RU2453367C1 - Способ изготовления пористого гранулированного катализатора - Google Patents

Способ изготовления пористого гранулированного катализатора Download PDF

Info

Publication number
RU2453367C1
RU2453367C1 RU2010152986/04A RU2010152986A RU2453367C1 RU 2453367 C1 RU2453367 C1 RU 2453367C1 RU 2010152986/04 A RU2010152986/04 A RU 2010152986/04A RU 2010152986 A RU2010152986 A RU 2010152986A RU 2453367 C1 RU2453367 C1 RU 2453367C1
Authority
RU
Russia
Prior art keywords
granules
porous
cobalt
oxides
iron
Prior art date
Application number
RU2010152986/04A
Other languages
English (en)
Inventor
Михаил Васильевич Астахов (RU)
Михаил Васильевич Астахов
Андрей Владимирович Михальский (RU)
Андрей Владимирович Михальский
Георгий Александрович Фролов (RU)
Георгий Александрович Фролов
Original Assignee
Общество с ограниченной ответственностью "ОДИССЕЙ-А"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ОДИССЕЙ-А" filed Critical Общество с ограниченной ответственностью "ОДИССЕЙ-А"
Priority to RU2010152986/04A priority Critical patent/RU2453367C1/ru
Application granted granted Critical
Publication of RU2453367C1 publication Critical patent/RU2453367C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к способам изготовления катализаторов для окисления окиси углерода. Описан способ изготовления пористого гранулированного катализатора для окисления окиси углерода, содержащий смешивание функциональных оксидов, включая диоксид марганца, получаемых в результате химического взаимодействия реагентов, при этом смесь размещают в пористом каркасе, имеющем форму гранул, причем в качестве пористого каркаса используют гранулы силикагеля, которые насыщают оксидами железа, кобальта и марганца посредством поэтапного пропитывания водными растворами солей металлов с межоперационной сушкой, в следующей технологической последовательности: первый этап - раздельное пропитывание сульфатом железа и нитратом кобальта, каждое из которых сопряжено с последующей пропиткой пористых гранул раствором гидроксида калия в этиловом спирте, а образующиеся при этом гидроокиси металлов термически затем разлагают до конечных оксидов железа и кобальта; второй этап - раздельное пропитывание перманганатом калия и гипосульфитом натрия, насыщая пористые гранулы образующимся диоксидом марганца, затем полученную смесь перечисленных оксидов металлов подвергают финишной промывке с последующей сушкой готового порошкового продукта. Технический результат - получен эффективный катализатор окисления окиси углерода, проявляющий высокую стабильность. 2 з.п. ф-лы, 1 пр.

