CN104051552B - 具有垂直二极管结的光传感器 - Google Patents

具有垂直二极管结的光传感器 Download PDF

Info

Publication number
CN104051552B
CN104051552B CN201410151172.9A CN201410151172A CN104051552B CN 104051552 B CN104051552 B CN 104051552B CN 201410151172 A CN201410151172 A CN 201410151172A CN 104051552 B CN104051552 B CN 104051552B
Authority
CN
China
Prior art keywords
groove
dopant material
optical sensor
conduction type
subgroup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410151172.9A
Other languages
English (en)
Other versions
CN104051552A (zh
Inventor
N·D·谢内斯
C·F·爱德华兹
K·特兰
J·T·琼斯
P·帕尔瓦兰德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxim Integrated Products Inc
Original Assignee
Maxim Integrated Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/202,560 external-priority patent/US9882075B2/en
Application filed by Maxim Integrated Products Inc filed Critical Maxim Integrated Products Inc
Publication of CN104051552A publication Critical patent/CN104051552A/zh
Application granted granted Critical
Publication of CN104051552B publication Critical patent/CN104051552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明描述了一种包括集成在其中的沟槽结构的光传感器。在一实施方式中,所述光传感器包括具有第一导电类型掺杂材料的基底,和设置在所述基底中的多个沟槽。所述光传感器还包括接近所述多个沟槽形成的扩散区。所述扩散区包括第二导电类型的掺杂材料。在第一导电类型的掺杂材料和第二导电类型的掺杂材料的界面处生成有耗尽区。所述耗尽区构造为将电荷载流子吸引到所述耗尽区,所述电荷载流子的至少基本上大部分由于入射到所述基底上的光而产生。

