RU2456708C1 - Способ изготовления ячейки фотоприемного устройства - Google Patents

Способ изготовления ячейки фотоприемного устройства Download PDF

Info

Publication number
RU2456708C1
RU2456708C1 RU2011111730/28A RU2011111730A RU2456708C1 RU 2456708 C1 RU2456708 C1 RU 2456708C1 RU 2011111730/28 A RU2011111730/28 A RU 2011111730/28A RU 2011111730 A RU2011111730 A RU 2011111730A RU 2456708 C1 RU2456708 C1 RU 2456708C1
Authority
RU
Russia
Prior art keywords
semiconductor layer
layer
type
conductivity
groove
Prior art date
Application number
RU2011111730/28A
Other languages
English (en)
Inventor
Валерий Владимирович Уздовский (RU)
Валерий Владимирович Уздовский
Владимир Иванович Хайновский (RU)
Владимир Иванович Хайновский
Елена Александровна Денисова (RU)
Елена Александровна Денисова
Надежда Владимировна Игнатьева (RU)
Надежда Владимировна Игнатьева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ)
Priority to RU2011111730/28A priority Critical patent/RU2456708C1/ru
Application granted granted Critical
Publication of RU2456708C1 publication Critical patent/RU2456708C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Abstract

Изобретение относится к области электроники и измерительной техники. Сущность изобретения: способ изготовления ячейки фотоприемного устройства включает процессы формирования трех вертикально-интегрированных слоев чередующихся n- и р-типов проводимости на полупроводниковой подложке р-типа, причем к каждому указанному слою и подложке формируются омические контакты. В верхнем полупроводниковом слое вытравливается канавка глубиной, по крайней мере, равной 0,6 глубины верхнего полупроводникового слоя, которая в последующем заполняется полупроводниковым слоем противоположного типа проводимости с основной концентрацией легирующей примеси, по крайней мере, на порядок величины меньше концентрации легирующей примеси в верхнем полупроводниковом слое, и, кроме того, в сформированном в канавке полупроводниковом слое формируется приповерхностный полупроводниковый слой противоположного типа проводимости толщиной, по крайней мере, равной 0,3 толщины расположенного под ним полупроводникового слоя противоположного типа проводимости, в котором сформирована канавка, причем концентрация легирующей примеси в данном слое превосходит, по крайней мере, на порядок концентрацию основной примеси нижележащего полупроводникового слоя. Техническим результатом изобретения является обеспечение изготовления фотоприемных устройств, обладающих увеличенной селективностью разложения белого цвета на спектральные диапазоны длин волн и расширенными функциональными возможностями. 3 ил.

