RU2462297C2 - Способ получения сорбционных материалов на основе углеродных нанотрубок - Google Patents

Способ получения сорбционных материалов на основе углеродных нанотрубок Download PDF

Info

Publication number
RU2462297C2
RU2462297C2 RU2010138752/05A RU2010138752A RU2462297C2 RU 2462297 C2 RU2462297 C2 RU 2462297C2 RU 2010138752/05 A RU2010138752/05 A RU 2010138752/05A RU 2010138752 A RU2010138752 A RU 2010138752A RU 2462297 C2 RU2462297 C2 RU 2462297C2
Authority
RU
Russia
Prior art keywords
carbon nanotubes
hno
product
extraction
hours
Prior art date
Application number
RU2010138752/05A
Other languages
English (en)
Other versions
RU2010138752A (ru
Inventor
Юрий Михайлович Куляко (RU)
Юрий Михайлович Куляко
Надежда Павловна Молочникова (RU)
Надежда Павловна Молочникова
Галина Владимировна Мясоедова (RU)
Галина Владимировна Мясоедова
Ольга Борисовна Моходоева (RU)
Ольга Борисовна Моходоева
Елена Александровна Захарченко (RU)
Елена Александровна Захарченко
Дмитрий Андреевич Маликов (RU)
Дмитрий Андреевич Маликов
Сергей Владимирович Мищенко (RU)
Сергей Владимирович Мищенко
Алексей Григорьевич Ткачев (RU)
Алексей Григорьевич Ткачев
Original Assignee
Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН) filed Critical Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН)
Priority to RU2010138752/05A priority Critical patent/RU2462297C2/ru
Publication of RU2010138752A publication Critical patent/RU2010138752A/ru
Application granted granted Critical
Publication of RU2462297C2 publication Critical patent/RU2462297C2/ru

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к области получения новых сорбционных материалов на основе углеродных нанотрубок и может быть использовано для извлечения актинидных и редкоземельных элементов из растворов. Способ получения сорбционного материала предусматривает импрегнирование углеродных нанотрубок фосфорорганическими лигандами в процессе перемешивания в среде 3,0-8,0 М НNO3 в весовом соотношении реагент-носитель (0,175-1,0): 1,0 и последующее промывание полученного продукта 3-кратным количеством 3,0-8,0 М НNО3. Изобретение обеспечивает простое получение сорбционных материалов с высокими характеристиками. 3 з.п. ф-лы, 8 пр.

