, что все эти модификации и изменения охватываются прилагаемой формулой изобретения. Следовательно, объем настоящего раскрытия должен определяться прилагаемой формулой изобретения.

Claims (14)

1. Способ определения места замыкания на землю, содержащий этапы, на которых:
вычисляют падение напряжения нулевой последовательности в точке измерения и падение напряжения прямой последовательности в точке измерения в электрической сети с использованием распределенной шунтирующей емкости; и
определяют расстояние до точки измерения от точки замыкания на землю, используя составляющую обратной последовательности, вычисленное падение напряжения нулевой последовательности в точке измерения и вычисленное падение напряжения прямой последовательности в точке измерения.
2. Способ по п. 1, в котором вычисление падения напряжения нулевой последовательности в точке измерения и падения напряжения прямой последовательности в точке измерения в электрической сети с использованием распределенной шунтирующей емкости содержит этапы, на которых:
вычисляют падение напряжения нулевой последовательности в точке измерения с использованием распределенной шунтирующей емкости нулевой последовательности; и
вычисляют падение напряжения прямой последовательности в точке измерения с использованием распределенной шунтирующей емкости нулевой последовательности.
3. Способ по п. 2, в котором падение напряжения нулевой последовательности в точке измерения с использованием распределенной шунтирующей емкости нулевой последовательности дополнительно содержит этапы, на которых:
принимают входное полное сопротивление питающей линии нулевой последовательности на единицу длины и входную распределенную шунтирующую емкость нулевой последовательности;
получают напряжение нулевой последовательности и ток нулевой последовательности; и
вычисляют падение напряжения нулевой последовательности.
4. Способ по п. 3, в котором падение напряжения ΔV0 нулевой последовательности в точке измерения вычисляют согласно уравнению:
Figure 00000045

где: вычисляют полное сопротивление на единицу длины Z0 в схеме нулевой последовательности с использованием полного сопротивления zl0 питающей линии нулевой последовательности;
вычисляют полную проводимость на единицу длины Y0 в схеме нулевой последовательности с использованием распределенной шунтирующей емкости С0 нулевой последовательности; и
вычисляют первый параметр A 1 0
Figure 00000046
нулевой последовательности, второй параметр A 2 0
Figure 00000047
нулевой последовательности, коэффициент Z c 0
Figure 00000048
распространения нулевой последовательности и характеристическое полное сопротивление γ0 нулевой последовательности по напряжению Vm0 нулевой последовательности, току Im0 нулевой последовательности, полному сопротивлению Z0 на единицу длины в схеме нулевой последовательности и полной проводимости Y0 на единицу длины в схеме нулевой последовательности; и
получают падение напряжения ΔV0 нулевой последовательности по первому параметру A 1 0
Figure 00000049
нулевой последовательности, второму параметру A 2 0
Figure 00000050
нулевой последовательности, коэффициенту
Figure 00000051
распространения нулевой последовательности и характеристическому полному сопротивлению γ0 нулевой последовательности.
5. Способ по п. 4, в котором вычисление падения напряжения прямой последовательности в точке измерения с использованием распределенной шунтирующей емкости нулевой последовательности дополнительно содержит этапы, на которых:
принимают входное полное сопротивление питающей линии прямой последовательности на единицу длины;
получают напряжение прямой последовательности и ток прямой последовательности;
получают ток замыкания на землю; и
вычисляют падение напряжения прямой последовательности.
6. Способ по п. 5, в котором падение напряжения ΔV1 прямой последовательности в точке измерения вычисляют согласно уравнению:
Figure 00000052

