RU2445555C2 - Холодильный и/или морозильный блок - Google Patents

Холодильный и/или морозильный блок Download PDF

Info

Publication number
RU2445555C2
RU2445555C2 RU2009125003/06A RU2009125003A RU2445555C2 RU 2445555 C2 RU2445555 C2 RU 2445555C2 RU 2009125003/06 A RU2009125003/06 A RU 2009125003/06A RU 2009125003 A RU2009125003 A RU 2009125003A RU 2445555 C2 RU2445555 C2 RU 2445555C2
Authority
RU
Russia
Prior art keywords
magnetic refrigerator
heat exchanger
coolant
refrigerating
cooling
Prior art date
Application number
RU2009125003/06A
Other languages
English (en)
Other versions
RU2009125003A (ru
Inventor
Матиас ВИСТ (DE)
Матиас ВИСТ
Дидье ЗИГЕЛЬ (DE)
Дидье ЗИГЕЛЬ
Original Assignee
Либхерр-Хаузгерэте Оксенхаузен Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Либхерр-Хаузгерэте Оксенхаузен Гмбх filed Critical Либхерр-Хаузгерэте Оксенхаузен Гмбх
Publication of RU2009125003A publication Critical patent/RU2009125003A/ru
Application granted granted Critical
Publication of RU2445555C2 publication Critical patent/RU2445555C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Изобретение относится к холодильному и/или морозильному блоку, содержащему магнитный холодильник, холодный теплообменник для охлаждения охлаждаемого и/или замораживаемого пространства блока и средства управления. Средства управления выполнены с возможностью обеспечения подачи охлажденного в магнитном холодильнике теплоносителя в холодный теплообменник в режиме охлаждения блока. Средства управления выполнены с возможностью в режиме размораживания блока выключения магнитного холодильника или подачи нагретого в магнитном холодильнике теплоносителя в холодный теплообменник. Задачей изобретения является сокращение времени размораживания. 8 з.п.ф-лы, 1 ил.