Description

Изобретение относится к области получения новых сорбционных материалов, предназначенных для извлечения актинидных и редкоземельных элементов из растворов.
Известны способы получения сорбционных материалов, предназначенных для извлечения актинидных и редкоземельных элементов из азотнокислых растворов, путем введения комплексообразующих групп или соединений в различные твердые матрицы. Способы химического закрепления комплексообразующих групп осуществляются путем химического взаимодействия соответствующих соединений или групп с активными группами, введенными или содержащимися на твердом носителе. Нековалентное закрепление или импрегнирование осуществляется путем нанесения раствора соответствующего соединения в органическом растворителе на носитель с последующим удалением растворителя. В качестве реагентов для закрепления на твердой фазе используют алкилфосфаты, диарил[диалкилкарбамоилметил]фосфиноксиды, моно-, ди-, триалкилфосфиноксиды, фосфинаты и фосфонаты, диокиси метилендифосфина, амиды и диамиды, амины и др., используемые в качестве экстрагентов для экстракционного извлечения актинидных и редкоземельных элементов из азотнокислых растворов. В качестве матриц (носителей) используют силикагели, сополимеры стирола и дивинлбензола и акрилатные полимеры, неорганические оксиды, фуллереновую чернь и др.
Известен способ получения сорбционного материала для извлечения актинидов и РЗЭ из азотнокислых растворов путем сополимеризации винилидендифосфоновой кислоты со стиролом (или акриламидом), акрилонитрилом (или метакрилатом), дивинилбензолом (или другим ди- или тривинильным сшивающим агентом) в присутствии этилгексанола и азо-бисизобутиронитрила при их перемешивании в течение 18 часов при 75°С в водном растворе хлорида кальция, содержащем поливиниловый спирт. Образовавшийся полимер отделяют от жидкой фазы, промывают водой, обрабатывают последовательно растворами КОН и НСl, а затем раствором хлорсульфоновой кислоты в хлористом этилене. Полученный сорбционный материал содержит gem-дифосфоновые группы, а также сульфогруппы и/или карбоксильные группы и характеризуется коэффициентами распределения при сорбционном извлечении актинидов из азотнокислых растворов Am(III) - 7,5·101, U(VI) - 2,0·104, Pu(IV) - 1,6·104 мл/г (10М HNO3); Am(III) - 9,9·101, U(VI) - 5,1·104, Pu(IV) - 6,5·103 мл/г (5М НNО3).
[US Patent №5281631, опубл. 25.01.1994 и US Patent №5449462, опубл. 12.09.1995].
Известен также способ получения сорбционного материала для извлечения актинидов и РЗЭ из азотнокислых растворов путем химического закрепления комплексообразующих групп карбамоилметилфосфинатов на сополимере стирола и дивинилбензола. Согласно приведенному способу синтеза на первой стадии хлорметилированный сополимер стирола и дивинилбензола обрабатывают диметилсульфоксидом при 110°С в течение 8 ч при перемешивании. Полученный продукт обрабатывают последовательно фенилдихлорфосфином при 90°С в течение 24 ч и диэтилфенилфосфонитом при 110°С в течение 12 ч при перемешивании. Полученный продукт содержит бидентатные метиленбис(этилфенилфосфинатные) группы и характеризуется коэффициентами распределения при сорбционном извлечении из азотнокислых растворов: U(VI) - 2,9·102, Аm(III) - 19, Pu(IV) - 2,4·103 мл/г (3М HNO3).
[В.П.Моргалюк, Н.П.Молочникова, Г.В.Мясоедова, Е.В.Шарова, О.И.Артюшин, И.Г.Тананаев. // Радиохимия. 2005. т.47, №2. С. 167-170].
Недостатком указанных способов химического закрепления является многостадийность и трудоемкость способа получения целевого продукта, а также использование большого количества реагентов.
Известен способ получения сорбционного материала с группами октил(фенил) диизобутилкарбамоилметилфосфиноксида импрегнированием макропористых акрилатных полимеров в виде гранул: Amberlite XAD-7 и Amberchrom CG-71. Импрегнирование осуществляется путем перемешивания предварительно промытого водой и метанолом носителя, с раствором октил(фенил)диизобутилкарбамоилметилфосфиноксида в метаноле, содержащем трибутилфосфат, в течение 15 мин. Затем растворитель удаляют при 40°С под вакуумом. Готовый продукт характеризуется данными по коэффициентам распределения при сорбционном извлечении Am(III) из растворов 1-2М НNО3 - 4,5·102 мл/г.
[E.P.Horwitz, M.L.Dietz, D.N.Nelson, J.J.LaRosa, W.D.Fairman. Concentration and separation of actinides from urine using a supported bifunctional organophosphoms extractant // Anal.Chim.Acta. 1990. V.238. P.263-271].
Известен способ получения сорбционного материала с группами октил(фенил)диизобутилкарбамоилметилфосфиноксида импрегнированием пористого SiO2, содержащего иммобилизованный сополимер стирола и дивинилбензола, раствором реагента в дихлорметане. Импрегнирование выполняется при перемешивании предварительно промытого метанолом и высушенного под вакуумом (60°С, 24 ч) носителя с раствором октил(фенил)диизобутилкарбамоилметилфосфиноксида в дихлорметане в течение 2 ч с последующим удалением растворителя при 50°С под вакуумом в течение 2 ч и высушиванием продукта при 50°С под вакуумом в течение 24 ч. Полученный продукт характеризуется коэффициентами распределения при сорбционном извлечении из азотнокислых растворов La(III) - 70 мл/г и Y(III) - 10 мл/г (3М HNO3).
