RU2445680C1 - FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS) - Google Patents

FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS) Download PDF

Info

Publication number
RU2445680C1
RU2445680C1 RU2010145099/08A RU2010145099A RU2445680C1 RU 2445680 C1 RU2445680 C1 RU 2445680C1 RU 2010145099/08 A RU2010145099/08 A RU 2010145099/08A RU 2010145099 A RU2010145099 A RU 2010145099A RU 2445680 C1 RU2445680 C1 RU 2445680C1
Authority
RU
Russia
Prior art keywords
conditionally
logical functions
category
group
bits
Prior art date
Application number
RU2010145099/08A
Other languages
Russian (ru)
Inventor
Лев Петрович Петренко (UA)
Лев Петрович Петренко
Original Assignee
Лев Петрович Петренко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лев Петрович Петренко filed Critical Лев Петрович Петренко
Priority to RU2010145099/08A priority Critical patent/RU2445680C1/en
Application granted granted Critical
Publication of RU2445680C1 publication Critical patent/RU2445680C1/en

Links

Landscapes

  • Detection And Correction Of Errors (AREA)

Abstract

FIELD: information technologies.
SUBSTANCE: in one of the versions the functional structure is made in the form of two digits of k group and contains four OR logical elements and one AND logical element in the conventionally "i+1" digit, and three OR logical elements and one AND logical element in the "i" digit.
EFFECT: improved efficiency of through carries
Figure 00000095
formation process in the summator.
5 cl

Description

Текст описания приведен в факсимильном виде.

Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
The text of the description is given in facsimile form.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043

Claims (5)

1. Функциональная структура сквозного переноса
Figure 00000044
и
Figure 00000045
условно «i+1» и условно «i» разрядов «k» группы аргументов множимого
Figure 00000046

предварительного сумматора
Figure 00000047
параллельно-последовательного умножителя
Figure 00000048
, выполнена в виде двух эквивалентных по структуре логических функций условно «i+1» разряд и «i» разряд, которые включают соответственно логические функции
Figure 00000049
,
Figure 00000050
, в которых функциональные входные связя являются функциональными выходными связями соответственно логических функций
Figure 00000051
,
Figure 00000052
,
Figure 00000053
,
Figure 00000054
и
Figure 00000055
,
Figure 00000056
,
Figure 00000057
, отличающаяся тем, что функциональные связи логических функций в структурах сквозного переноса
Figure 00000058
и
Figure 00000059
условно «i+1» и условно «i» разрядов «k» группы выполнены в соответствии с математической моделью вида
Figure 00000060

где
Figure 00000061
- логическая функция
Figure 00000049
;
Figure 00000062
- логическая функция
Figure 00000051
.
1. Functional structure of end-to-end transfer
Figure 00000044
and
Figure 00000045
conditionally “i + 1” and conditionally “i” bits “k” of the group of arguments of the multiplicable
Figure 00000046

preliminary adder
Figure 00000047
parallel to serial multiplier
Figure 00000048
is made in the form of two logical functions equivalent in structure to the conditionally “i + 1” category and “i” category, which include logical functions, respectively
Figure 00000049
,
Figure 00000050
in which the functional input links are functional output links, respectively, of logical functions
Figure 00000051
,
Figure 00000052
,
Figure 00000053
,
Figure 00000054
and
Figure 00000055
,
Figure 00000056
,
Figure 00000057
characterized in that the functional relationships of logical functions in end-to-end transfer structures
Figure 00000058
and
Figure 00000059
conditionally “i + 1” and conditionally “i” of bits “k” of the group are made in accordance with a mathematical model of the form
Figure 00000060

Where
Figure 00000061
- logical function
Figure 00000049
;
Figure 00000062
- logical function
Figure 00000051
.
2. Функциональная структура сквозного переноса f1(←←)i+1 и f2(←←)i условно «i+1» и условно «i» разрядов «k» группы аргументов множимого
Figure 00000046