где: вычисляют полное сопротивление Z0 на единицу длины в схеме прямой последовательности с использованием полного сопротивления zl1 питающей линии прямой последовательности;
вычисляют общую длину отходящей питающей линии IED с использованием тока замыкания 3·If на землю, напряжения нулевой последовательности Vm0, тока нулевой последовательности Im0 и распределенной шунтирующей емкости С0 нулевой последовательности;
вычисляют полную проводимость Y0 на единицу длины в схеме прямой последовательности с использованием общей длины отходящей питающей линии IED, напряжения прямой последовательности Vm1 и тока прямой последовательности Im1;
вычисляют первый параметр A 1 1
Figure 00000053
прямой последовательности, второй параметр A 2 1
Figure 00000054
прямой последовательности, коэффициент Z c 1
Figure 00000055
распространения прямой последовательности и характеристическое полное сопротивление γ1 прямой последовательности по напряжению прямой последовательности Vm1, току прямой последовательности Im1, полному сопротивлению Z0 на единицу длины в схеме прямой последовательности и полной проводимости Y0 на единицу длины в схеме прямой последовательности; и получают падение напряжения ΔV1 прямой последовательности по первому параметру A 1 1
Figure 00000053
прямой последовательности, второму параметру A 2 1
Figure 00000054
прямой последовательности, коэффициенту Z c 1
Figure 00000055
распространения прямой последовательности и характеристическому полному сопротивлению γ1 прямой последовательности.
7. Способ по п. 6, в котором определение расстояния до точки измерения от точки замыкания на землю с использованием составляющей обратной последовательности, вычисленного падения напряжения нулевой последовательности в точке измерения и вычисленного падения напряжения прямой последовательности в точке измерения дополнительно содержит этап, на котором:
определяют расстояние до точки измерения от точки замыкания на землю, принимая, что мнимая часть полного сопротивления замыкания фазы на землю в точке замыкания на землю равна нулю.
8. Устройство для определения места замыкания на землю, содержащее:
средство вычисления для вычисления падения напряжения нулевой последовательности в точке измерения и падения напряжения прямой последовательности в электрической сети с использованием распределенной шунтирующей емкости; и
средство определения для определения расстояния до точки измерения от точки замыкания на землю с использованием составляющей обратной последовательности, вычисленного падения напряжения нулевой последовательности в точке измерения и вычисленного падения напряжения прямой последовательности в точке измерения.
9. Устройство по п. 8, в котором средство вычисления выполнено с возможностью:
вычисления падения напряжения нулевой последовательности относительно точки измерения с использованием распределенной шунтирующей емкости нулевой последовательности; и
вычисления падения напряжения прямой последовательности относительно точки измерения с использованием распределенной шунтирующей емкости нулевой последовательности.
10. Устройство по п. 9, в котором средство вычисления, выполненное с возможностью вычисления падения напряжения нулевой последовательности в точке измерения с использованием распределенной шунтирующей емкости нулевой последовательности, дополнительно:
принимает входное полное сопротивление питающей линии нулевой последовательности на единицу длины и входную распределенную шунтирующую емкость нулевой последовательности;
получает напряжение нулевой последовательности и ток нулевой последовательности; и
вычисляет падение напряжения нулевой последовательности в точке измерения.
11. Устройство по п. 10, в котором средство вычисления вычисляет падение напряжения ΔV0 нулевой последовательности согласно уравнению:
Figure 00000056

при этом средство вычисления вычисляет полное сопротивление Z0 на единицу длины в схеме нулевой последовательности с использованием полного сопротивления zl0 питающей линии нулевой последовательности;
средство вычисления вычисляет полную проводимость Y0 на единицу длины в схеме нулевой последовательности с использованием распределенной шунтирующей емкости С0 нулевой последовательности; и
средство вычисления вычисляет первый параметр A 1 0
Figure 00000057
нулевой последовательности, второй параметр A 2 0
Figure 00000058
нулевой последовательности, коэффициент Z c 0
Figure 00000059
распространения нулевой последовательности и характеристическое полное сопротивление γ0 нулевой последовательности по напряжению нулевой последовательности Vm0, току нулевой последовательности Im0, полному сопротивлению Z0 на единицу длины в схеме нулевой последовательности и полной проводимости Y0 на единицу длины в схеме нулевой последовательности; и
средство вычисления получает падение напряжения ΔV0 нулевой последовательности по первому параметру A 1 0
Figure 00000057
нулевой последовательности, второму параметру A 2 0
Figure 00000058
нулевой последовательности, коэффициенту Z c 0
Figure 00000060
распространения нулевой последовательности и характеристическому полному сопротивлению γ0 нулевой последовательности.
12. Устройство по п. 11, в котором средство вычисления, выполненное с возможностью вычисления падения напряжения прямой последовательности относительно точки измерения с использованием распределенной шунтирующей емкости нулевой последовательности, дополнительно:
принимает входное полное сопротивление питающей линии прямой последовательности на единицу длины;
получает напряжение прямой последовательности и ток прямой последовательности;
получает ток замыкания на землю; и
вычисляет падение напряжения прямой последовательности в точке измерения.
13. Устройство по п. 12, в котором средство вычисления вычисляет падение напряжения ΔV1 прямой последовательности согласно уравнению:
Figure 00000061