Description

Изобретение относится к холодильному и/или морозильному блоку, содержащему магнитный холодильник, холодный теплообменник для охлаждения охлаждаемого и/или замораживаемого пространства и средства управления, обеспечивающие в режиме охлаждения подачу охлажденного в магнитном холодильнике теплоносителя в холодный теплообменник.
В процессе магнитного охлаждения теплоноситель нагревается и охлаждается со сдвигом во времени благодаря так называемому магнитокалорическому эффекту, причем обычно этот процесс включает в себя четыре непрерывно повторяющихся этапа, а именно намагничивание, отвод тепла, размагничивание и использование холода. В этом процессе, как известно, используется, например, неподвижный магнитокалорический материал и вращающиеся магниты, причем магнитокалорический материал в зависимости от положения вращающегося магнита подвергается нагреву при намагничивании и охлаждению при размагничивании. Указанный нагрев или охлаждение в конечном счете используются для нагрева или охлаждения теплоносителя.
Возможный вариант выполнения холодильного контура представляет собой холодный теплообменник, магнитная холодильная машина, горячий теплообменник и насос для подачи теплоносителя. Проходящий через магнитный холодильник теплоноситель нагревается во время намагничивания, а затем направляется посредством насоса в горячий теплообменник, в котором охлаждается. Во время размагничивания проходящий через магнитный холодильник теплоноситель дополнительно охлаждается и затем проходит через холодный теплообменник, который обычно расположен в охлаждаемом или замораживаемом пространстве или в определенной области указанных пространств и который служит для отвода тепла из этого пространства. Теплоноситель, нагретый таким способом в холодном теплообменнике, затем дополнительно нагревается во время намагничивания в магнитном холодильнике и затем снова подается посредством насоса в горячий теплообменник.
Во время работы холодный теплообменник может покрываться льдом, так что требуется его размораживание. Размораживание обычно происходит до достижения определенной температуры, затем холодильный контур снова приводится в действие, как описано выше, и охлаждение охлаждаемого или замораживаемого пространства происходит посредством холодного теплообменника, через который протекает холодный теплоноситель.
Задача настоящего изобретения заключается в дополнительном усовершенствовании холодильного и/или морозильного блока для сокращения времени размораживания.
Эта задача решена с помощью холодильного и/или морозильного блока, содержащего магнитный холодильник, холодный теплообменник для охлаждения охлаждаемого и/или замораживаемого пространства блока и средства управления для подачи в режиме охлаждения охлажденного в магнитном холодильнике теплоносителя в холодный теплообменник. Согласно изобретению средства управления выполнены так, что в режиме размораживания блока нагретый в магнитном холодильнике теплоноситель подается в холодный теплообменник. В отличие от операции охлаждения, при которой к холодному теплообменнику подается охлажденный в магнитном холодильнике теплоноситель, в режиме размораживания к холодному теплообменнику подается нагретый в магнитном холодильнике теплоноситель, в результате чего его температура возрастает быстрее, следовательно, время размораживания холодного теплообменника сокращается. Также в режиме размораживания блока магнитный холодильник может быть выключен, в то время как насос, подающий теплоноситель, продолжает работать. В этом случае отсутствует необходимость в изменении какой-либо имеющейся цепи клапана.
Предпочтительно средства управления содержат клапаны, установленные по потоку за холодным теплообменником и перед магнитным холодильником, а также устройство для управления клапанами. Клапаны могут быть бистабильными или моностабильными.
В данном варианте осуществления изобретения клапаны выполнены так, что в режиме охлаждения они обеспечивают возможность подачи охлажденного в магнитном холодильнике теплоносителя в холодный теплообменник, а нагретого в магнитном холодильнике теплоносителя - в горячий теплообменник. В соответствии с изобретением средства управления выполнены таким образом, что в режиме размораживания происходит реверсирование цикла, т.е. в этом случае клапаны подают в холодный теплообменник нагретый в магнитном холодильнике теплоноситель, а в горячий теплообменник подают охлажденный в магнитном холодильнике теплоноситель.
Дополнительно горячий теплообменник может быть снабжен одним из клапанов, подходящих для установки между горячим теплообменником и магнитным холодильником.
Магнитный холодильник может содержать два или более теплообменников, выполненных так, что нагревание и охлаждение проходящего через них теплоносителя происходит в них периодически.
Теплообменники магнитного холодильника могут быть выполнены из материала или содержать материал, который нагревается при намагничивании и охлаждается при размагничивании, а кроме того, магнитный холодильник может иметь перемещающийся, предпочтительно вращающийся относительно теплообменников магнит. В зависимости от положения вращающегося магнита нагрев магнитокалорического материала происходит в одном из теплообменников. Это приводит к тому, что проходящий через этот теплообменник теплоноситель нагревается. Удаленный от магнита другой теплообменник, т.е. размагниченный, благодаря магнитокалорическому эффекту подвергается охлаждению, в результате чего проходящий через этот теплообменник теплоноситель охлаждается.