[A.Zhang, Qi.Hu, W.Wang, E.Kuraoka. Application of a Macroporous Silica-Based CMPO-Impregnated Polymeric Composite in Group Partitioning of Long-Lived Minor Actinides from Highly Active Liquid by Extraction Chromatography // Ind.Eng.Chem.Res. 2008. V.47. P.6158-6165].
Недостатком указанных способов импрегнирования является необходимость использования органических растворителей и последующее их удаление в вакууме.
Наиболее близким к заявляемому способу является способ получения сорбционных материалов, предназначенных для сорбционного извлечения актинидных и редкоземельных элементов, на основе углеродных нанотрубок путем их модифицирования. Способ получения этих материалов заключается в химическом закреплении комплексообразующих групп фосфорсодержащих лигандов: карбамоилметилфосфиноксидов, ацетаминфосфиноксидов; а также малонамидов, краун-эфиров, гетероциклических азотсодержащих соединений и др. на углеродных нанотрубках. Согласно данному способу модифицирование проводится в несколько стадий. Для модифицирования используют одно-, дву- или многостенные углеродные нанотрубки. Например, многостенные углеродные нанотрубки обрабатывают в течение 12-24 ч тионилхлоридом, затем этилендиамином в среде диметилформамида, затем полученный продукт суспензируют в сухом хлороформе с амином, например этиламином, и хлорацетил хлоридом при 0° в токе азота и после этого к полученному продукту добавляют реагент, содержащий комплексообразующие группы, при нагревании до 150°С. Полученный продукт промывают ацетоном, метанолом и сушат в вакууме. Данные, характеризующие сорбционную способность полученных модифицированных углеродных нанотрубок по отношению к актинидным и редкоземельным элементам в азотнокислых растворах, в материалах патента не приведены.
[WO №2009048596, B01D 59/26, B82B 1/00, опубл. 2009.04.16].
Недостатком указанного способа является многостадийность, трудоемкость и длительность процесса модифицирования углеродных нанотрубок, необходимость использования многих реагентов и растворителей.
Задачей изобретения является упрощение способа получения сорбционных материалов на основе углеродных нанотрубок, предназначенных для извлечения актинидных и редкоземельных элементов из растворов.
Поставленная задача достигается тем, что способ получения сорбционных материалов для извлечения актинидных и редкоземельных элементов из растворов предусматривает импрегнирование углеродных нанотрубок в процессе их перемешивания с фосфорорганическими лигандами в среде 3,0-8,0 М НNО3 при весовом соотношении реагент:носитель (в г/г) (0,175-1):1 с последующим промыванием полученного продукта 3-кратным количеством 3,0-8,0 М НNО3.
В качестве фосфорорганических лигандов используют лиганды класса диарил [диалкилкарбамоилметил] фосфиноксидов; моно-, ди- и триалкилфосфиноксидов; фосфониевые ионные жидкости или эфиры фосфорной кислоты, а в качестве углеродных нанотрубок используют одно-, дву- или многостенные углеродные нанотрубки, например, нанотрубоки типа "Таунит".
Обычно процесс ведут при комнатной температуре в течение не менее 2-х часов.
Весовое соотношение (г/г) реагент:носитель (0,175-1):1 обеспечивает наиболее полное удерживание реагента на носителе, благодаря чему достигается высокая сорбционная способность полученного материала по отношению к актинидами и РЗЭ в 1-6 М НNО3. Сорбционная способность продукта, полученного при соотношении реагент-носитель, большем, чем 1:1, увеличивается незначительно.
Углеродный наноматериал УНТ «Таунит»® представляет собой одномерные наномасштабные нитевидные образования поликристаллического графита в виде многостенных углеродных нанотрубок и является коммерчески доступным продуктом, характеризующимся химической, физической и радиационной устойчивостью. Технология получения углеродных нанотрубок «Таунит» разработана Тамбовским государственным университетом [Патент РФ №2296827, кл. D01F 9/27, опубл. 10.04.2007].
В качестве реагентов для закрепления на твердой фазе используются фосфорорганические реагенты класса эфиров фосфорной кислоты, например, трибутилфосфат; диарил [диалкилкарбамоилметил] фосфиноксидов, например, дифенилдибутилкарбамоилметилфосфиноксид; моно-, ди- и триалкилфосфиноксидов, например, триоктилфосфиноксид; фосфосфониевые ионные жидкости, например, хлорид тригексилтетрадецилфосфония, которые применяются для экстракционного извлечения актинидов и редкоземельных элементов из азотнокислых растворов и являются доступными для использования реагентами.
Полученный по данному способу сорбционный материал представляет собой порошок черного цвета, устойчивый в азотнокислых растворах, и обладающий способностью сорбционного извлечения актинидов и РЗЭ, что подтверждается данными по коэффициентам распределения Am(III), Pu(IV), U(VI) и Eu(III) при их сорбционном извлечении из растворов 1-6 М HNO3 в статических условиях.