Description

Изобретение относится к области электроники и измерительной техники и предназначено для изготовления ячейки фотоприемного устройства для регистрации излучения в различных спектральных диапазонах видимого спектра излучения в фотоэлектрических спектрально-селективных преобразователях изображения.
Известны способы для изготовления устройств для регистрации видимого излучения в различных спектральных диапазонах на основе интерференционных фильтров, в которых используются разнесенные по площади фоточувствительной структуры области для регистрации различных спектральных диапазонов, при этом они снабжаются дополнительно фильтрами для поглощения определенного спектрального диапазона видимого излучения: синего, зеленого или красного диапазонов [1, 2]. Однако данные способы изготовления фотоприемных устройств позволяют изготавливать устройства, которые имеют сложную конструкцию и технологию изготовления, требуют дополнительной площади для регистрации каждого спектрального диапазона видимого излучения.
От данного недостатка свободны способы изготовления фотоприемных устройств на основе приборов с зарядовой связью с фоточувствительными каналами, размещенными на различных расстояниях в глубине полупроводниковой подложки [3-4]. Устройства данного типа используют эффект спектральной зависимости коэффициента поглощения оптического излучения для различного спектрального диапазона видимого излучения от глубины проникновения излучения в материал кремниевой подложки. Однако работа полученных данным способом устройств данного типа основана на переносе зарядовых пакетов через всю кремниевую структуру для сброса в регистр, что приводит к уменьшению эффективности переноса.
От этого недостатка свободен способ создания фотоприемных устройств, который является наиболее близким аналогом, способ включает изготовление трех вертикально-интегрированных слоев чередующихся n- и p-типов проводимости на полупроводниковой подложке p-типа, причем к каждому указанному слою и подложке формируются омические контакты [5]. Однако данный способ изготовления позволяет создавать устройство, которое имеет достаточно размытый спектральный диапазон для регистрации синего, зеленого и красного диапазона видимого излучения, кроме того, данное устройство может регистрировать только три спектральных диапазона видимого излучения.
Задачей предложенного изобретения - способа изготовления фотоприемного устройства - является обеспечение изготовления фотоприемных устройств, обладающих увеличенной селективностью разложения белого цвета на спектральные диапазоны длин волн для регистрации синего, зеленого и красного спектральных диапазонов видимого излучения и расширенными функциональными возможностями за счет селективной регистрации пяти спектральных диапазонов видимого излучения.
Поставленная задача достигается тем, что предложенный способ изготовления ячейки фотоприемного устройства дополнительно включает процессы формирования трех вертикально-интегрированных слоев чередующихся n- и p-типов проводимости на полупроводниковой подложке p-типа, причем к каждому указанному слою и подложке формируются омические контакты, отличающийся тем, что дополнительно в верхнем полупроводниковом слое вытравливается канавка глубиной, по крайней мере, равной 0,6 глубины верхнего полупроводникового слоя, которая в последующем заполняется полупроводниковым слоем противоположного типа проводимости с основной концентрацией легирующей примеси, по крайней мере, на порядок величины меньше концентрации легирующей примеси в верхнем полупроводниковом слое, и, кроме того, в сформированном в канавке полупроводниковом слое формируется приповерхностный полупроводниковый слой противоположного типа проводимости толщиной, по крайней мере, равной 0,3 толщины расположенного под ним нижележащего полупроводникового слоя противоположного типа проводимости, в котором сформирована канавка, причем концентрация легирующей примеси в данном слое превосходит, по крайней мере, на порядок концентрацию основной примеси нижележащего полупроводникового слоя.
На фиг.1 представлен схематический разрез фотоприемного устройства, полученного с помощью предложенного способа, с пятью вертикально-интегрированными областями противоположного типа проводимости, образующими пять вертикально-интегрированных р-n- переходов:
1 - глубокий слой n-типа проводимости;
2 - глубокий слой p-типа проводимости;
3 - средний слой n-типа проводимости;
4 - средний слой p-типа проводимости;
5 - приповерхностный слой n-типа проводимости.
V1, V2, V3, V4, V5 - контакты для управляющих напряжений.