Кроме такого варианта осуществления изобретения с вращающимся магнитом, одинаково возможны варианты, в которых вращается магнитокалорический материал, а магнит неподвижен, либо магнитокалорический материал помещен в теплоноситель, например, в виде суспензии.
В дополнительном варианте осуществления изобретения средства управления выполнены так, что переключение из режима охлаждения в режим размораживания происходит посредством временного сдвига при управлении работой клапанов или временного сдвига в работе магнитного холодильника. Таким образом, возможно переключение из режима охлаждения в режим размораживания, или наоборот без изменения работы магнитного холодильника, изменяя лишь поток теплоносителя посредством временного сдвига при управлении работой клапанов. Временной сдвиг устанавливается таким образом, чтобы расположенный перед магнитным холодильником клапан обеспечивал подачу теплоносителя в теплообменник, в котором происходит нагрев теплоносителя, а затем в холодный теплообменник, а установленный за холодным теплообменником клапан обеспечивал подачу подогретого в холодном теплообменнике теплоносителя в теплообменник магнитного холодильника, в котором происходит охлаждение теплоносителя.
В равной степени имеется возможность без изменения работы клапанов осуществить временной сдвиг в работе магнитного холодильника.
После завершения размораживания происходит повторный временной сдвиг в работе клапанов или в работе магнитного холодильника, при котором теплоноситель сначала подается в холодный теплообменник магнитного холодильника и поступает оттуда в холодный теплообменник, а выходящий из холодного теплообменника теплоноситель подается в горячий теплообменник магнитного холодильника, откуда снова поступает в горячий теплообменник.
Размораживание также может быть достигнуто реверсированием направления подачи теплоносителя. В этом случае магнитный холодильник может продолжать работать. То же самое касается переключения работы клапанов.
Термин «реверсирование направления подачи» следует понимать как протекание теплоносителя через систему в направлении, обратном направлению в режиме охлаждения. Это может быть достигнуто реверсированием насоса, или при неизменном направлении подачи насоса изменение направления подачи теплоносителя можно осуществить путем изменения соединения питающей линии.
Далее изобретение будет подробно описано со ссылкой на вариант его осуществления, показанный на чертеже.
Обозначен позицией 10 магнитный холодильник включает в себя два теплообменника 12 и 14, которые могут представлять собой один узел или находиться отдельно друг от друга. Эти теплообменники выполнены из магнитокалорического материала или содержат такой материал. Циклическое намагничивание и размагничивание осуществляется вращающимся магнитом (не показан), который вращается вокруг теплообменников 12 и 14. В зависимости от положения вращающегося магнита теплообменники 12 и 14 намагничиваются или размагничиваются, в результате чего происходит их нагрев или охлаждение. При этом, теплоноситель, проходящий через нагретый теплообменник, нагревается, а теплоноситель, проходящий через охлажденный теплообменник, охлаждается.
Холодильный и/или морозильный блок также содержит холодный теплообменник 20, расположенный в охлаждаемом или замораживаемом пространстве или в определенной области охлаждаемого или замораживаемого пространства, и обеспечивает охлаждение этого пространства. Горячий теплообменник 50 расположен на внешней стороне блока и служит для отвода тепла от теплоносителя в окружающую среду или в другой теплоноситель.
Насос 100 обеспечивает поток теплоносителя через показанный контур охлаждения.
Кроме того, за холодным теплообменником 20 установлен клапан 40, а за горячим теплообменником 50 установлен дополнительный клапан 30. Клапаны могут быть выполнены бистабильными или моностабильными.
Во время процесса охлаждения клапан 40 управляется посредством системы управления, не показанной на чертеже, таким образом, что теплоноситель, например соляной раствор или спиртовая смесь, протекает через теплообменник 12/14, который находится в намагниченном состоянии, благодаря чему нагревается, нагревая теплоноситель соответственно. Нагретый таким образом теплоноситель затем насосом 100 подается к горячему теплообменнику 50, расположенному вне охлаждающего устройства. Работа клапана 30 регулируется таким образом, чтобы охлажденный в горячем теплообменнике 50 теплоноситель проходил через теплообменник 12/14 магнитного холодильника, при этом теплообменник 12/14 находится в размагниченном состоянии, благодаря чему охлаждается. Таким образом, теплоноситель охлаждается в теплообменнике 12/14 и затем подается в холодный теплообменник 20.
Для размораживания работа клапана изменяется при неизменной работе магнитного холодильника 10 так, чтобы относительно работы магнитного холодильника 10 происходил временной сдвиг, т.е. изменение фазы. Клапан 40 управляется при таком временном сдвиге так, чтобы теплоноситель после прохождения через холодный теплообменник 20 направлялся через холодный, т.е. размагниченный, теплообменник 12/14 магнитного холодильника, а клапан 30 управляется так, чтобы выходящий из горячего теплообменника 50 теплоноситель направлялся через горячий, т.е. намагниченный, теплообменник магнитного холодильника 10. Таким образом, обеспечивается реверсирование цикла для того, чтобы теплоноситель, который подвергался нагреву в магнитном холодильнике 10, проходил через холодный теплообменник, в результате чего может быть уменьшено время размораживания холодного теплообменника.
Таким образом, преимущество изобретения состоит в том, что значения температур в охлаждающем устройстве являются более стабильными или их колебания уменьшаются.