Содержание реагента в продукте, определенное весовым методом, составляет от 0,15 до 0,5 г/г.
Пример 1.
2 г УНТ «Таунит» и 2 г дифенилдибутилкарбамоилметилфосфин оксида перемешивают в 20 мл 5М НNО3 в течение 2 часов. Твердый продукт отделяли от раствора центрифугированием, промывали 60 мл 5М НNО3 и высушивали на воздухе в течение 48 ч. Вес целевого продукта 3,8 г.
Содержание дифенилдибутилкарбамоилметилфосфиноксида в полученном продукте составляет 0,47 г/г (1,3 ммоль/г).
Пример 2.
Продукт, полученный аналогично примеру 1, помещают в раствор 1-6 М НNО3, содержащий радионуклиды с концентрацией 233+238U - 1,8·10-4-3,4·10-5; 241Am - (1,2-3,6)·10-8, 239Pu - 1,4·10-6-6,6·10-7 моль/л; 152Eu - (1,48-2,04)·104 Бк/мл. Сорбционное извлечение проводят путем механического перемешивания жидкой и твердой фазы в течение 1 часа при соотношении V:m=20-100 мл/г. После концентрирования раствор и твердую фазу разделяют центрифугированием в течение 15 мин и определяют содержание радионуклидов в растворе и твердой фазе методом α-спектрометрии. Полученный материал характеризуют коэффициентами распределения при сорбционном извлечении (V:m=100; 3М HNO3): Pu(IV) - 4,5·104, U(VI) - 3,0·104, Am(III) - 9,9·103, Eu(III) - 1,5·103 мл/г. Коэффициенты распределения рассчитывают по формуле
Figure 00000001
где А0 и As - концентрации радионуклидов в водном растворе до и после установления равновесия, m - масса сорбента, г; V - объем раствора, мл.
Пример 3
2 г УНТ «Таунит» и 1 г дифенилдибутилкарбамоилметилфосфин оксида перемешивали в 20 мл 5М НNО3 в течение 2 часов. Твердый продукт отделяли от раствора центрифугированием, промывали 3-кратным количеством - 60 мл 5М НNO3 и высушивали на воздухе в течение 48 ч. Вес целевого продукта 3,0 г. Содержание дифенилдибутилкарбамоилметилфосфин оксида в полученном продукте 0,33 г/г (0,9 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (3М НNO3; V:m=100): Pu(IV) - 1,5·104, U(VI) - 2,0·104, Am(III) - 4,0·103 мл/г.
Пример 4
2 г УНТ «Таунит» и 0,35 г дифенилдибутилкарбамоилметилфосфин оксида перемешивали в 20 мл 5М НNО3 в течение 2 часов. Твердый продукт отделяли от раствора центрифугированием, промывали 60 мл 5М НNO3 и высушивали на воздухе в течение 48 ч. Вес целевого продукта - 2,35 г. Содержание дифенилдибутилкарбамоилметилфосфин оксида в полученном продукте 0,15 г/г (0,4 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (ЗМ НNО3; V:m=100): Pu(IV) - 4,4·103, U(VI) - 4,0·103, Am(III) - 2,8-102 мл/г.
Пример 5.
2,5 г УНТ «Таунит» и 2,5 г триоктилфосфин оксида перемешивают в 25 мл раствора 6М НNО3 в течение 2 часов. Твердый продукт отделяют от раствора центрифугированием, промывают раствором 6М НNО3 и высушивают при 70°С в течение 20 ч. Вес целевого продукта 4,8 г. Содержание триоктилфосфин оксида в полученном продукте составляет 0,48 г/г (1,3 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (1М НNO3; V:m=100): Pu(IV) - 1,9·104, U(VI) - 1,2·104, Am(III) - 20,8, Eu(III) - 48,9 мл/г.
Пример 6.
1 г УНТ «Таунит» и 0,7 мл (0,64 г) хлорида тригексил(тетрадецил) фосфония перемешивают в 10 мл раствора 3М HNO3 в течение 2 часов. Твердый продукт отделяют от раствора центрифугированием, промывают раствором 3М НNО3 и высушивают на воздухе в течение 48 ч. Вес целевого прдукта 1,57 г. Содержание хлорида тригексил (тетрадецил) фосфония в полученном продукте составляет 0,36 г/г (0,7 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (3М НNО3; V:m=100): Pu(IV) - 1,6·103, U(VI) - 25,7 мл/г.
Пример 7.
0,5 г УНТ «Таунит» и 0,5 мл (0,45 г) хлорида тригексил(тетрадецил) фосфония перемешивают в 5 мл раствора 3М HNO3 в течение 2 часов. Твердый продукт отделяют от раствора центрифугированием, промывают раствором 3М НNO3 и высушивают на воздухе в течение 48 ч. Вес целевого продукта 0,93 г. Содержание хлорида тригексил (тетрадецил) фосфония в полученном продукте составляет 0,46 г/г (0,9 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (V:m=100): Pu(IV) - 2,1·103 (3М НNО3), U(VI) - 65 (1М HNO3) мл/г.
Пример 8
0,5 г УНТ «Таунит» и 0,5 мл (0,49 г) трибутилфосфата перемешивают в 5 мл раствора 8М НNО3 в течение 2 суток. Твердый продукт отделяют от раствора центрифугированием, промывают раствором 6М НNО3 и высушивают при 70°С в течение 24 ч. Вес целевого продукта 0,71 г. Содержание трибутилфосфата в полученном продукте составляет 0,30 г/г (1,1 ммоль/г). Аналогично примеру №2 продукт характеризуются коэффициентами распределения при сорбционном извлечении: Pu(IV) - 1,6·102 (V:m=100; 1М НNO3), U(VI) - 69 (V:m=20; 6М НNO3) мл/г.
Преимущество предлагаемого способа получения композиционного материала заключается в том, что импрегнирование выполняется в одну стадию в процессе перемешивания углеродных нанотрубок с модифицирующим реагентом в растворе 3-8М НNО3. Полученный продукт характеризуется устойчивостью в азотнокислых растворах и способностью сорбционного извлечения актинидов и редкоземельных элементов. Импрегнирование выполняется без использования органических растворителей или других реагентов и дополнительных операций.