предварительного сумматора
Figure 00000047
параллельно-последовательного умножителя
Figure 00000048
, выполнена в виде двух эквивалентных по структуре логических функций условно «i+1» разряд и «i» разряд, которые включают соответственно логические функции
Figure 00000063
,
Figure 00000064
, а также логические функции
Figure 00000051
,
Figure 00000052
,
Figure 00000053
,
Figure 00000054
и логические функции
Figure 00000055
,
Figure 00000056
,
Figure 00000057
соответственно, отличающаяся тем, что функциональные связи логических функций в структурах сквозного переноса
Figure 00000058
и
Figure 00000059
условно «i+1» и условно «i» разрядов «k» группы выполнены в соответствии с математической моделью вида
Figure 00000065

где
Figure 00000066
- логическая функция
Figure 00000063
.
2. Functional structure of end-to-end transfer f 1 (←) i + 1 and f 2 (←) i conditionally “i + 1” and conditionally “i” bits “k” of the group of arguments of the multiplicable
Figure 00000046

preliminary adder
Figure 00000047
parallel to serial multiplier
Figure 00000048
is made in the form of two logical functions equivalent in structure to the conditionally “i + 1” category and “i” category, which include logical functions, respectively
Figure 00000063
,
Figure 00000064
as well as logical functions
Figure 00000051
,
Figure 00000052
,
Figure 00000053
,
Figure 00000054
and logical functions
Figure 00000055
,
Figure 00000056
,
Figure 00000057
accordingly, characterized in that the functional relationships of logical functions in end-to-end transfer structures
Figure 00000058
and
Figure 00000059
conditionally “i + 1” and conditionally “i” of bits “k” of the group are made in accordance with a mathematical model of the form
Figure 00000065

Where
Figure 00000066
- logical function
Figure 00000063
.
3. Функциональная структура сквозного переноса f1(←←)i+1 и f2(←←)i условно «i+1» и условно «i» разрядов «k» группы аргументов множимого
Figure 00000046

предварительного сумматора
Figure 00000047
параллельно-последовательного умножителя
Figure 00000048
, выполнена в виде двух эквивалентных по структуре логических функций условно «i+1» разряд и «i» разряд, которые включают соответственно логические функции
Figure 00000067
,
Figure 00000068
, отличающаяся тем, что в условно «i+1» разряд введены дополнительные логические функции
Figure 00000069
,
Figure 00000070
и
Figure 00000071
, а в условно «i» разряд введены дополнительные логические функции
Figure 00000072
и
Figure 00000073
, при этом функциональные связи логических функций в структурах сквозного переноса
Figure 00000058
и
Figure 00000059
условно «i+1» и условно «i» разрядов «k» группы выполнены в соответствии с математической моделью вида
Figure 00000074

где
Figure 00000075
- логическая функция
Figure 00000067
.
3. Functional structure of end-to-end transfer f 1 (←) i + 1 and f 2 (←) i conditionally “i + 1” and conditionally “i” bits “k” of the group of arguments of the multiplicable
Figure 00000046

preliminary adder
Figure 00000047
parallel to serial multiplier
Figure 00000048
is made in the form of two logical functions equivalent in structure to the conditionally “i + 1” category and “i” category, which include logical functions, respectively
Figure 00000067
,
Figure 00000068
, characterized in that in the conditionally "i + 1" category introduced additional logical functions
Figure 00000069
,
Figure 00000070
and
Figure 00000071
, and in the conditionally “i” category additional logical functions are introduced
Figure 00000072
and
Figure 00000073
while functional relationships of logical functions in end-to-end transfer structures
Figure 00000058
and
Figure 00000059
conditionally “i + 1” and conditionally “i” of bits “k” of the group are made in accordance with a mathematical model of the form
Figure 00000074

Where
Figure 00000075
- logical function
Figure 00000067
.
4. Функциональная структура сквозного переноса
Figure 00000058
и
Figure 00000059
условно «i+1» и условно «i» разрядов «k» группы аргументов множимого
Figure 00000046