Claims (9)

1. Холодильный и/или морозильный блок, содержащий магнитный холодильник (10), холодный теплообменник (20) для охлаждения охлаждаемого и/или замораживаемого пространства блока и средства управления, выполненные с возможностью обеспечения подачи охлажденного в магнитном холодильнике (10) теплоносителя в холодный теплообменник (20) в режиме охлаждения блока, отличающийся тем, что средства управления выполнены с возможностью в режиме размораживания блока выключения магнитного холодильника (10) или подачи нагретого в магнитном холодильнике (10) теплоносителя в холодный теплообменник (20).
2. Холодильный и/или морозильный блок по п.1, отличающийся тем, что средства управления включают в себя клапаны (30, 40), установленные по потоку за холодным теплообменником (20) и перед магнитным холодильником (10), и систему управления работой клапанов.
3. Холодильный и/или морозильный блок по п.2, отличающийся тем, что блок дополнительно содержит горячий теплообменник (50), а один из клапанов (30) установлен между горячим теплообменником (50) и магнитным холодильником (10).
4. Холодильный и/или морозильный блок по любому из пп.1-3, отличающийся тем, что магнитный холодильник (10) содержит два или более теплообменников (12, 14), обеспечивающих циклический нагрев и охлаждение протекающего через них теплоносителя.
5. Холодильный и/или морозильный блок по любому из пп.1-3, отличающийся тем, что магнитный холодильник (10) содержит подвижный относительно теплообменников (12, 14) магнит, предпочтительно вращающийся, а теплообменники (12, 14) выполнены из магнитокалорического материала или содержат такой материал.
6. Холодильный и/или морозильный блок по п.4, отличающийся тем, что магнитный холодильник (10) содержит подвижный относительно теплообменников (12, 14) магнит, предпочтительно вращающийся, а теплообменники (12, 14) выполнены из магнитокалорического материала или содержат такой материал.
7. Холодильный и/или морозильный блок по любому из пп.1-3, 6, отличающийся тем, что средства управления выполнены с возможностью обеспечения переключения из режима охлаждения в режим размораживания посредством временного сдвига в управлении работой клапанов (30, 40), или временного сдвига в работе магнитного холодильника (10), или посредством реверсирования направления подачи теплоносителя.
8. Холодильный и/или морозильный блок по п.4, отличающийся тем, что средства управления выполнены с возможностью обеспечения переключения из режима охлаждения в режим размораживания посредством временного сдвига в управлении работой клапанов (30, 40), или временного сдвига в работе магнитного холодильника (10), или посредством реверсирования направления подачи теплоносителя.
9. Холодильный и/или морозильный блок по п.5, отличающийся тем, что средства управления выполнены с возможностью обеспечения переключения из режима охлаждения в режим размораживания посредством временного сдвига в управлении работой клапанов (30, 40), или временного сдвига в работе магнитного холодильника (10), или посредством реверсирования направления подачи теплоносителя.
RU2009125003/06A 2006-12-01 2007-11-15 Холодильный и/или морозильный блок RU2445555C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE202006018266.7 2006-12-01
DE202006018266 2006-12-01
DE202007003577.2 2007-03-09
DE202007003577U DE202007003577U1 (de) 2006-12-01 2007-03-09 Kühl- und/oder Gefriergerät

Publications (2)

Publication Number Publication Date
RU2009125003A RU2009125003A (ru) 2011-01-10
RU2445555C2 true RU2445555C2 (ru) 2012-03-20

Family

ID=39205077

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009125003/06A RU2445555C2 (ru) 2006-12-01 2007-11-15 Холодильный и/или морозильный блок

Country Status (7)