Claims (4)

1. Способ получения сорбционного материала на основе углеродных нанотрубок для извлечения актинидных и редкоземельных элементов, предусматривающий импрегнирование углеродных нанотрубок фосфорорганическими лигандами в процессе перемешивания в среде 3,0-8,0 М НNО3 в весовом соотношении реагент-носитель (0,175-1,0):1,0 с последующим промыванием полученного продукта 3-кратным количеством 3,0-8,0 М НNО3.
2. Способ по п.1, отличающийся тем, что в качестве импрегнируемых лигандов используют фосфорорганические лиганды класса диарил[диалкилкарбамоилметил]фосфиноксидов, моно-, ди- и триалкилфосфиноксидов, фосфониевые ионные жидкости или эфиры фосфорной кислоты.
3. Способ по п.1, отличающийся тем, что в качестве углеродных нанотрубок используют одно-, дву- или многостенные углеродные нанотрубки, например нанотрубки типа "Таунит".
4. Способ по п.1, отличающийся тем, что процесс ведут при комнатной температуре в течение не менее 2 ч.
RU2010138752/05A 2010-09-21 2010-09-21 Способ получения сорбционных материалов на основе углеродных нанотрубок RU2462297C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010138752/05A RU2462297C2 (ru) 2010-09-21 2010-09-21 Способ получения сорбционных материалов на основе углеродных нанотрубок

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010138752/05A RU2462297C2 (ru) 2010-09-21 2010-09-21 Способ получения сорбционных материалов на основе углеродных нанотрубок

Publications (2)

Publication Number Publication Date
RU2010138752A RU2010138752A (ru) 2012-03-27
RU2462297C2 true RU2462297C2 (ru) 2012-09-27

Family

ID=46030528

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010138752/05A RU2462297C2 (ru) 2010-09-21 2010-09-21 Способ получения сорбционных материалов на основе углеродных нанотрубок

Country Status (1)

Country Link
RU (1) RU2462297C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2560361C2 (ru) * 2012-07-29 2015-08-20 Закрытое Акционерное Общество "Аксион-Редкие И Драгоценные Металлы" Способ получения комплексообразующего сорбента для селективного извлечения индия
RU2620809C1 (ru) * 2016-01-26 2017-05-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" (УлГТУ) Способ модифицирования природных сорбентов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281631A (en) * 1991-12-20 1994-01-25 Arch Development Corp. Phosphonic acid based ion exchange resins
RU2321536C1 (ru) * 2006-07-05 2008-04-10 Институт физики твердого тела РАН Устройство для увеличения сорбционной емкости углеродных нанотрубок
RU2379669C1 (ru) * 2008-12-22 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная технологическая академия" Способ формирования на электродах пьезосенсоров сорбционных покрытий из углеродных нанотрубок
RU2397139C1 (ru) * 2008-12-03 2010-08-20 Сергей Владимирович Гусев Способ и устройство для непрерывного производства нанодисперсных материалов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281631A (en) * 1991-12-20 1994-01-25 Arch Development Corp. Phosphonic acid based ion exchange resins
RU2321536C1 (ru) * 2006-07-05 2008-04-10 Институт физики твердого тела РАН Устройство для увеличения сорбционной емкости углеродных нанотрубок
RU2397139C1 (ru) * 2008-12-03 2010-08-20 Сергей Владимирович Гусев Способ и устройство для непрерывного производства нанодисперсных материалов
RU2379669C1 (ru) * 2008-12-22 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная технологическая академия" Способ формирования на электродах пьезосенсоров сорбционных покрытий из углеродных нанотрубок