На фиг.2 представлено распределение электрического потенциала в фотоячейке с пятью вертикально-интегрированными слоями противоположного типа проводимости при Т=300К. Кривая 1 - начальное стационарное обедненное состояние n- и p-областей, управляющие напряжения равны: V1=V3=V5=+1,5 В; V2=V4=-1,0 В; кривая 2 - равновесное состояние, соответствующие управляющие напряжения равны: V1=V2=V3=V4=V5=0.
На фиг.3 представлены спектральные характеристики фоточувствительностей n-областей фотоячейки с пятью вертикально-интегрированными слоями противоположного типа проводимости (сплошные линии): 1 - приповерхностная n-область, 2 - средняя n-область; 3 - глубокая n-область. Для сравнения пунктиром указаны спектральные характеристики фоточувствительностей n- и p-областей фотоячейки с тремя вертикально-интегрированными слоями противоположного типа проводимости.
Предложенный способ изготовления ячейки фотоприемного устройства содержит следующие процессы: процесс формирования в полупроводниковой подложке p-типа проводимости глубокого слоя n-типа проводимости 1, толщиной до 2,5 мкм с концентрацией легирующей примеси, превышающей, по крайней мере, на порядок концентрацию легирующей примеси в подложке p-типа проводимости; процесс формирования в глубоком слое n-типа проводимости среднего слоя p-типа проводимости 2, толщиной до 1,7 мкм с концентрацией легирующей примеси, превышающей, по крайней мере, на порядок концентрацию легирующей примеси в глубоком слое n-типа проводимости; процесс формирования в среднем слое p-типа проводимости среднего слоя n-типа проводимости 3, толщиной до 1,2 мкм с концентрацией легирующей примеси, превышающей, по крайней мере, на порядок концентрацию легирующей примеси в среднем слое p-типа проводимости; процесс формирования в среднем слое n-типа проводимости канавки, глубиной до 0,7 мкм 4;5 и составляющей, по крайней мере, до 0,6 толщины среднего полупроводникового слоя n-типа проводимости, данный процесс может быть осуществлен методом плазмохимического травления, далее вся глубина указанной канавки заполняется методом эпитаксиального осаждения эпитаксиальным полупроводниковым слоем p-типа проводимости с концентрацией легирующей примеси, по крайней мере, на порядок величины меньшей концентрации легирующей примеси в формируемом в нем верхнем приповерхностном полупроводниковом слое n-типа проводимости 5, толщиной до 0,2 мкм и составляющей, по крайней мере, до 0,3 толщины расположенного под ним нижележащего полупроводникового слоя противоположного типа проводимости, в котором сформирована канавка, причем концентрация легирующей примеси в данном слое превосходит, по крайней мере, на порядок концентрацию основной примеси нижележащего полупроводникового слоя.
Толщины полупроводникового слоя в канавке и толщина сформированного в нем полупроводникового слоя противоположного типа проводимости составляет, по крайней мере, соответственно 0,6 и 0,3 полупроводниковых слоев, в которые они встроены. Указанные толщины обеспечивают оптимальные условия работы вертикально-интегрированных p-n - переходов и селективное разделение цветов оптического излучения. Полученные с помощью предложенного способа изготовления фотоприемной ячейки с пятью вертикально-интегрированными p-n-переходами указанные толщины соответственно равны: для нижнего n-слоя - 2,5 мкм, для среднего p-слоя - 1,7 мкм, для среднего n-слоя - 1,2 мкм, для верхнего p-слоя, полученного эпитаксиальным наращиванием полупроводника p-типа в канавке, вытравленной предварительно в среднем n-слое, 0,7 мкм, толщина приповерхностного полупроводникового слоя, выполненного в верхнем p-слое, равна 0,2 мкм. Указанные толщины были получены оптимизацией рассматриваемой фоточувствительной структуры путем численного расчета на ЭВМ по математической программе приборно-технологического моделирования ISE TCAD с целью получения требуемых максимумов спектральных чувствительностей рассматриваемой структуры фотоячейки с пятью вертикально-интегированными p-n - переходами, изготовленной на полупроводниковом монокристаллическом кремнии.