Description

具有垂直二极管结的光传感器
技术领域
本发明涉及具有集成在其中的沟槽结构的光传感器。本发明还涉及所述光传感器的制造方法。
背景技术
诸如智能电话、平板电脑、数字媒体播放器等的电子设备对光传感器的使用日益增加,用以控制由设备提供的多种功能的操作。例如,电子设备可以使用光传感器来检测环境照明条件,从而控制设备显示屏的亮度。典型的光传感器使用光电探测器诸如光电二极管、光电晶体管等,其将接收的光转换为电信号(如电流或电压)。
发明内容
描述了一种光传感器,其包括集成在其中的沟槽结构。在一实施方式中,光传感器包括具有第一导电类型掺杂材料的基底,和设置在基底中的多个沟槽。光传感器还包括接近多个沟槽形成的扩散区。扩散区包括第二导电类型的掺杂材料。在第一导电类型的掺杂材料和第二导电类型的掺杂材料的界面处产生有耗尽区。该耗尽区被构造成将电荷载流子吸引到该耗尽区,所述电荷载流子的至少基本上大部分由于入射到基底上的光而产生。
提供本发明内容仅用来介绍在具体实施方式和附图中做了全面描述的主题。因此,本发明内容不应当被视为描述实质特征,也不应当被用来确定权利要求的范围。
附图说明
参考所附附图来进行详细的描述。在附图中,附图标记最左边的(复数个)数字识别出该附图标记首次出现于其中的那个附图。在说明书和附图的不同例子中相同的附图标记的使用可以表示类似或相同的特征。
图1-1是表示根据本发明的示例性实施方式的光传感器的实施方式的概略性部分横截面视图,其中光传感器包括多个沟槽,所述沟槽具有在沟槽附近形成的扩散区,从而使得接近沟槽产生耗尽区。
图1-2是表示根据本发明的另一示例性实施方式的图1-1中所示的光传感器的实施方式的概略性平面视图,其中光传感器包括多个沟槽区,并且每一个沟槽区包括沟槽的子组。
图2是表示用于制造具有形成在其中的沟槽的光传感器,诸如图1-1和1-2中所示的传感器,的示例性实施方式中的方法的流程图。
图3-图6是表示根据图2所示的方法制造光传感器,诸如图1-1和1-2中所示的光传感器,的概略性部分横截面视图。
具体实施方式
总论
手势检测正在越来越多地被电子设备采用,以检测用于与电子设备相关的各种应用的用户输入。这些电子设备典型地具有光传感器构造,其使用多个光电探测器来改进手势检测的范围和操作(如减噪)。这些传感器构造还可以提供复杂手势的有限追踪和检测(如缩放(in-and-out)手势,对角滑动手势等)。此外,这些电子设备使用照明光源,诸如IR光源来发射光。所发射的光可以被电子设备附近的物体反射,并且所反射的光被光电探测器所检测。
描述了光传感器,其包括集成在其中的沟槽结构。在一实施方式中,光传感器包括具有第一导电类型掺杂材料的基底,和设置在基底中的多个沟槽。例如,基底可以包括P--掺杂(P--doped)基底。在一些实施方式中,沟槽的第一子组可以至少基本上与沟槽的第二子组相邻。光传感器还包括接近多个沟槽形成的扩散区。扩散区包括第二导电类型的掺杂材料。例如,扩散区可以包括N+掺杂(N+doped)扩散区。在第一导电类型的掺杂材料和第二导电类型的掺杂材料的界面处生成有耗尽区。耗尽区被构造成将电荷载流子吸引到耗尽区,电荷载流子的至少基本上大部分由于入射到基底上的光而产生。通过使用多个沟槽,耗尽区的密度可以得到改进。此外,通过合并这些沟槽附近的耗尽区,在基底内部产生更深的电荷载流子(如产生比两微米深(2μm或以上)的电荷)的光,诸如红外光,可以利用更深的沟槽区被检测。
示例性光传感器
图1-1和1-2表示根据本发明的示例性实施方式的光传感器100(如光电探测器)的例子。如所示出的,光传感器100包括基底102。基底102包括基础材料,其用于通过多种半导体制造技术如光刻、离子注入、沉积、刻蚀等形成一个或多个集成电路设备。在一个或多个实施方式中,基底102包括硅片的一部分,所述硅片可以以多种方式被构造成。例如,基底102可以包括n型硅片的一部分或p型硅片的一部分。在一实施方式中,基底102可以包括构造为提供n型电荷载流子元素的第V族元素(如磷、砷、锑等)。在另一实施方式中,基底102可以包括构造为提供p型电荷载流子元素的第IIIA族元素(如硼等)。在一具体实施方式中,基底102包括P--区(P--region)。然而,预期的是,可以使用其它的导电类型,如P-区(P-region)、P区(P region)等。
基底102包括形成在其中的多个沟槽104。在复数个实施方式中,沟槽104可以是细长的沟槽。沟槽104具有约20微米(20μm)或更大的深度。例如,沟槽104的深度从约20微米(20μm)到约40微米(40μm)变化。在一具体的实施方式中,每个沟槽104的宽度可以近似为500纳米(500nm)或更小,并且每个沟槽104的深度可以为约30微米(30μm)。沟槽104的间距可以为约800纳米(800nm),或在一些构形中更小。沟槽的长度可以是2微米(2μm)到20微米(20μm)。在一个或多个实施方式中,沟槽104可以具有约50比1(50∶1)到约150比1(150∶1)的高宽比。
沟槽104允许连续的N+扩散区(N+diffusion region)106(例如包围沟槽104的基底102的一部分由N+扩散区106组成)接近(例如在其附近或围绕)沟槽104而形成。N+扩散区106设置在基底102的P--区之内(见图1)。在一具体实施方式中,基底102的P--区可以每平方厘米掺杂1×1019个原子,以允许更大的耗尽区(例如与由P-区或P区生成的耗尽区相对比)。N+扩散区106可以以每平方厘米大于1×1019个原子被掺杂,从而在大高宽比的沟槽中获得合适的掺杂分布。进而,在区102和区106的界面110处,生成p-n结108。p-n结108用于导致邻近沟槽104的耗尽区112的生成。在一具体实施方式中,耗尽区112是细长的耗尽区112。此外,耗尽区112可以延伸超过沟槽104的深度。耗尽区112引起了电场的产生,起因于在P--区102和N+扩散区106之间电荷载流子的交换(其又在每个相应的区102和106之内留下带电离子,并且引起了该电场的产生)。如这里更详细描述的,耗尽区112被用来吸收(例如捕获)由入射到基底102上的光所产生的电子空穴对。