Description

Изобретение относится к области неорганической химии, а более конкретно к способам изготовления высокоактивного порошкового катализатора, содержащего оксид марганца, который предназначен для очистки газовых смесей от окиси углерода и может быть использован как дополнительный структурный компонент покрытия поверхностей помещений, где концентрируется угарный газ, то есть в качестве реакционных панелей, бесконечно автоматически очищающих атмосферу.
Уровень данной области техники характеризуют изобретения по патентам RU №2077947 и №2083279, B01J 37/04, 23/889, в которых описан способ получения гранулированного катализатора, включающий смешивание диоксида марганца и оксида меди, получаемых в результате химического взаимодействия реагентов, с предварительно обработанным водой и прокаленным связующим (талюмом или бетонитовой глиной соответственно), формирование гранул из полученной смеси, сушку, дробление гранул и термообработку сформированного функционального порошка.
Недостатком описанных аналогов является высокая трудоемкость продолжительного техпроцесса, при этом в первом способе промышленное производство не представляется возможным из-за абразивного износа фильер шнекового гранулятора, а во втором - ненадежность работы полученного катализатора по причине быстрого разрушения гранул при контакте с влагой.
Кроме того, активность катализатора невысока из-за неразвитой его контактной поверхности.
Более совершенным способом получения гранулированного пористого катализатора для окисления окиси углерода является описанный в патенте RU №2156659, B01J 37/04, 23/889, 2000 г., который по технической сущности и числу совпадающих признаков выбран в качестве наиболее близкого аналога предложенному способу.
Известный способ включает приготовление смеси диоксида марганца, оксида меди и оксида кальция, из которой формируют гранулы на шнековом гратуляторе при температуре 100-110°С, давлением 35-45 атм через фильеры диаметром 1,0-1,5 мм.
Сформированные гранулы сушат при температуре 60-90°С в течение 10-15 часов, дробят, отсеивают фракцию 1-3 мм, проводят термообработку при температуре 250-370°С.
Оксид меди, выполняя функции промотора, усиливает каталитические свойства диоксида марганца.
Использование в качестве связующего вещества оксида кальция, имеющего дисперсность существенно выше, чем у остальных компонентов функциональной смеси, обеспечивает формирование из него пространственного каркаса, включающего частицы активного компонента и промотора.
В результате технологической гидратации оксида кальция образуется гидроксид кальция, который в дальнейшем превращается в карбонат кальция, нерастворимый в воде, что определяет устойчивость несущего каркаса формируемых гранул.
Механическая прочность полученного по известному способу пористого гранулированного катализатора, устойчивого к воде, составляет 92-96%, при активности в окислении окиси углерода 1,68-2,13 ммоль/г, что обеспечивает практический спрос для использования в фильтрующих системах коллективной и индивидуальной защиты органов дыхания и для очистки выбросов промышленных предприятий, выхлопных газов двигателей внутреннего сгорания.
Однако недостатком известного катализатора является низкая функциональная надежность, ограниченная присущим пределом сорбции, по достижении которого наступает насыщенность и катализатор перестает работать, что определяет большой массовый его расход.
Низкая хемосорбционная активность определяет необходимость аппаратурного контроля состояния катализатора, используемого для окисления угарного газа и поглощения продуктов реакции.
Кроме того, известный катализатор используется в виде гранул минимального размера 1 мм, что ограничивает область его применения, в частности, в качестве функциональной добавки в композитных лакокрасочных покрытиях.
Задачей, на решение которой направлено настоящее изобретение, является повышение функциональной надежности и стабильности более эффективного катализатора и расширение технологических возможностей его использования.
Требуемый технический результат достигается тем, что в известном способе изготовления пористого гранулированного катализатора для окисления окиси углерода, содержащем смешивание функциональных оксидов, включая диоксид марганца, получаемых в результате химического взаимодействия реагентов, при этом смесь размещают в пористом каркасе, имеющем форму гранул, согласно изобретению в качестве пористого каркаса используют гранулы силикагеля, которые насыщают оксидами железа, кобальта и марганца посредством поэтапного пропитывания водными растворами солей металлов с межоперационной сушкой, в следующей технологической последовательности:
первый этап - раздельное пропитывание сульфатом железа и нитратом кобальта, каждое из которых сопряжено с последующей пропиткой пористых гранул раствором гидроксида калия в этиловом спирте, а образующиеся при этом гидроокиси металлов термически затем разлагают до конечных оксидов железа и кобальта;
второй этап - раздельное пропитывание перманганатом калия и гипосульфитом натрия, насыщая пористые гранулы образующимся диоксидом марганца, - затем полученную смесь перечисленных оксидов металлов подвергают финишной промывке с последующей сушкой готового порошкового продукта.
Предложенный способ характеризуется тем, что финишную промывку смеси оксидов железа, кобальта и марганца проводят многократно ступенчато из расчета 300 мл воды на 7 г смеси проточной водой, а затем дистиллированной водой, после чего гранулы сушат при температуре 180°С в течение трех часов.
Другой особенностью способа является выбор массового соотношения диоксида марганца, оксида железа и оксида кобальта в формируемом покрытии пористых гранул силикагеля как 1:(1,5-2):(2-3) соответственно.
Отличительные признаки обеспечили новое качество катализатору по стабильному, в течение всего времени эксплуатации, окислению окиси углерода за счет выполнения распределенной наноразмерной прослойки из смеси выбранных оксидов металлов в мезапорах гранул силикагеля, что позволяет структурировать его в лакокрасочное покрытие поверхностей помещений, выполняющее при этом дополнительные функции каталитических панелей, доступных окиси углерода и атмосферному кислороду.
Эффективность действия предложенного катализатора определяется высокой дисперсностью (5-15 нм) формируемых в порах гранул силикагеля частиц оксидов марганца, железа и кобальта, что создает развитую поверхность контакта с окисляемой окисью углерода.
Особенностью предложенного катализатора является его стабильная эффективность в естественных условиях окружающей среды.
Использование готового порошка силикагеля дисперсностью в диапазоне от 2 до 300 мкм в качестве пористого каркаса для размещения катализатора кратно упростило технологию и снизило потребительскую стоимость продукта.
Использование в функциональной смеси в качестве промоторов оксида железа и оксида кобальта и предложенная последовательность насыщения гранул силикагеля оксидами железа-кобальта-марганца определяются механизмом каталитического окисления угарного газа.
Основным катализатором, на поверхности которого происходит химическое взаимодействие окиси углерода с кислородом воздуха, является диоксид марганца. Ролью, рядом находящихся промоторов, оксидов железа и кобальта является отвод углекислого газа (продукта реакции) из зоны реакции путем последовательной многоступенчатой адсорбции.
Тем самым, согласно принципу Ле Шателье, химическое равновесие смещается в сторону образования продуктов реакции.
Кроме того, пары воды, в первую очередь, сорбируются на активных центрах оксидов железа и кобальта, защищая активные центры диоксида марганца от пассивирования.
Поэтому внесение в пористую структуру силикагеля диоксида марганца, в последнюю очередь, обеспечивает максимальную доступность активных центров катализатора для окиси углерода и кислорода, находящихся в воздухе.
Применение этилового спирта для среды, в которой проводится химическая реакция образования гидроксидов железа и кобальта, обусловлено минимизацией деструктивного действия щелочи, особенно в водной среде, на пористую структуру силикагеля. За счет более высокой испаряемости спиртовая среда существует в порах каркаса заметно меньшее время, чем водная, что практически исключает негативное воздействие на несущий каркас катализатора.
Необходимость межоперационных сушек обусловлена использованием эффекта капиллярного впитывания технологических растворов для последовательного наполнения объема пор гранул силикагеля необходимыми реагентами химического синтеза при формировании наноразмерного слоя композитного катализатора.
При образовании промежуточных гидроксидов металлов попутно появляющиеся ионы адсорбируются на поверхности пор силикагеля, для удаления которых необходима многократная промывка формируемых прослоек водой, в том числе дистиллированной.
Продуктом термодеструкции гидроксидов металлов является вода, пары которой десорбируют с поверхности при нагревании силикагеля.
Финишная сушка приготовленного катализатора обеспечивает десорбцию молекул воды и углекислого газа с поверхности оксидов металлов и подготовку катализатора к использованию по назначению.
Оптимальное массовое соотношение компонентов функциональной смеси, наносимой на пористые гранулы силикагеля, было рассчитано по математической модели планирования эксперимента и проверено при испытаниях опытных партий катализаторов, изготовленных по заявленному способу.