Указанное численное моделирование толщин полупроводниковых слоев существенно определяется оптическим коэффициентом собственного поглощения полупроводникового монокристаллического кремния для разных длин волн оптического поглощения фоточувствительной ячейкой излучения. Указанный коэффициент непосредственно введен в указанную программу ISE TCAD и для упомянутых выше толщин полупроводниковых слоев n- и p-типов проводимостей соответствующие максимумы спектральных фоточувствительностей для n-типа слоев приходятся на длины волн соответственно: приповерхностный слой - 0,42 мкм (синий), средний n-слой - 0,54 мкм (зеленый), глубокий n-слой - 0,72 мкм (красный). В то время как для оптимизированной структуры фотоячейки с тремя вертикально-интегрированными p-n - переходами (трехслойной структуры фотоячейки, использованной в прототипе) толщины полупроводниковых слоев составляют 0,2 мкм, 0,6 мкм и 2,0 мкм, а соответствующие им максимумы спектральных фоточувствительностей приходятся на длины волн поглощаемого оптического излучения приходятся на длины волн 0,42 мкм, 0,50 мкм и 0,62 мкм. Следовательно, в предложенном методе изготовления фотоячейки максимумы основных трех цветов синего, зеленого и красного разделены по длинам волн лучше, что является существенным для систем технического зрения. Кроме того, предлагаемый способ изготовления фотоячейки позволяет получать структуру, из которой в рабочем режиме могут быть считаны из p-слоев два дополнительных спектрально разделенных фотосигнала с максимумами на длинах волн 0,47 мкм и 0,62 мкм. Наличие этих дополнительных светосигналов расширяет функциональные возможности фотоячейки, изготовленной по предложенному способу изготовления.
Для указанных оптимальных толщин фотоячейки с пятью вертикально-интегрированными p-n - переходами, рассчитанных по программе ISE TCAD, получены соответствующие концентрации основных легирующих примесей соответственно:
для приповерхностного n-слоя 1·1018 см-3-1·1019 см-3;
для эпитаксиального p-слоя в канавке 1·1017 см-3;
для среднего n-слоя 1·1018 см-3;
для среднего p-слоя 1·1017 см-3;
для глубокого n-слоя 1·1016 см-3;
для кремниевой полупроводниковой подложки - 1·1015 см-3.
Указанные оптимальные толщины слоев и концентрации легирующих примесей в них позволяют исключить нежелательный лавинный электрический пробой n-p - переходов, существующих на границах рассматриваемых слоев в рабочих режимах фотоячейки с управляющими напряжениями в диапазоне 1÷3 В и подаваемых на соответствующие омические контакты фотоячейки, полученной с помощью предлагаемого способа изготовления фотоячейки для селективной регистрации различных спектральных диапазонов видимого спектра излучения.
Таким образом, предложенный способ позволяет изготавливать в рассматриваемой структуре пять p-n - переходов, удаленных от верхней поверхности кремниевой подложки на глубины 0,2 мкм, 0,7 мкм, 1,2 мкм, 1,7 мкм и 2,5 мкм. При освещении структуры ячейки сверху оптическим излучением указанные глубины залегания p-n - переходов от поверхности подложки обеспечивают разделение образующихся фотоносителей, соответствующих разным диапазонам длин волн оптического излучения. Это является следствием зависимости коэффициента поглощения оптического излучения в кремнии от длины волны [6].
В результате численного расчета на ЭВМ уравнений фоторелаксации n- и p-областей этой структуры установлено, что максимумы спектральных фоточувствительностей лучше разделены, чем в фотоячейке, содержащей три вертикально-интегрированных области с противоположными типами проводимости, и приходятся на длины волн: для приповерхностной n-области 0,42 мкм, для средней p-области 0,47 мкм, для средней n-области 0,53 мкм, для глубокой p-области 0,62 мкм, для глубокой n-области 0,7 мкм, в то время как в фоточувствительной структуре с тремя вертикально-интегрированными областями с противоположными типами проводимости спектральные характеристики фоточувствительностей n- и p-областей структуры фотоячейки раззделены по длинам волн оптического диапазона так, что максимумы спектральных фоточувствительностей приходятся соответственно на длины волн: для приповерхностной n-области 0,42 мкм, для средней p-области 0,5 мкм, для глубокой n-области 0,62 мкм.
Фоточувствительное устройство, изготовленное по предложенному способу, включает в себя процессы ионной имплантации соответствующих легирующих примесей атомов (ионов) фосфора, бора с последующими их "отжигами" для создания последовательно вложенных одна в другую n- и p-областей. Для создания p-n - переходов концентрации соответствующих легирующих примесей увеличиваются в 10 раз (для перекомпенсации предыдущей примеси).
С увеличением концентрации примесей в n- и p-областях существенно уменьшаются соответствующие ОПЗ p-n-переходов и, следовательно, возрастают внутренние электрические поля. Для устранения превышения электрического поля ОПЗ критического значения в двух приповерхностных p-n - переходах изготавливаются полупроводниковые слои с меньшей концентрацией легирующей примеси.