沟槽104的深度允许吸收存在于红外光谱中的光。例如,对比低于950纳米存在的光,存在于近似950纳米处的光(例如具有近似950纳米波长值的光)更深地穿透到基底102中(例如在导致产生电子空穴对之前,光更深地穿透到基底102中)。因此,对比由存在于小于950纳米的值处的光产生的电子空穴对,由存在于950纳米的值处的光产生的电子空穴对在基底102中更深(例如更深远)(例如,对比存在于红外光谱内的光,存在于可见光谱内的光导致在基底102内在更浅的深度处产生电子空穴对)。由于沟槽104所延伸的深度,在沟槽104附近形成的耗尽区112可以吸收或捕获由于存在于红外光谱内的光而产生的电子。因此,在光传感器100的工作期间,由于耗尽区112的存在而产生的电场将所产生的电荷载流子吸引到耗尽区112,这可以增加耗尽区112内部电荷载流子的总量(并引起电流的增加)。
如所示出的,沟槽104可以包括一个或多个层114。这些层114可以包括多种材料。在一实施方式中,这些层114可以包括光学透明的层(例如构造为对存在于感兴趣的波长内的光透明的层)。例如,光学透明的层114可以包括n-掺杂多晶硅层,其提供电连接(如引脚)。在另一实施方式中,层114可以包括(复数个)绝缘层。例如,这些绝缘层可以包括二氧化硅(SiO2)层。
如图1-2所示,光传感器100包括多个沟槽区116。每个沟槽区116(例如沟槽104的子组)包括在基底102内部形成的多个沟槽104。如所示出的,相应的沟槽区116的沟槽104在该沟槽区116内至少基本上关于彼此平行。例如,基底102包括第一沟槽区116-1和第二沟槽区116-2。第一沟槽区116-1的沟槽104与该第一沟槽区116-1的其它沟槽104至少基本上平行,并且在第二沟槽区116-2内形成的沟槽104与该第二沟槽区116-2的其它沟槽104至少基本上平行。
沟槽区116的沟槽104至少基本上垂直于相邻沟槽区116的沟槽104。例如,第一沟槽区116-1的沟槽104至少基本上垂直于第二沟槽区116-2的沟槽104。因此,每个相应的沟槽区116的沟槽104至少基本上垂直于相邻沟槽区116(即,在x和y方向上相邻的)的沟槽104。例如,如图1-2所示,光传感器100包括交替垂直的沟槽区116。相邻沟槽区116内的沟槽104的垂直定向可以为便于应力管理、以及为从相对于光传感器100表面至少大约90度(90°)检测手势(例如检测光)做准备。在一些实例中,该垂直定向可以减少晶片弯曲和晶片翘曲。因此,更大百分比的基底102可以用于其它的集成元件,诸如集成电路设备、电容器等。此外,对比具有彼此平行定向的沟槽的光传感器,沟槽区116的该定向可以增加光传感器100的灵敏度。例如,与第二沟槽区116-2检测的光量相比,第一沟槽区116-1的该定向可以检测从第一方向入射到光传感器100上的更大的光量。在另一例子中,与第一沟槽区116-1检测的光量相比,第二沟槽116-2的该定向可以检测从第二方向(例如与第一方向不同的方向)入射到光传感器100上的更大的光量。
示例性制造方法
图2描述了采用半导体制造技术来制造具有集成在其中的沟槽结构的光传感器的示例性方法200,该光传感器诸如图1-1到1-2所示的光传感器100。图3到图6描述了示例性光传感器500在示例性半导体晶片302中的形成。如图2所示出的,硬掩模层被形成在半导体晶片上(方块202)。在一实施方式中,如图3所示,晶片302包括第一导电类型的掺杂材料。例如,晶片302是P--半导体晶片(例如该晶片被掺杂P--)。在晶片302的表面306上形成(例如沉积)硬掩模层304。在一实施方式中,硬掩模层304的厚度可以从约2微米(2μm)至约6微米(6μm)变化。硬掩模层304可以是氧化物层等。
在所述半导体晶片内形成多个沟槽区(方块204)。更具体地,形成限定出所述沟槽区的多个沟槽(方块206)。如以上对于图1-1和1-2所述,通过在沟槽区内形成至少一个沟槽308的方式,在半导体晶片302内形成多个沟槽区(例如图1-2中所示的沟槽区116)。因此,在半导体晶片内形成多个沟槽308,从而形成和/或限定出所述沟槽区。可以使用合适的i线或深紫外(DUV)光刻技术来形成所述多个沟槽308(见图4)。例如,硬掩模层304可以被制作图案(例如在硬掩模层上沉积光刻胶并将该光刻胶制作图案)并刻蚀(例如深反应离子刻蚀技术),从而形成所述沟槽308。硬掩模层304的厚度有助于使具有从约20微米(20μm)至约40微米(40μm)变化的深度的沟槽308的形成便利。在一具体实施方式中,可以使用合适的Bosch刻蚀技术来刻蚀晶片302以形成所述沟槽308。如上所述,相应的电容区的沟槽308(例如沟槽308的子组)至少基本上垂直于相邻电容区的沟槽308。
一旦形成所述沟槽区和所述沟槽,就接近所述沟槽而形成N+扩散区(方块208),使得所述沟槽至少基本上被所述N+扩散区封闭。如图5所示,沟槽侧壁310经受扩散沉积来形成具有第二导电类型掺杂材料的扩散区312。例如,扩散区312是接近(例如邻近)沟槽308的N+扩散区312。在一实施方式中,在硬掩模层304被去除之前,预先形成N+扩散沉积,以允许N+扩散区312相对于沟槽308自对准。N+扩散区312也可以提供电容-电容的块隔离。在一实施方式中,N+扩散掺杂浓度为大于每平方厘米1×1019个原子。N+扩散区312的形成用于在晶片302内产生p-n结314。该p-n结314引起耗尽区316的产生,该耗尽区316至少延伸基本上沟槽308的深度。在一些实施方式中,耗尽区316延伸超过沟槽308的深度。此外,在一实施方式中,在低于900摄氏度(<900℃)时,可以进行三氯氧化磷(POCl3)掺杂步骤,其可以减慢反应动力,从而沟槽308的侧壁和底部至少基本上均匀地被掺杂。例如,掺杂过程的温度可以从至少约875摄氏度(875℃)到至少约895摄氏度(895℃)变化。在另一例子中,掺杂过程的温度从至少约880摄氏度(880℃)到至少约890摄氏度(890℃)变化。
在所述半导体晶片上形成绝缘层(方块210)。如图6所示,在晶片302的表面306上形成层318。层318可以是用于提供电接触的掺杂多晶硅的层,绝缘层(如二氧化硅(SiO2)层),等等。
结论
虽然已经针对结构特征和/或方法操作用语言描述了发明的主题,将被理解的是,在所附的权利要求中限定的主题并无必要限制到上述的具体特征或动作。相反,上述具体特征和动作是作为实现权利要求的示例性形式被公开的。