Следовательно, каждый существенный признак необходим, а их совокупность в устойчивой взаимосвязи является достаточной для достижения новизны качества, неприсущего признакам в разобщенности, то есть поставленная в изобретении техническая задача решается не суммой эффектов, а новым сверхэффектом суммы признаков.
Сущность изобретения поясняется конкретным примером выполнения способа синтезирования нанодисперсного катализатора для окисления угарного газа, выполненного на каркасе порошка из пористого гранулированного силикагеля, содержащего оксид железа (II), оксид кобальта (II) и оксид марганца (IV).
Для приготовления катализатора навеску силикагеля дробленого марки КСКГ (ГОСТ 3959-76) дисперсностью 2-300 мкм в объеме 50 мл или массой 23,5 г (насыпная плотность 0,47 г/мл) отмеряют с помощью мензурки на 250 мл или взвешивают на лабораторных весах A&D Company Limited HR-120.
Затем навеску силикагеля в фарфоровом тигле помещают в сушильный шкаф SNOL 67/350 для удаления остаточной влаги из пористой структуры при температуре 150°С в течение 60 минут.
Первый этап пропитки пористых гранул силикагеля
Для пропитки гранул силикагеля предварительно готовят 1 М раствор сульфата железа безводного в дистиллированной воде.
Для этого навеску сульфата железа безводного массой 152 г, которую отмеряют на лабораторных весах A&D Company Limited HR-120, растворяют в 1000 мл дистиллированной воды при комнатной температуре, постоянно перемешивая на магнитной мешалке Magnetic stirrer MSH 300 в течение 10 минут.
После этого гранулы силикагеля пропитывают из расчета 1,42 мл раствора на 1 г порошка, исходя из чего навеску массой 23,5 г пропитывают 33 мл 1 М раствора сульфата железа безводного в дистиллированной воде. Жидкая фаза раствора полностью впитывается в порошок.
Сушку пропитанного сульфатом железа порошка силикагеля проводят в фарфоровом тигле в сушильном шкафу SNOL 67/350 в течение 60 минут при температуре 150°С.
В результате сушки из пор гранул силикагеля удаляется влага и происходит концентрирование в них сульфата железа.
Перед следующей пропиткой пористых гранул силикагеля готовят 1,4 М раствор гидроксида калия в этиловом спирте.
Для этого навеску гидроксида калия массой 7,84 г, которую отмеряют на лабораторных весах A&D Company Limited HR-120, растворяют в 100 мл этилового спирта при температуре 50°С при постоянном перемешивании на магнитной мешалке Magnetic stirrer MSH 300 в течение 20 минут.
Пропитка гранул силикагеля проводится из расчета 1,42 мл раствора на 1 г порошка, исходя из чего навеску обработанного сульфатом железа порошка силикагеля объемом 50 мл пропитывают 33 мл 1,4 М раствора гидроксида калия в этиловом спирте. Жидкая фаза раствора полностью впитывается в порошок.
В результате химического взаимодействия образуется гидроокись железа, которая оседает в порах и на поверхности гранул силикагеля.
Далее проводят сушку обработанных гранул в сушильном шкафу при температуре 180°С в течение 2 часов, в результате чего происходит почернение порошка силикагеля, связанное с образованием оксида железа (II).
Перед следующей пропиткой готовится 0,6 М раствор нитрата кобальта (II) в дистиллированной воде.
Для этого навеску нитрата кобальта (II) массой 183 г, которую отмеряют на лабораторных весах A&D Company Limited HR-120, растворяют в 1000 мл дистиллированной воды при комнатной температуре, постоянно перемешивая на магнитной мешалке Magnetic stirrer MSH 300 в течение 10 минут.
Пропитка обработанных гранул силикагеля проводится из расчета 1,42 мл раствора на 1 г порошка, исходя из чего навеску массой 23,5 г гранул силикагеля, в порах которого осажден оксид железа, пропитывают 33 мл 0,6 М раствора нитрата кобальта (II) в дистиллированной воде. Жидкая фаза раствора полностью впитывается в порошок.
Последующую сушку гранул силикагеля, пропитанного нитратом кобальта (II), проводят в фарфоровом тигле в сушильном шкафу SNOL 67/350 в течение 60 минут при температуре 150°С.
В результате сушки происходит удаление влаги из пор гранул и концентрирование в них нитрата кобальта (II).
Далее гранулы силикагеля обрабатывают свежеприготовленным раствором гидроксида калия в этиловом спирте для получения в порах гидроксида кобальта (II).
Перед пропиткой готовят 2,0 М раствор гидроксида калия в этиловом спирте.
Для этого навеску гидроксида калия массой 11,2 г, которую отмеряют на лабораторных весах A&D Company Limited HR-120, растворяют в 100 мл этилового спирта при температуре 50°С, постоянно перемешивая на магнитной мешалке Magnetic stirrer MSH 300 в течение 20 минут.
Пропитка гранул силикагеля проводится из расчета 1,42 мл раствора на 1 г порошка, исходя из этого навеску объемом 50 мл силикагеля, в порах которого находится нитрат кобальта, пропитывают 33 мл 2,0 М раствора гидроксида калия в этиловом спирте. Жидкая фаза раствора полностью впитывается в порошок.