Предложенный способ позволяет создать фотоприемное устройство, которое работает следующим образом: в потенциальных ямах, сформированных управляющими напряжениями в вертикально-интегрированных полупроводниковых слоях, генерируются фотоносители за счет поглощения в каждом из слоев излучения видимого диапазона, соответствующего различным длинам волн в зависимости от глубины размещения вертикально-интегрированного слоя различного типа проводимости, затем производится считывание фотоиндуцированного заряда с помощью МОП транзисторов.
Распределение электрического потенциала в пятидиодной фотоячейке было получено аналитическим решением уравнения Пуассона для каждой n- и p - областей ее структуры.
Кроме того, были выполнены численные расчеты на ЭВМ с помощью программы САПР ISE TCAD одномерного и двумерного распределений электрических потенциалов в полупроводниковой толще структуры фотоячейки в соответствии с толщинами слоев согласно фиг.1 и выбранными концентрациями легирующих примесей в них.
Распределение электрического потенциала в пятидиодной вертикальной фотоячейке при Т=300К представлено на фиг.4, где кривая 1 - начальное стационарное обедненное состояние n- и p-областей, управляющие напряжения равны V1=V3=V5=+1,5 В; V2=V4=-1,0 В; кривая 2 - равновесное состояние, соответствующие управляющие напряжения равны V1=V2=V3=V4=V5=0
Был также выполнен расчет времени терморелаксации рассматриваемой структуры по соотношению:
Figure 00000001
При этом учли, что максимальные рассчитанные величины фотоносителей, собираемых в каждой "потенциальной яме", а именно:
в глубокой n-области - ΔQn1фото=2,62·1011 см-2;
в p-области - ΔQp1фото=8,2·1011 см-2;
в средней n-области - ΔQn2фото=18,4·1011 см-2;
в средней p-области - ΔQp2фото=13,9·1011 см-2;
в приповерхностной n-области - ΔQn3фото=9,64·10-11 см-2.
Кроме того, установлено, что величины соответствующих плотностей термотоков в рассматриваемых n- и p-областях структуры равны (мкА/см2): 2,3; 6,4; 4,6; 10,0; 3,3. Поэтому согласно выражению (1) времена терморелаксации n- и p-областей равны:
Figure 00000002
;
Figure 00000003
;
Figure 00000004
;
Figure 00000005
и
Figure 00000006
. В качестве общего времени терморелаксации всей структуры выбрано наименьшее из указанных времен - 0,018 с. Тогда время цикла (одного периода) управления фотоячейкой равно: Тцикл=0,001·Ттерм=18 мкс, а соответствующая частота цикла управления фотоячейкой равна
Figure 00000007
.
На основании полученных данных по фототокам построены (в относительном масштабе) спектральные характеристики фоточувствительностей каждой n-области структуры рассматриваемой фотоячейки, которые представлены на фиг.3. Спектральные характеристики фоточувствительностей n-областей пятидиодной фотоячейки (сплошные линии): 1 - приповерхностная n-область, 2 - средняя n-область; 3 - глубокая n-область. Для сравнения пунктиром указаны спектральные характеристики фоточувствительностей n- и p - областей трехдиодной фотоячейки. Эти зависимости показывают, что максимумы спектральных фоточувствительностей n-областей соответствуют следующим длинам волн: для приповерхностной n-области - λmax=0,42 мкм, для средней n-области - λmax=0,53 мкм, для глубокой n-области - λmax-=0,7 мкм. Сравнение со спектральными характеристиками фоточувствительностей n- и p-областей трехдиодной фотоячейки показывает, что предложенная фотоячейка с пятью вертикально-интегрированными фотодиодами проявляет большую селективность в разделении оптического диапазона длин волн на три спектральные области: "синюю", "зеленую" и "красную".
Кроме того, наличие еще двух дополнительных фотосигналов, считываемых из двух p-областей, дает еще два дополнительных спектральных диапазона с максимумами, соответствующими длинам волн: λmax=0,47 мкм и λmax=0,62 мкм. Указанные особенности пятидиодной фотоячейки расширяют ее применение в качестве спектрозонального фотоприемника для систем технического зрения.
Таким образом, проведенный анализ конструктивных параметров, амплитуд управляющих напряжений, фотоэлектрических характеристик фотоячейки с пятью вертикально-интегрированными p-n - переходами, полученный с помощью предложенного способа изготовления, показал возможность создания на ее основе спектрозонального фотоэлектрического преобразователя изображений с высокой селективностью выделения нескольких (пяти) оптических диапазонов длин волн. Это делает перспективным его применение в системах технического зрения.
Использованные источники информации
1. Патент США №3971065.
2. Патент США №5502299.
3. Патент США №4651001.
4. Патент США №4677286.
5. Патент США №59698875 (прототип).
6. Dash W.C. and Newman R. Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77K and 300K // Physical Rewiew, vol.99, №4, august 1955, pp.1151-1155.