Claims (14)

1.一种光传感器,包括:
具有第一导电类型的掺杂材料的基底;
设置在基底内的多个沟槽,所述多个沟槽包括第一子组沟槽和第二子组沟槽,所述第一子组沟槽垂直于所述第二子组沟槽并与所述第二子组沟槽相邻;和
接近所述多个沟槽设置的扩散区,所述扩散区具有第二导电类型的掺杂材料,相应子组沟槽由所述扩散区封闭,
其中在所述第一导电类型的掺杂材料和所述第二导电类型的掺杂材料的界面处产生有耗尽区,所述耗尽区构造为引起电场产生并因而吸收由红外光谱中的光所产生的电子空穴对,所述耗尽区延伸超过相应子组沟槽的深度。
2.如权利要求1所述的光传感器,其中所述多个沟槽具有从50比1到150比1变化的高宽比。
3.如权利要求1所述的光传感器,其中所述多个沟槽的深度为至少20微米。
4.如权利要求1所述的光传感器,其中所述第一导电类型的掺杂材料包括P--材料,并且所述第二导电类型的掺杂材料包括N+材料。
5.一种光传感器的制造方法,包括:
在半导体晶片上形成硬掩模层;
在所述半导体晶片内形成多个沟槽区,所述多个沟槽区的每个沟槽区包括多个沟槽,所述半导体晶片包括第一导电类型的掺杂材料,所述多个沟槽包括第一子组沟槽和第二子组沟槽,所述第一子组沟槽垂直于所述第二子组沟槽并与所述第二子组沟槽相邻;和
形成接近所述多个沟槽的扩散区,所述扩散区包括第二导电类型的掺杂材料,相应子组沟槽由所述扩散区封闭,
其中在所述第一导电类型的掺杂材料和所述第二导电类型的掺杂材料的界面处产生耗尽区,所述耗尽区构造为引起电场产生并因而吸收由红外光谱中的光所产生的电子空穴对,所述耗尽区延伸超过所述相应子组沟槽的深度。
6.如权利要求5所述的方法,其中所述多个沟槽具有从50比1到150比1变化的高宽比。
7.如权利要求5所述的方法,其中所述多个沟槽的深度为至少20微米。
8.如权利要求5所述的方法,其中所述第一导电类型的掺杂材料包括P--材料,并且所述第二导电类型的掺杂材料包括N+材料。
9.如权利要求5所述的方法,其中所述第二导电类型的掺杂材料包括每平方厘米大于1×1019个原子的掺杂浓度。
10.如权利要求5所述的方法,其中所述多个沟槽的深度从20微米到40微米变化。
11.一种光传感器,包括:
包括P--掺杂材料的基底;
设置在所述基底内的多个沟槽,所述多个沟槽包括第一子组沟槽和第二子组沟槽,所述第一子组沟槽垂直于所述第二子组沟槽并与所述第二子组沟槽相邻;和
接近所述多个沟槽设置的扩散区,所述扩散区包括N+掺杂材料,相应子组沟槽由所述扩散区封闭,
其中在所述P--掺杂材料和所述N+掺杂材料的界面处产生有耗尽区,所述耗尽区构造为引起电场产生并因而吸收由红外光谱中的光所产生的电子空穴对,所述耗尽区延伸超过所述相应子组沟槽的深度。
12.如权利要求11所述的光传感器,其中所述多个沟槽具有从50比1到150比1变化的高宽比。
13.如权利要求11所述的光传感器,其中所述多个沟槽的深度为至少20微米。
14.如权利要求11所述的光传感器,其中所述多个沟槽的深度从20微米到40微米变化。
CN201410151172.9A 2013-03-15 2014-03-14 具有垂直二极管结的光传感器 Active CN104051552B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361789814P 2013-03-15 2013-03-15
US61/789,814 2013-03-15
US14/202,560 2014-03-10
US14/202,560 US9882075B2 (en) 2013-03-15 2014-03-10 Light sensor with vertical diode junctions