при этом средство вычисления вычисляет полное сопротивление Z0 на единицу длины в схеме прямой последовательности с использованием полного сопротивления zl1 питающей линии прямой последовательности;
средство вычисления вычисляет общую длину отходящей питающей линии IED с использованием тока замыкания 3·If на землю, напряжения нулевой последовательности Vm0, тока нулевой последовательности Im0 и распределенной шунтирующей емкости С0 нулевой последовательности;
средство вычисления вычисляет полную проводимость Y0 на единицу длины в схеме прямой последовательности с использованием общей длины отходящей питающей линии IED, напряжения прямой последовательности Vm1 и тока прямой последовательности Im1;
средство вычисления вычисляет первый параметр A 1 1
Figure 00000062
прямой последовательности, второй параметр A 2 1
Figure 00000063
прямой последовательности, коэффициент Z c 1
Figure 00000064
распространения прямой последовательности и характеристическое полное сопротивление γ1 прямой последовательности по напряжению прямой последовательности Vm1, току прямой последовательности Im1, полному сопротивлению Z0 на единицу длины в схеме прямой последовательности и полной проводимости Y0 на единицу длины в схеме прямой последовательности; и
средство вычисления получает падение напряжения ΔV1 прямой последовательности по первому параметру A 1 1
Figure 00000062
прямой последовательности, второму параметру A 2 1
Figure 00000063
прямой последовательности, коэффициенту Z c 1
Figure 00000064
распространения прямой последовательности и характеристическому полному сопротивлению γ1 прямой последовательности.
14. Устройство по п. 13, в котором средство определения определяет расстояние до точки измерения от точки замыкания на землю, принимая, что мнимая часть полного сопротивления замыкания фазы на землю в точке замыкания на землю равна нулю.
RU2013152729/28A 2012-11-30 2013-11-27 Способ и устройство для определения места замыкания на землю RU2562931C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210505394.7A CN103852688B (zh) 2012-11-30 2012-11-30 用于确定接地故障的位置的方法和设备
CN201210505394.7 2012-11-30

Publications (2)

Publication Number Publication Date
RU2013152729A RU2013152729A (ru) 2015-06-10
RU2562931C2 true RU2562931C2 (ru) 2015-09-10

Family

ID=49679319

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013152729/28A RU2562931C2 (ru) 2012-11-30 2013-11-27 Способ и устройство для определения места замыкания на землю

Country Status (3)

Country Link
EP (1) EP2738561B1 (ru)
CN (1) CN103852688B (ru)
RU (1) RU2562931C2 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028620B1 (fr) * 2014-11-14 2016-12-16 Electricite De France Localisation de defauts monophases dans un reseau de distribution haute tension
FI126434B (fi) * 2015-06-03 2016-11-30 Jyväskylän Energia Oy Menetelmä kolmivaiheisen sähköverkon maasulkusuojauksessa
FR3037658B1 (fr) * 2015-06-16 2018-05-18 Schneider Electric Industries Sas Procede et dispositif de detection d'un defaut dans un reseau electrique
CN109643890B (zh) * 2016-07-08 2020-10-16 Abb电网瑞士股份公司 用于对混合型输电线路中的故障进行定位的方法和系统
CN106646103B (zh) * 2016-09-29 2019-02-22 福州大学 一种基于多测点正序电压最优匹配的电压暂降源定位方法
CN107843812A (zh) * 2017-11-02 2018-03-27 海南电网有限责任公司琼海供电局 一种配电网故障定位方法及装置
CN108957225B (zh) * 2018-06-08 2020-08-18 西安理工大学 一种计及电缆分布电容的直流配电线路单端故障测距方法
CN109541369A (zh) * 2018-11-09 2019-03-29 国网甘肃省电力公司 一种电网单向接地故障检测系统及其检测方法
CN109521326B (zh) * 2018-11-15 2020-11-13 贵州电网有限责任公司 一种基于配电线路电压分布曲线的接地故障定位方法
CN109507531B (zh) * 2018-11-21 2021-01-22 杭州电力设备制造有限公司 一种配电网单相接地选线方法、系统、装置及可读存储介质
CN110361631B (zh) * 2019-07-30 2021-06-22 国网安徽省电力有限公司阜阳供电公司 一种含高渗透率分布式电源的配电网故障定位方法及系统
EP4276480A1 (de) * 2022-05-10 2023-11-15 Siemens Aktiengesellschaft Verfahren und schutzgerät zum erkennen eines einphasigen erdschlusses
CN115308473A (zh) * 2022-08-25 2022-11-08 中国南方电网有限责任公司 短路电流直流分量计算方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728600B2 (en) * 2006-12-29 2010-06-01 Abb Technology Ag System and method for determining location of phase-to-earth fault
US7872478B2 (en) * 2006-02-10 2011-01-18 Abb Technology Ltd. Method and adaptive distance protection relay for power transmission lines
RU2416804C2 (ru) * 2005-05-17 2011-04-20 Абб Оу Устройство и способ для определения места аварийного заземления
US7999557B2 (en) * 2007-05-18 2011-08-16 Abb Technology Ag Method for determining location of phase-to-earth fault
US8044666B2 (en) * 2007-05-18 2011-10-25 Abb Technology Ag Method for determining location of phase-to earth fault