Claims (1)

  1. Способ изготовления ячейки фотоприемного устройства, включающий процессы формирования трех вертикально-интегрированных слоев чередующихся n- и р-типов проводимости на полупроводниковой подложке р-типа, причем к каждому указанному слою и подложке формируются омические контакты, отличающийся тем, что дополнительно в верхнем полупроводниковом слое вытравливается канавка глубиной, по крайней мере, равной 0,6 глубины верхнего полупроводникового слоя, которая в последующем заполняется полупроводниковым слоем противоположного типа проводимости с основной концентрацией легирующей примеси, по крайней мере, на порядок величины меньше концентрации легирующей примеси в верхнем полупроводниковом слое, и кроме того, в сформированном в канавке полупроводниковом слое формируется приповерхностный полупроводниковый слой противоположного типа проводимости толщиной, по крайней мере, равной 0,3 толщины расположенного под ним нижележащего полупроводникового слоя противоположного типа проводимости, в котором сформирована канавка, причем концентрация легирующей примеси в данном слое превосходит, по крайней мере, на порядок концентрацию основной примеси нижележащего полупроводникового слоя.
RU2011111730/28A 2011-03-29 2011-03-29 Способ изготовления ячейки фотоприемного устройства RU2456708C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011111730/28A RU2456708C1 (ru) 2011-03-29 2011-03-29 Способ изготовления ячейки фотоприемного устройства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011111730/28A RU2456708C1 (ru) 2011-03-29 2011-03-29 Способ изготовления ячейки фотоприемного устройства

Publications (1)

Publication Number Publication Date
RU2456708C1 true RU2456708C1 (ru) 2012-07-20

Family

ID=46847585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011111730/28A RU2456708C1 (ru) 2011-03-29 2011-03-29 Способ изготовления ячейки фотоприемного устройства

Country Status (1)