В результате химического взаимодействия в порах гранул силикагеля оседает гидроксид кобальта.
Далее проводят сушку полученного полуфабриката сорбента в сушильном шкафу при температуре 170°С в течение 2 часов для получения в осадке на поверхности гранул оксида кобальта (II).
Второй этап пропитки полуфабриката пористого гранулированного катализатора
Для следующей операции пропитки приготовленного полуфабриката сорбента готовят 0,3 М раствор перманганата калия в дистиллированной воде.
Для этого навеску перманганата калия массой 4,74 г, которую отмеряют на лабораторных весах A&D Company Limited HR-120, растворяют в 100 мл дистиллированной воды при температуре 80°С, постоянно перемешивая на магнитной мешалке Magnetic stirrer MSH 300 в течение 20 минут.
Пропитка гранул силикагеля проводится из расчета 1,42 мл раствора на 1 г порошка, исходя из чего навеску массой 23,5 г порошка силикагеля, прошедшего обработку на первом этапе техпроцесса, пропитывают 33 мл 0,3 М раствора перманганата калия в дистиллированной воде. Жидкая фаза раствора полностью впитывается в порошок, который затем сушат.
Сушку гранул силикагеля, пропитанных перманганатом калия, проводят в фарфоровом тигле в сушильном шкафу SNOL 67/350 в течение 60 минут при температуре 150°С.
В результате сушки из пор гранул удаляется влага и происходит концентрирование в них перманганата калия.
После этого проводят операцию пропитки гранул силикагеля водным раствором тиосульфата натрия
Перед этой операцией пропитки готовят 0,15 М раствор гипосульфита натрия в дистиллированной воде, для чего навеску гипосульфита натрия массой 2,61 г, которую отмеряют на лабораторных весах A&D Company Limited HR-120, растворяют в 100 мл дистиллированной воды при комнатной температуре, постоянно перемешивая на магнитной мешалке Magnetic stirrer MSH 300 в течение 3 минут.
Пропитка гранул силикагеля проводится из расчета 1,42 мл раствора на 1 г порошка, исходя из чего навеску массой 23,5 г силикагеля, в порах которого осажден перманганат калия, пропитывают 33 мл 0,15 М раствора гипосульфита натрия в дистиллированной воде. Жидкая фаза раствора полностью впитывается в порошок.
В результате химического взаимодействия перманганата калия и гипосульфита натрия образуется осадок диоксида марганца - активного компонента функционального покрытия пористых гранул изготавливаемого катализатора.
После описанного, последовательно проводимого, химического синтеза нанодисперсных частиц оксида железа (II), оксида кобальта (II) и оксида марганца (IV), осаждаемых в порах гранулированного силикагеля, проводят отмывку композитного покрытия от сопутствующих ионов:
Figure 00000001
, OH-, K+,
Figure 00000002
, Na+.
Отмывка производится посредством однократной декантации воды (объем воды 300 мл на всю массу сорбента) из осевшей суспензии катализатора в растворителе.
Далее финишную промывку твердого порошка проводят на воронке Бюхнера с использованием водоструйного насоса: трехкратно смесь оксидов промывают водопроводной водой и затем трехкратно дистиллированной водой, из расчета 300 мл воды на 7 г смеси оксидов металлов в каждой промывке.
Последним этапом технологии является окончательная сушка полученного катализатора. Для этого отмытый осадок катализатора на пористых гранулах силикагеля помещают в термошкаф, где при температуре 180°С выдерживают в течение 3-х часов.
Просушенный и охлажденный до комнатной температуры порошкообразный катализатор помещают в герметичную упаковку.
В результате лабораторных исследований и натурных испытаний предложенного функционального покрытия из оксидов металлов на несущем пористом каркасе гранул силикагеля было установлено, что в течение суток с начала опытов по окислению окиси углерода активность катализатора снижается и затем стабилизируется на уровне, приемлемом для снижения концентрации угарного газа до значений ПДК и далее не меняется.
Повышенные показатели назначения качественно нового катализатора, полученные в лабораторных условиях, определяют практическую целесообразность разработки промышленного техпроцесса для серийного изготовления катализатора по изобретению и поставки на реализацию потребителям.
Проведенный сопоставительный анализ предложенного технического решения с выявленными аналогами уровня техники, из которого изобретение явным образом не следует для специалиста по неорганической химии, показал, что оно неизвестно, а с учетом возможности практического серийного выпуска гранулированного пористого катализатора для окисления окиси углерода на действующем оборудовании из доступных реагентов можно сделать вывод о соответствии критериям патентоспособности.

Claims (3)

1. Способ изготовления пористого гранулированного катализатора для окисления окиси углерода, содержащий смешивание функциональных оксидов, включая диоксид марганца, получаемых в результате химического взаимодействия реагентов, при этом смесь размещают в пористом каркасе, имеющем форму гранул, отличающийся тем, что в качестве пористого каркаса используют гранулы силикагеля, которые насыщают оксидами железа, кобальта и марганца посредством поэтапного пропитывания водными растворами солей металлов с межоперационной сушкой, в следующей технологической последовательности:
первый этап - раздельное пропитывание сульфатом железа и нитратом кобальта, каждое из которых сопряжено с последующей пропиткой пористых гранул раствором гидроксида калия в этиловом спирте, а образующиеся при этом гидроокиси металлов термически затем разлагают до конечных оксидов железа и кобальта;
второй этап - раздельное пропитывание перманганатом калия и гипосульфитом натрия, насыщая пористые гранулы образующимся диоксидом марганца, затем полученную смесь перечисленных оксидов металлов подвергают финишной промывке с последующей сушкой готового порошкового продукта.
2. Способ по п.1, отличающийся тем, что финишную промывку смеси оксидов железа, кобальта и марганца проводят многократно ступенчато проточной водой, а затем дистиллированной водой из расчета 300 мл на 7 г смеси, после чего гранулы сушат при температуре 180°С в течение трех часов.
3. Способ по п.1, отличающийся тем, что массовое соотношение диоксида марганца, оксида железа и оксида кобальта в формируемом покрытии пористых гранул силикагеля выбрано как 1:(1,5-2):(2-3) соответственно.
RU2010152986/04A 2010-12-27 2010-12-27 Способ изготовления пористого гранулированного катализатора RU2453367C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010152986/04A RU2453367C1 (ru) 2010-12-27 2010-12-27 Способ изготовления пористого гранулированного катализатора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010152986/04A RU2453367C1 (ru) 2010-12-27 2010-12-27 Способ изготовления пористого гранулированного катализатора

Publications (1)

Publication Number Publication Date
RU2453367C1 true RU2453367C1 (ru) 2012-06-20

Family

ID=46680980

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010152986/04A RU2453367C1 (ru) 2010-12-27 2010-12-27 Способ изготовления пористого гранулированного катализатора

Country Status (1)