предварительного сумматора
Figure 00000047
параллельно-последовательного умножителя
Figure 00000048
, выполнена в виде двух эквивалентных по структуре логических функций условно «i+1» разряд и «i» разряд, которые включают соответственно логические функции
Figure 00000051
,
Figure 00000076
и
Figure 00000077
,
Figure 00000078
, отличающаяся тем, что в условно «i+1» разряд введены дополнительные логические функции
Figure 00000079
,
Figure 00000080
и
Figure 00000081
, а в условно «i» разряд введены дополнительные логические функции
Figure 00000082
и
Figure 00000083
, при этом функциональные связи логических функций в структурах сквозного переноса
Figure 00000058
и
Figure 00000059
условно «i+1» и условно «i» разрядов «k» группы выполнены в соответствии с математической моделью вида
Figure 00000084
4. Functional structure of end-to-end transfer
Figure 00000058
and
Figure 00000059
conditionally “i + 1” and conditionally “i” bits “k” of the group of arguments of the multiplicable
Figure 00000046

preliminary adder
Figure 00000047
parallel to serial multiplier
Figure 00000048
is made in the form of two logical functions equivalent in structure to the conditionally “i + 1” category and “i” category, which include logical functions, respectively
Figure 00000051
,
Figure 00000076
and
Figure 00000077
,
Figure 00000078
, characterized in that in the conditionally "i + 1" category introduced additional logical functions
Figure 00000079
,
Figure 00000080
and
Figure 00000081
, and in the conditionally “i” category additional logical functions are introduced
Figure 00000082
and
Figure 00000083
while functional relationships of logical functions in end-to-end transfer structures
Figure 00000058
and
Figure 00000059
conditionally “i + 1” and conditionally “i” of bits “k” of the group are made in accordance with a mathematical model of the form
Figure 00000084
5. Функциональная структура сквозного переноса
Figure 00000058
и
Figure 00000059
условно «i+1» и условно «i» разрядов «k» группы аргументов множимого
Figure 00000046

предварительного сумматора
Figure 00000047
параллельно-последовательного умножителя
Figure 00000048
, выполнена в виде двух эквивалентных по структуре логических функций условно «i+1» разряд и «i» разряд, которые включают соответственно логические функции
Figure 00000063
и
Figure 00000085
, отличающаяся тем, что в условно «i+1» разряд введены дополнительные логические функции
Figure 00000086
,
Figure 00000087
,
Figure 00000088
и
Figure 00000089
, а в условно «i» разряд введены дополнительные логические функции
Figure 00000090
,
Figure 00000091

и
Figure 00000092
, при этом функциональные связи логических функций в структурах сквозного переноса
Figure 00000058
и
Figure 00000059
условно «i+1» и условно «i» разрядов «k» группы выполнены в соответствии с математической моделью вида
Figure 00000093
5. Functional structure of end-to-end transfer
Figure 00000058
and
Figure 00000059
conditionally “i + 1” and conditionally “i” bits “k” of the group of arguments of the multiplicable
Figure 00000046

preliminary adder
Figure 00000047
parallel to serial multiplier
Figure 00000048
is made in the form of two logical functions equivalent in structure to the conditionally “i + 1” category and “i” category, which include logical functions, respectively
Figure 00000063
and
Figure 00000085
, characterized in that in the conditionally "i + 1" category introduced additional logical functions
Figure 00000086
,
Figure 00000087
,
Figure 00000088
and
Figure 00000089
, and in the conditionally “i” category additional logical functions are introduced
Figure 00000090
,
Figure 00000091

and
Figure 00000092
while functional relationships of logical functions in end-to-end transfer structures
Figure 00000058
and
Figure 00000059
conditionally “i + 1” and conditionally “i” of bits “k” of the group are made in accordance with a mathematical model of the form
Figure 00000093
RU2010145099/08A 2010-11-03 2010-11-03 FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS) RU2445680C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010145099/08A RU2445680C1 (en) 2010-11-03 2010-11-03 FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010145099/08A RU2445680C1 (en) 2010-11-03 2010-11-03 FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS)

Publications (1)

Publication Number Publication Date
RU2445680C1 true RU2445680C1 (en) 2012-03-20

Family

ID=46030280

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010145099/08A RU2445680C1 (en) 2010-11-03 2010-11-03 FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS)

Country Status (1)