Country Link
US (1) US20100000228A1 (ru)
EP (1) EP2095041B1 (ru)
CN (1) CN101622505B (ru)
DE (1) DE202007003577U1 (ru)
ES (1) ES2718465T3 (ru)
RU (1) RU2445555C2 (ru)
WO (1) WO2008064776A1 (ru)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055959A1 (de) * 2008-08-28 2010-03-04 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
FR2943406B1 (fr) * 2009-03-20 2013-04-12 Cooltech Applications Procede de generation de flux thermique a partir d'un element magnetocalorique et generateur thermique magnetocalorique
ITPN20110023A1 (it) 2011-04-11 2012-10-12 Parker Hannifin S R L Apparato e procedimento per raffreddare un gas, in particolare compresso
US8966912B2 (en) * 2012-05-15 2015-03-03 Delta Electronics, Inc. Heat exchanging system
BR112015014170A2 (pt) 2012-12-17 2017-07-11 Astronautics Corp uso dos modos de fluxo unidirecional de sistemas de refrigeração magnética
US10426361B2 (en) 2013-06-14 2019-10-01 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
WO2015017230A1 (en) 2013-08-02 2015-02-05 General Electric Company Magneto-caloric assemblies
US9851128B2 (en) 2014-04-22 2017-12-26 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump
DE102014107294B4 (de) * 2014-05-23 2017-02-09 Andreas Hettich Gmbh & Co. Kg Zentrifuge
US20170328608A1 (en) * 2016-05-16 2017-11-16 General Electric Company Caloric Heat Pump Ice Making Appliance
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10527325B2 (en) * 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US11009282B2 (en) * 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US11125477B2 (en) 2017-08-25 2021-09-21 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
WO2019038719A1 (en) 2017-08-25 2019-02-28 Astronautics Corporation Of America MULTI-BED RING DRUM TYPE MAGNETIC REFRIGERATION APPARATUS
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
CN109323504B (zh) * 2018-09-11 2020-07-28 西安交通大学 基于旋转式磁制冷机的立式风冷多温区冰箱及其控制方法
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
DE202019101918U1 (de) * 2019-03-08 2020-06-09 Liebherr-Components Biberach Gmbh Temperiervorrichtung für Antriebs- und/oder Getriebeeinheiten wie Tunnelbohrer-Getriebe
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
EP4081744B1 (en) * 2019-12-23 2023-10-25 Vestel Elektronik Sanayi ve Ticaret A.S. Apparatus for magnetic cooling and household appliance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094925A (en) * 1999-01-29 2000-08-01 Delaware Capital Formation, Inc. Crossover warm liquid defrost refrigeration system
US6668560B2 (en) * 2001-12-12 2003-12-30 Astronautics Corporation Of America Rotating magnet magnetic refrigerator
US6826915B2 (en) * 2001-07-16 2004-12-07 Meomax Co., Ltd. Magnetic refrigerant material, regenerator and magnetic refrigerator
RU2252375C1 (ru) * 2003-09-26 2005-05-20 Общество с ограниченной ответственностью "Перспективные магнитные технологии и консультации" Магнитная тепловая машина