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2560361C2 (ru) * 2012-07-29 2015-08-20 Закрытое Акционерное Общество "Аксион-Редкие И Драгоценные Металлы" Способ получения комплексообразующего сорбента для селективного извлечения индия
US9375702B2 (en) 2012-07-29 2016-06-28 Joint-Stock Company “AXION-Rare-Earth and Noble Metals” Method for producing a complex-forming sorbent for selective extraction of indium
RU2620809C1 (ru) * 2016-01-26 2017-05-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" (УлГТУ) Способ модифицирования природных сорбентов

Also Published As

Publication number Publication date
RU2010138752A (ru) 2012-03-27

Similar Documents

Publication Publication Date Title
De Decker et al. Carbamoylmethylphosphine oxide-functionalized MIL-101 (Cr) as highly selective uranium adsorbent
Hu et al. Size-selective separation of rare earth elements using functionalized mesoporous silica materials
Prabhakaran et al. Selective extraction of U (VI), Th (IV), and La (III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin
Ferrah et al. Sorption efficiency of a new sorbent towards uranyl: phosphonic acid grafted Merrifield resin
Maheswari et al. Selective enrichment of U (VI), Th (IV) and La (III) from high acidic streams using a new chelating ion-exchange polymeric matrix
Wen et al. Aminotriazole isomers modified cellulose microspheres for selective adsorption of U (VI): Performance and mechanism investigation
RU2462297C2 (ru) Способ получения сорбционных материалов на основе углеродных нанотрубок
WO2014031702A1 (en) Polymers grafted with organic phosphorous compounds for extracting uranium from solutions
Chi et al. Polyvinyl alcohol fibers with functional phosphonic acid group: synthesis and adsorption of uranyl (VI) ions in aqueous solutions
Cortina et al. SOLVENT IMPREGNATED RESINS CONTAINING DI-(2-ETHYLHEXYL) PHOSPHORIC ACID. I. PREPARATION AND STUDY OF THE RETENTION AND DISTRIBUTION OF THE EXTRACTANT ON THE RESIN.
Fedotov et al. Fractionation and mobility of trace elements in soils and sediments
JP2017520667A (ja) 陽イオンの分離のための新規な錯体
Wang et al. Extractant (2, 3-dimethylbutyl)(2, 4, 4′-trimethylpentyl) phosphinic acid (INET-3) impregnated onto XAD-16 and its extraction and separation performance for heavy rare earths from chloride media
CN112940270B (zh) 一种吸附分离铼或锝的MOFs材料及其制备方法和应用
CN104974317A (zh) 一种锶离子表面印迹聚合物包覆硅胶微球的制备方法
JP4762884B2 (ja) リン含有デンドリマー類、それらの製造方法、並びにアクチニド及びランタニドを抽出するためのデンドリマー類の使用
JP5929290B2 (ja) 目的金属イオン吸着剤及びその製造方法
Dolak Selective adsorption of U (VI) by using U (VI)-imprinted poly-hydroxyethyl methacrylate-methacryloyl-L-histidine (P-[HEMA-(MAH) 3]) cryogel polymer.
Prasetyo et al. Solid Phase Extraction of Thorium and Uranium and their Separation from Lanthanides using Humic Acid Silica Gel as a Low-Cost Adsorbent.
Chiarizia et al. Radium separation through complexation by aqueous crown ethers and ion exchange or solvent extraction
Morgalyuk et al. Phosphoryl-containing chelating sorbents for concentrating actinides
Domon et al. Selection of the alkylamino group introduced into the polymer chain grafted onto a porous membrane for the impregnation of an acidic extractant
JP4149330B2 (ja) アクチノイドの分離方法
Sharifian et al. Resin-based approaches for selective extraction and purification of rare earth elements: A comprehensive review
JP2847182B2 (ja) リチウム同位体分離剤及びリチウム同位体の分離方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120922

NF4A Reinstatement of patent

Effective date: 20131010