Country Link
RU (1) RU2453367C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135279C1 (ru) * 1998-06-30 1999-08-27 Акционерное общество открытого типа "Катализатор" Катализатор для очистки газов от углеводородов, оксидов азота, оксида углерода и способ его получения
RU2156659C1 (ru) * 1999-07-19 2000-09-27 Электростальское научно-производственное объединение "Неорганика" Способ получения катализатора для разложения вредных примесей
CN101143321A (zh) * 2006-09-15 2008-03-19 中国人民解放军63971部队 低温co氧化非贵金属催化剂
RU2339447C2 (ru) * 2004-02-18 2008-11-27 Родиа Ацетов Гмбх Состав на основе золота и восстанавливаемого оксида, способ получения и применение в качестве катализатора, в частности, при окислении моноксида углерода
CN101804356A (zh) * 2010-03-08 2010-08-18 浙江中烟工业有限责任公司 用于降低卷烟烟气中co含量的催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135279C1 (ru) * 1998-06-30 1999-08-27 Акционерное общество открытого типа "Катализатор" Катализатор для очистки газов от углеводородов, оксидов азота, оксида углерода и способ его получения
RU2156659C1 (ru) * 1999-07-19 2000-09-27 Электростальское научно-производственное объединение "Неорганика" Способ получения катализатора для разложения вредных примесей
RU2339447C2 (ru) * 2004-02-18 2008-11-27 Родиа Ацетов Гмбх Состав на основе золота и восстанавливаемого оксида, способ получения и применение в качестве катализатора, в частности, при окислении моноксида углерода
CN101143321A (zh) * 2006-09-15 2008-03-19 中国人民解放军63971部队 低温co氧化非贵金属催化剂
CN101804356A (zh) * 2010-03-08 2010-08-18 浙江中烟工业有限责任公司 用于降低卷烟烟气中co含量的催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Yang et al. In situ decoration of selenide on copper foam for the efficient immobilization of gaseous elemental mercury
TWI826408B (zh) 用於催化甲醛氧化的催化劑及其製備與用途
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
US6080281A (en) Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction
JPWO2014083772A1 (ja) 金属ナノ粒子複合体の製造方法およびその方法により製造された金属ナノ粒子複合体
CN104907045B (zh) 二氧化碳高效捕集材料
JP4119974B2 (ja) 一酸化炭素除去用触媒複合体及びそれを用いた一酸化炭素除去方法
JP5987855B2 (ja) 排ガス浄化用触媒
Levasseur et al. Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions
JPWO2006106878A1 (ja) カルシウム及び/又はマグネシウムを含む多孔質粒子からなる粒状物
CN104289232A (zh) 一种环保活性炭催化剂及其制备方法与其在烟气脱汞中的应用
CN112473665A (zh) 一种负载型银锰催化剂及其制备方法和应用
Song et al. Catalytic hydrolysis of HCN on ZSM-5 modified by Fe or Nb for HCN removal: surface species and performance
JP2013230471A (ja) セリウムランタン酸化物に基づく触媒を使用してn2oを分解する方法
JP2018510837A (ja) 安定化されたマイクロポーラス結晶性物質、それを作成する方法、およびNOxの選択的触媒還元のためのその使用
WO2024114551A1 (zh) 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法
KR20020009353A (ko) 배기가스중 질소산화물 및 다른 유해물질을 제거하는데사용되는 복합 촉매 및 그 제조방법
CN109364912A (zh) 碱土金属离子取代oms-2催化剂及其制备方法和应用
JP4210750B2 (ja) 活性酸素を包含した無機化合物及びその製造法
JP2866928B2 (ja) 亜酸化窒素分解用触媒及び亜酸化窒素の除去方法
RU2453367C1 (ru) Способ изготовления пористого гранулированного катализатора
EP3906995A1 (en) Adsorbent material on the basis of a metal-organic framework, method for the production and use of the same
JP2001205004A (ja) 硫黄化合物の除去方法
KR102601557B1 (ko) 구리페라이트, 구리페라이트의 제조방법 및 구리페라이트를 이용한 황화수소 제거 방법
JP6578704B2 (ja) 多孔性配位高分子

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131228