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB742995A (en) * 1951-12-19 1956-01-04 Gen Electric Improvements relating to automatic defrost control mechanism for refrigerators
US4336692A (en) * 1980-04-16 1982-06-29 Atlantic Richfield Company Dual source heat pump
FR2517415A1 (fr) * 1981-11-27 1983-06-03 Commissariat Energie Atomique Procede de refrigeration ou de pompage de chaleur et dispositif pour la mise en oeuvre de ce procede
DE3539584C1 (de) * 1985-11-08 1986-12-18 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Vorrichtung zur magnetokalorischen Kaelteerzeugung
US4852360A (en) * 1987-12-08 1989-08-01 Visual Information Institute, Inc. Heat pump control system
KR0171745B1 (ko) * 1996-08-31 1999-03-20 배순훈 냉장고의 냉각용 냉매순환방법
ES2154564B1 (es) * 1998-10-02 2001-11-16 Univ Catalunya Politecnica Procedimiento para desalinizacion de agua salina por congelacion que comprende el uso del efecto magneto-calorico.
NO312262B1 (no) * 1999-11-02 2002-04-15 Abb Ab Anlegg for ekstrahering, magnetisk kjöleinnretning, samt anvendelse av kjöleinnretningen, og en fremgangsmåte forkondensering av naturgass
US6334321B1 (en) * 2000-03-15 2002-01-01 Carrier Corporation Method and system for defrost control on reversible heat pumps
ES2284683T3 (es) * 2000-08-09 2007-11-16 Astronautics Corporation Of America Aparato de refrigeracion magnetica de sustrato rotativo.
JP4641683B2 (ja) * 2001-09-04 2011-03-02 三洋電機株式会社 冷凍サイクル装置
CA2432810A1 (en) * 2003-06-19 2004-12-19 Andres M. Lozano Method of treating depression, mood disorders and anxiety disorders by brian infusion
JP2005077032A (ja) * 2003-09-02 2005-03-24 Denso Corp 熱交換装置
US20050217278A1 (en) * 2004-03-31 2005-10-06 Mongia Rajiv K Apparatus to use a magnetic based refrigerator in mobile computing device
FR2869403A1 (fr) * 2004-04-23 2005-10-28 Christian Muller Dispositif et procede de generation de thermies a materiau magneto-calorique
JP4231022B2 (ja) * 2005-03-31 2009-02-25 株式会社東芝 磁気冷凍機
JP4564883B2 (ja) * 2005-04-28 2010-10-20 中部電力株式会社 磁気式温度調整装置
FR2890158A1 (fr) * 2005-09-01 2007-03-02 Cooltech Applic Soc Par Action Generateur thermique a materiau magnetocalorique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094925A (en) * 1999-01-29 2000-08-01 Delaware Capital Formation, Inc. Crossover warm liquid defrost refrigeration system
US6826915B2 (en) * 2001-07-16 2004-12-07 Meomax Co., Ltd. Magnetic refrigerant material, regenerator and magnetic refrigerator
US6668560B2 (en) * 2001-12-12 2003-12-30 Astronautics Corporation Of America Rotating magnet magnetic refrigerator
RU2252375C1 (ru) * 2003-09-26 2005-05-20 Общество с ограниченной ответственностью "Перспективные магнитные технологии и консультации" Магнитная тепловая машина

Also Published As

Publication number Publication date
RU2009125003A (ru) 2011-01-10
WO2008064776A1 (de) 2008-06-05
CN101622505B (zh) 2013-04-03
EP2095041A1 (de) 2009-09-02
ES2718465T3 (es) 2019-07-02
DE202007003577U1 (de) 2008-04-10
CN101622505A (zh) 2010-01-06
EP2095041B1 (de) 2019-01-02
US20100000228A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
RU2445555C2 (ru) Холодильный и/или морозильный блок
US10288327B2 (en) Use of unidirectional flow modes of magnetic cooling systems
CN102062456B (zh) 包括热电模块的制冷系统
CN110953760B (zh) 磁制冷系统
EP2071255A1 (de) kühl- und/oder gefriergerät mit einem magnetischen kühler
CN101137876A (zh) 制冷和除霜控制系统
RU2008142980A (ru) Способ эксплуатации холодильного аппарата, содержащего параллельно соединенные испарители, и холодильный аппарат
US20090178418A1 (en) Refrigerator and/or freezer
CN110285595B (zh) 制冷系统及具有其的制冷设备
KR101533644B1 (ko) 핫가스 제상 냉동 사이클 장치
RU2489653C2 (ru) Холодильное и/или морозильное устройство
KR20120003224A (ko) 냉장 장치의 냉매 순환 시스템
KR100216956B1 (ko) 냉장고의 제상장치
JP7295462B2 (ja) 固体冷凍装置
KR20040000963A (ko) 2개의 증발기가 구비된 냉각시스템의 운전제어방법
WO2024070197A1 (ja) 固体冷凍装置
JPH10274463A (ja) ブラインを用いた冷却システム
JP2004077031A (ja) 冷却設備における冷却器の霜、氷除去装置およびその方法
RU2009126097A (ru) Холодильный аппарат
KR19990004825A (ko) 냉장고의 병렬식 이중냉각시스템
JP2002181396A (ja) 低温蓄熱式冷却システム及びユニットクーラー
JPH11325613A (ja) 蓄熱式冷凍装置
KR970022092A (ko) 기능선택형 냉각장치
JPS6225949B2 (ru)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181116