Country Link
RU (1) RU2445680C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1196852A1 (en) * 1984-04-10 1985-12-07 Московский Ордена Трудового Красного Знамени Инженерно-Физический Институт Unit for forming ripple-through carry in adder
US5600583A (en) * 1992-07-31 1997-02-04 Texas Instruments Incorporated Circuit and method for detecting if a sum of two multidigit numbers equals a third multidigit number prior to availability of the sum
EP1126613A2 (en) * 1993-09-02 2001-08-22 Xilinx, Inc. Logic structure and circuit for fast carry
RU2198421C2 (en) * 2000-09-28 2003-02-10 Акционерное общество открытого типа "НИИ молекулярной электроники и завод "Микрон" High-speed carry adding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1196852A1 (en) * 1984-04-10 1985-12-07 Московский Ордена Трудового Красного Знамени Инженерно-Физический Институт Unit for forming ripple-through carry in adder
US5600583A (en) * 1992-07-31 1997-02-04 Texas Instruments Incorporated Circuit and method for detecting if a sum of two multidigit numbers equals a third multidigit number prior to availability of the sum
EP1126613A2 (en) * 1993-09-02 2001-08-22 Xilinx, Inc. Logic structure and circuit for fast carry
RU2198421C2 (en) * 2000-09-28 2003-02-10 Акционерное общество открытого типа "НИИ молекулярной электроники и завод "Микрон" High-speed carry adding device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
УЭЙКЕРЛИ Д. Проектирование цифровых устройств, т.1. - М.: Постмаркет, 2002, с.508, рис.5.91. *