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135377A (ja) * 1983-01-24 1984-08-03 Fuji Electric Co Ltd 三相送配電線路の地絡故障点標定方法
FI100922B (fi) * 1996-11-04 1998-03-13 Abb Transmit Oy Menetelmä sähkönjakeluverkon suuriresistanssisen maasulkuvian havaitse miseksi ja paikallistamiseksi
FI106985B (fi) * 1999-09-23 2001-05-15 Abb Substation Automation Oy Menetelmä sähkönjakeluverkon maasulkuvian etäisyyden määrittämiseksi laskennallisesti rengaskytkennässä
US6525543B1 (en) * 2000-10-20 2003-02-25 Schweitzer Engineering Laboratories Fault type selection system for identifying faults in an electric power system
SE524866C2 (sv) * 2001-11-23 2004-10-12 Abb Ab Metod och anordning för fellokalisering genom användande av mätningar från två ändar av en luftledning för transmission av växelström
SE525185C2 (sv) * 2002-06-20 2004-12-21 Abb Ab Fellokalisering med hjälp av mätningar av ström och spänning från ena änden av en ledning
EP2192416B1 (en) * 2008-11-26 2018-01-03 ABB Schweiz AG Method and apparatus for detecting a phase-to-earth fault
US8942954B2 (en) * 2010-09-16 2015-01-27 Schweitzer Engineering Laboratories, Inc. Fault location in a non-homogeneous electric power line
CN102288872B (zh) * 2011-06-30 2013-07-31 山东省电力学校 基于信号注入法的小电流接地系统单相接地故障测距方法
CN102707197B (zh) * 2012-06-11 2014-07-09 国家电网公司 一种输电线路单相接地故障距离测定方法及故障类型诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2416804C2 (ru) * 2005-05-17 2011-04-20 Абб Оу Устройство и способ для определения места аварийного заземления
US7872478B2 (en) * 2006-02-10 2011-01-18 Abb Technology Ltd. Method and adaptive distance protection relay for power transmission lines
US7728600B2 (en) * 2006-12-29 2010-06-01 Abb Technology Ag System and method for determining location of phase-to-earth fault
US7999557B2 (en) * 2007-05-18 2011-08-16 Abb Technology Ag Method for determining location of phase-to-earth fault
US8044666B2 (en) * 2007-05-18 2011-10-25 Abb Technology Ag Method for determining location of phase-to earth fault

Also Published As

Publication number Publication date
CN103852688B (zh) 2016-11-16
CN103852688A (zh) 2014-06-11
EP2738561A2 (en) 2014-06-04
EP2738561B1 (en) 2022-01-12
RU2013152729A (ru) 2015-06-10
EP2738561A3 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
RU2562931C2 (ru) Способ и устройство для определения места замыкания на землю
CN105425109B (zh) 一种能够提高准确率的小电流接地系统单相接地选线方法
Gazzana et al. An integrated technique for fault location and section identification in distribution systems
US7999557B2 (en) Method for determining location of phase-to-earth fault
RU2462727C2 (ru) Способ для определения места замыкания на линиях электропередачи с последовательной компенсацией с двухконцевым несинхронизированным измерением
Dobakhshari et al. A novel method for fault location of transmission lines by wide-area voltage measurements considering measurement errors
EP1724597B1 (en) System and method for determining location of phase-to-earth fault
US8044666B2 (en) Method for determining location of phase-to earth fault
US7233153B2 (en) Method and system for determining location of phase-to-earth fault
WO2007032697A1 (en) A method for fault location in electric power lines
EP2682768B1 (en) Method and apparatus for determining the distance to phase-to-earth fault
Chaiwan et al. New accurate fault location algorithm for parallel transmission lines using local measurements
Santos et al. Dynamic simulation of induced voltages in high voltage cable sheaths: Steady state approach
CN111141995B (zh) 一种基于比幅原理的线路双端稳态量测距方法和系统
Abdelaziz et al. Fault location of uncompensated/series-compensated lines using two-end synchronized measurements
US20200041562A1 (en) Identification of faulty section of power transmission line
Xiu et al. Novel fault location methods for ungrounded radial distribution systems using measurements at substation
EP3553539B1 (en) Apparatus and method for locating a fault in a plurality of windings of a transformer
Wu et al. Synchrophasor measurement‐based fault location technique for multi‐terminal multi‐section non‐homogeneous transmission lines
Taheri et al. A fault‐location algorithm for parallel line based on the long short‐term memory model using the distributed parameter line model
Ferreira et al. Impedance-based fault location for overhead and underground distribution systems
Bhalja et al. Protection of double-circuit transmission line using superimposed current
Patel Superimposed components of Lissajous pattern based feature extraction for classification and localization of transmission line faults
Gazzana et al. A hybrid impedance and transient based analysis technique for fault location in distribution networks
Atsever et al. A faulty feeder selection method for distribution network with unintentional resonance in zero sequence circuit

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171128