Country Link
RU (1) RU2456708C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114041209A (zh) * 2019-07-26 2022-02-11 株式会社东芝 光电转换层、太阳能电池、多结太阳能电池、太阳能电池组件和光伏发电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965875A (en) * 1998-04-24 1999-10-12 Foveon, Inc. Color separation in an active pixel cell imaging array using a triple-well structure
RU2297074C2 (ru) * 2004-12-17 2007-04-10 Общество с ограниченной ответственностью "Юник Ай Сиз" Фотоприемная ячейка с разделением цветов
US7521719B2 (en) * 2004-08-13 2009-04-21 Paul Steven Schranz Light emitting and image sensing device and apparatus
RU2362235C1 (ru) * 2007-12-26 2009-07-20 Общество с ограниченной ответственностью ООО "Юник Ай Сиз" Фотоприемное устройство с фотодетекторами с вертикальным разделением цветов
RU2381594C1 (ru) * 2008-08-07 2010-02-10 Общество с ограниченной ответственностью ООО "Юник Ай Сиз" Фотоприемное устройство с вертикальным разделением цветов и вертикально-горизонтальным переносом зарядов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965875A (en) * 1998-04-24 1999-10-12 Foveon, Inc. Color separation in an active pixel cell imaging array using a triple-well structure
US7521719B2 (en) * 2004-08-13 2009-04-21 Paul Steven Schranz Light emitting and image sensing device and apparatus
RU2297074C2 (ru) * 2004-12-17 2007-04-10 Общество с ограниченной ответственностью "Юник Ай Сиз" Фотоприемная ячейка с разделением цветов
RU2362235C1 (ru) * 2007-12-26 2009-07-20 Общество с ограниченной ответственностью ООО "Юник Ай Сиз" Фотоприемное устройство с фотодетекторами с вертикальным разделением цветов
RU2381594C1 (ru) * 2008-08-07 2010-02-10 Общество с ограниченной ответственностью ООО "Юник Ай Сиз" Фотоприемное устройство с вертикальным разделением цветов и вертикально-горизонтальным переносом зарядов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114041209A (zh) * 2019-07-26 2022-02-11 株式会社东芝 光电转换层、太阳能电池、多结太阳能电池、太阳能电池组件和光伏发电系统

Similar Documents

Publication Publication Date Title
US8946617B2 (en) Photodiode having a p-n junction with varying expansion of the space charge zone due to application of a variable voltage
US4160985A (en) Photosensing arrays with improved spatial resolution
JP5427928B2 (ja) 分子検出および識別に応用する多接合フォトダイオード、およびその製造方法
CN104517983B (zh) 固态成像装置、其制造方法和成像系统
Salem et al. Performance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafers
CN101919054B (zh) 在太阳能电池中使用3d集成衍射光栅
RU2456708C1 (ru) Способ изготовления ячейки фотоприемного устройства
US9768340B2 (en) Photodiode with a dark current suppression junction
EP1833095B1 (en) Photo diode having reduced dark current
CN113574680B (zh) 雪崩光电探测器(变型)及其制造方法(变型)
US8742523B2 (en) Wavelength sensitive photodiode employing shorted junction
US8912619B2 (en) Ultra-violet light sensing device and manufacturing method thereof
US20120326260A1 (en) Photodiode that incorporates a charge balanced set of alternating n and p doped semiconductor regions
CN104051552B (zh) 具有垂直二极管结的光传感器
KR101330270B1 (ko) 소비전력 및 암전류가 감소된 실리콘 광전자 증배관
RU2439747C1 (ru) Фотоприемное устройство
CN102254819B (zh) 低栅容金属氧化物半导体p-n 结二极管结构及其制作方法
US9882075B2 (en) Light sensor with vertical diode junctions
CN115101612B (zh) 一种硅基双重多量子阱的高速pin探测器
CN113678267B (zh) 雪崩光电探测器(变型)及其制造方法(变型)
RU2501116C1 (ru) Способ измерения диффузионной длины неосновных носителей заряда в полупроводниках и тестовая структура для его осуществления
Denisova et al. Multichannel photocells for image converters with color separation
CN115542293A (zh) 飞行时间成像系统、影像感测器及其制造方法
CN104393010B (zh) 降低图像延迟的cmos图像传感器及其制备方法
Denisova et al. Study of photoelectric spectroselective multichannel photocells for photodetectors based on the bulk integrated pn junctions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160330