Similar Documents

Publication Publication Date Title
Xie et al. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent
RU2012117468A (en) PROGRAMMABLE LOGIC DEVICE
RU2429522C1 (en) FUNCTIONAL STRUCTURE OF ADDER fi(Σ) OF ARBITRARY "i" BIT FOR LOGIC-DYNAMIC PROCESS OF SUMMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) and [mi]f(2n) USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC)
RU2386162C2 (en) FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS)
RU2445680C1 (en) FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS)
RU2373563C1 (en) FUNCTIONAL STRUCTURE OF MULTIPLIER, IN WHICH INPUT ARGUMENTS HAVE FORMAT OF BINARY NUMERATION SYSTEM f(2n), AND OUTPUT ARGUMENTS ARE FORMMED IN FORMAT OF POSITION-SIGN NUMERATION SYSTEM f(+/-)
RU2439658C1 (en) FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC)
Ouyang Extensions of nilpotent pp rings
Manske et al. Three layer Q 2-free families in the Boolean lattice
RU2422879C1 (en) FUNCTIONAL STRUCTURE FOR PRE-ADDER OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) WITH MULTIPLICAND ARGUMENTS [mj]f(2n) AND MULTIPLIER ARGUMENTS [ni]f(2n) IN POSITION FORMAT (VERSIONS)
RU2422881C1 (en) FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS)
RU2424549C1 (en) FUNCTIONAL STRUCTURE OF PRE-ADDER fΣ([mj]&[mj,0]) OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) WITH PROCEDURE FOR LOGIC DIFFERENTIATION d/dn OF FIRST INTERMEDIATE SUM [S1 Σ]f(})- OR STRUCTURE OF ACTIVE ARGUMENTS OF MULTIPLICAND [0,mj]f(2n) and [mj,0]f(2n) (VERSIONS)
RU2431886C1 (en) FUNCTIONAL STRUCTURES FOR PARALLEL-SERIAL RIPPLE CARRY fj+1(←←)+ и fj(←←)+ IN CONDITIONAL "i" "FORMATION ZONE" FOR CORRECTING RESULTANT PRELIMINARY FIRST LEVEL SUM OF ARGUMENTS OF PARTIAL PRODUCTS OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) OF POSITIONAL FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS)
RU2439660C2 (en) FUNCTIONAL STRUCTURE OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n)
RU2378684C1 (en) FUNCTIONAL INPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER OF POSITION-SIGN SYSTEM f(+/-) FORMAT
RU2480817C1 (en) FUNCTIONAL STRUCTURE OF ADDER f2(ΣCD) OF CONDITIONAL "k" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF INPUT STRUCTURES OF ARGUMENTS OF TERMS [1,2Sj h1]f(2n) AND [1,2Sj h2]f(2n) OF "COMPLEMENTARY CODE RU" POSITIONAL FORMAT BY APPLYING ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn OF ARGUMENTS IN COMBINED STRUCTURE THEREOF (VERSIONS OF RUSSIAN LOGIC)
RU2443008C1 (en) FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT
RU2450326C2 (en) FUNCTIONAL STRUCTURE FOR LOGIC-DYNAMIC PROCESS OF PARALLEL-SERIAL END-TO-END ACTIVATION OF fi(←«+1/-1»)k INACTIVE ARGUMENTS "0" OF SECOND INTERMEDIATE SUM [S2 i]f(2n) IN PROCEDURE FOR SUMMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) AND [mi]f(2n) (VERSIONS)
RU2517245C9 (en) f3 ADDER FUNCTIONAL STRUCTURE (ΣCD) OF ARBITRARY "g" DIGIT IMPLEMENTING DECODING PROCEDURE FOR ARGUMENTS OF SUMMANDS [1,2Sg h1]f(2n) AND [1,2Sg h2]f(2n) OF POSITION FORMAT "EXTRA CODE RU" BY ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1,0,-1) AND DOUBLE LOGICAL DIFFERENTIATION d1,2/dn → f1,2(+←↓-)d/dn OF ACTIVE ARGUMENTS OF "LEVEL 2" AND REMOVAL OF ACTIVE LOGICAL ZEROES "+1""-1"→"0" IN "LEVEL 1" (VERSIONS OF RUSSIAN LOGIC)
RU2012120596A (en) FUNCTIONAL STRUCTURE OF THE JUNIOR DISCHARGE OF THE ADDITOR fCD (Σ) RU FOR THE ARGUMENTS SUBJECT TO ± [1,2nj] f (2n) and ± [1,2mj] f (2n) FORMAT "ADDITIONAL CODE RU" (RUSSIAN LOGIC OPTIONS)
RU2424550C1 (en) FUNCTIONAL STRUCTURE OF SERIAL RIPPLE CARRIES fj+1(←←)+ and fj(←←)+ OF CONDITIONAL "I" FORMATION ZONE FOR CORRECTING RESULTANT SUM OF PRESUMMATION OF ACTIVE ARGUMENTS OF MULTIPLICANT [mj]f(2n) OF POSITIONAL FORMAT IN PARALLEL-SERIAL MULTIPLIER fΣ(Σ) (VERSIONS)
RU2439659C1 (en) METHOD OF LOGIC-DYNAMIC PROCESS OF SUMMATION OF POSITIONAL ARGUMENTS OF ANALOGUE SIGNALS [ni]f(2n) AND [mi]f(2n) WITH APPLICATION OF ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND GENERATION OF RESULTING SUM OF ANALOGUE SIGNALS [Sj]f(2n) IN POSITIONAL FORMAT (RUSSIAN LOGIC)
RU2484518C1 (en) FUNCTIONAL STRUCTURE OF SECOND LEAST SIGNIFICANT BIT ACTIVATING RESULTANT ARGUMENT (2Smin+1)f(2n) "LEVEL 2" AND (1Smin+1)f(2n) "LEVEL 1" OF ADDDER fCD(Σ)RU FOR ARGUMENTS OF TERMS ±[1,2nj]f(2n) AND ±[1,2mj]f(2n) OF "COMPLEMENTARY CODE RU" FORMAT (VERSIONS OF RUSSIAN LOGIC)
RU2481614C2 (en) METHOD TO GENERATE ARGUMENTS OF ANALOG SIGNALS OF PARTIAL PRODUCTS [ni]&[mj]f(h)↓CD ARGUMENTS OF MULTIPLICAND ±[mj]f(2n) AND ARGUMENTS OF MULTIPLIER ±[ni]f(2n) - "ADDITIONAL CODE" IN PYRAMIDAL MULTIPLIER fΣ(↓CDΣ) FOR SUBSEQUENT LOGICAL DECODING f1(CD↓) AND GENERATION OF RESULTING SUM IN FORMAT ±[SΣ]f(2n) -"ADDITIONAL CODE" AND FUNCTIONAL STRUCTURE FOR ITS REALISATION (VERSIONS OF RUSSIAN LOGICS)
O'Shea et al. Solving Einstein's Equations Using Discontinuous Galerkin Methods