Publications (2)

Publication Number Publication Date
CN104051552A CN104051552A (zh) 2014-09-17
CN104051552B true CN104051552B (zh) 2019-09-17

Family

ID=51419163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410151172.9A Active CN104051552B (zh) 2013-03-15 2014-03-14 具有垂直二极管结的光传感器

Country Status (2)

Country Link
CN (1) CN104051552B (zh)
DE (1) DE102014103467A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336105B (zh) * 2018-04-04 2019-02-15 武汉新芯集成电路制造有限公司 一种图像传感器及其器件邻近结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140558A (en) * 1978-03-02 1979-02-20 Bell Telephone Laboratories, Incorporated Isolation of integrated circuits utilizing selective etching and diffusion
JPS5623788A (en) * 1979-07-31 1981-03-06 Fujitsu Ltd Semiconductor light receiving element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140558A (en) * 1978-03-02 1979-02-20 Bell Telephone Laboratories, Incorporated Isolation of integrated circuits utilizing selective etching and diffusion
JPS5623788A (en) * 1979-07-31 1981-03-06 Fujitsu Ltd Semiconductor light receiving element

Also Published As

Publication number Publication date
DE102014103467A1 (de) 2014-09-18
CN104051552A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
US10872995B2 (en) Avalanche diode along with vertical PN junction and method for manufacturing the same field
EP3254311B1 (en) Cmos depth image sensor with integrated shallow trench isolation structures
JP6090060B2 (ja) シングルフォトンアバランシェダイオード
CN109690792A (zh) Spad光电二极管
US10510909B2 (en) Backside-illuminated photodetector structure and method of making the same
JP2011086904A (ja) フォトニックミキサ、その使用およびシステム
CN109585470A (zh) 具有改进的量子效率表面结构的图像传感器
KR20190110420A (ko) 광 검출 장치 및 광 검출 측거 장치
CN104934450B (zh) 图像传感器及其制作方法
CN104051552B (zh) 具有垂直二极管结的光传感器
US9768340B2 (en) Photodiode with a dark current suppression junction
US9882075B2 (en) Light sensor with vertical diode junctions
US9202829B2 (en) Light sensors with infrared photocurrent suppression
CN114242826B (zh) 单光子雪崩二极管及其形成方法
US20220149087A1 (en) Single-photon avalanche diode devices with shaped junction regions
Huiming et al. Modeling of pinned photodiode for CMOS image sensor
JP6462892B2 (ja) 太陽電池の製造方法
US8120078B2 (en) Photodiode structure
JP2008193037A (ja) フォトディテクタおよびその作製方法
US8912619B2 (en) Ultra-violet light sensing device and manufacturing method thereof
RU2456708C1 (ru) Способ изготовления ячейки фотоприемного устройства
KR20110113133A (ko) 전계를 제어하기 위해 전도성 트렌치들을 구비한 반도체 디바이스
CN109904271A (zh) 光传感半导体单元和光传感半导体阵列
CN108321162A (zh) 改善蓝光快速响应的双极结型光栅像素器件及其制作方法
JP2021027185A (ja) 光半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant