RU2441097C1 - Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов - Google Patents
Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов Download PDFInfo
- Publication number
- RU2441097C1 RU2441097C1 RU2010139738/02A RU2010139738A RU2441097C1 RU 2441097 C1 RU2441097 C1 RU 2441097C1 RU 2010139738/02 A RU2010139738/02 A RU 2010139738/02A RU 2010139738 A RU2010139738 A RU 2010139738A RU 2441097 C1 RU2441097 C1 RU 2441097C1
- Authority
- RU
- Russia
- Prior art keywords
- deformation
- heating
- temperature
- degree
- mpa
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
Abstract
Изобретение относится к металлургии, в частности к обработке псевдо-β-титановых сплавов, и может быть использовано для изготовления конструкционных деталей и узлов авиакосмической техники. При изготовлении деформированных изделий из псевдо-β-титановых сплавов получают слиток, подвергают его термомеханической обработке путем нагрева до температуры на 150÷380°С выше Тпп и деформации со степенью деформации 40÷70%, нагрева до температуры на 60÷220°С выше Тпп и деформации со степенью деформации 30÷60%, нагрева до температуры на 20÷60°С ниже Тпп и деформации со степенью деформации 30÷60%. Далее осуществляют рекристаллизационную обработку с нагревом заготовки до температуры на 70÷140°С выше Тпп и последующую деформацию со степенью деформации 20÷60% с охлаждением до комнатной температуры. После нагрева до температуры на 20÷60°С ниже Тпп заготовку деформируют со степенью деформации 30÷70% и осуществляют дополнительную рекристаллизационную обработку с нагревом заготовки до температуры на 30÷110°С выше Тпп и последующую деформацию со степенью деформации 15÷50% с охлаждением до комнатной температуры. После нагрева до температуры на 20÷60°С ниже Тпп проводят деформацию со степенью деформации 50÷90% и окончательное деформирование. Получают высокоточные штампованные изделия с толщиной в сечении 100 мм и выше и длиной более 6 м со стабильными и высокими значениями временного сопротивления и вязкости разрушения. 3 з.п. ф-лы, 3 табл.
Description
Изобретение относится к цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано для изготовления конструкционных деталей и узлов авиакосмической техники, преимущественно деталей шасси и планера, из высокопрочных псевдо-β-титановых сплавов.
Высокая удельная прочность псевдо-β-титановых сплавов очень полезна для применения в конструкциях летательных аппаратов. Важнейшей проблемой при создании конкурентоспособных пассажирских самолетов является создание конструкций и подбор материалов, которые позволяют обеспечить высокие эксплуатационные свойства и весовые характеристики. Потребность в данных сплавах была обусловлена тем, что современные тенденции по увеличению габаритно-весовых характеристик коммерческих самолетов повлекли за собой увеличение сечений высоконагруженных деталей, например, таких как шасси или детали планера с обеспечением однородного уровня механических свойств. Кроме того, значительно возросли требования к материалу, в котором необходимо сочетание высокой прочности и высокого коэффициента вязкости разрушения. В таких конструкциях используются либо высоколегированные стали, либо титановые сплавы. Потенциальные выгоды, получаемые от замены легированных сталей на титановые сплавы, весьма существенны, так как позволяют снизить массу деталей как минимум в 1,5 раза, повысить коррозионную стойкость и упростить обслуживание. Данные титановые сплавы позволяют решить эти задачи и могут быть использованы для изготовления широкой номенклатуры изделий ответственного назначения, включая крупногабаритные штамповки и поковки сечением более 150÷200 мм, а также полуфабрикаты малого сечения, такие как прутки, плиты толщиной до 75 мм, которые широко используются для изготовления различных деталей авиационной техники, в том числе крепежа. Использование титановых сплавов, несмотря на выгодные по сравнению со сталью удельные прочностные свойства, ограничивается технологическими возможностями, в частности - относительно высокие удельные усилия деформирования вследствие более низких температур деформации по отношению к высоколегированным сталям; низкая теплопроводность, а также сложность получения равномерных механических свойств и структуры, особенно при изготовлении деталей массивного сечения, поэтому для обеспечения всех требуемых показателей качества полученного металла необходимы индивидуальные способы их обработки.
Псевдо-β-титановые сплавы Ti-5Al-5Mo-5V-3Cr-Zr выгодно отличаются от известных сплавов, например сплава Ti-10V-2Fe-3Al. Они менее подвержены ликвации, обладают прочностными характеристиками до 10% выше, чем у сплава Ti-10V-2Fe-3Al, имеют повышенную прокаливаемость, что позволяет изготовлять штамповки сечением до 200 мм и более (практически в два раза больше) с равномерной структурой и свойствами, а также более технологичны. Кроме того, сплавы этого класса при прочности более 1100 МПа обладают вязкостью разрушения, сопоставимой со сплавом Ti-6Al-4V, но превосходят сплав Ti-6Al-4V по прочности на 150-200 МПа. Данные сплавы отвечают запросам, предъявляемым к современным летательным аппаратам. Например, в одном из перспективных самолетов из сплавов данного класса используют штампованные изделия, масса которых варьируется от 23 кг (50 фунтов) до 2600 кг (5700 фунтов), а длина от 400 мм (16 дюймов) до 5700 мм (225 дюймов). Ключевым фактором, влияющим на качество этих изделий, является термомеханическая обработка. Известные способы не позволяют производить изделия с требуемыми стабильными механическими свойствами.
Известен способ обработки заготовок из титановых сплавов, включающий деформирование слитка путем его осадки и вытяжки при температурах β-области со степенью деформации 50-60%, ковку заготовки при температурах (α+β)-области осадкой со степенью деформации 50-60% и окончательное деформирование заготовки при температурах β-области со степенью деформации 50÷60% с дальнейшим отжигом полученной поковки при температуре на 20÷60°С выше температуры полиморфного превращения (далее по тексту - Тпп) и выдержкой 20÷40 мин (а.с. СССР №1487274, МПК B21J 5/00, публ. 10.06.1999 г.).
Для известного способа характерна высокая вероятность незаполнения высоких и тонких ребер сложноконтурных штампованных изделий и высокая локализация деформации при разовом деформировании заготовки при температурах β-области со степенью 50÷60%, кроме того, в случае осуществления окончательного деформирования заготовки в β-области за несколько переходов неизбежно происходит значительный рост зерна за счет собирательной рекристаллизации, что приводит к снижению уровня механических свойств.
Известен способ получения прутков из псевдо-β-титановых сплавов для крепежных изделий, включающий нагрев заготовки до температуры выше температуры полиморфного превращения в β-области, прокатку при этой температуре, охлаждение до температуры окружающей среды, нагрев подката до температуры на 20-50°С ниже температуры полиморфного превращения в (α+β)-области и окончательную прокатку при этой температуре (патент РФ №2178014, МПК C22F 1/18, В21В 3/00, публ. 10.02.2002 г.) - прототип.
Недостатком известного способа является то, что он предназначен для изготовления методом прокатки изделий относительно небольших сечений, для которых деформации на конечной стадии при (Тпп-20)÷(Тпп-50)°С достаточно для обеспечения требуемого уровня микроструктуры и, следовательно, получения необходимых механических свойств, однако, при изготовлении сложноконтурных изделий больших сечений (толщиной более 101 мм) и больших габаритных размеров деформации указанной степени на конечной стадии в (α+β)-области недостаточно для получения однородной микроструктуры и, следовательно, однородных механических свойств, кроме того, режимы термомеханической обработки не являются оптимальными для изготовления крупногабаритных штампованных изделий.
Задачей, на решение которой направлено изобретение, является регламентированное получение изделий из псевдо β-титановых сплавов, обладающих однородной структурой в комплексе с равномерным и высоким уровнем прочностных свойств и высокой вязкости разрушения.
Техническим результатом данного способа является получение высокоточных деформированных изделий со стабильными свойствами, обладающих сечениями толщиной 100 мм и выше и длиной более 6 м, при этом гарантированно достигаются следующие соотношения механических свойств:
1. Временное сопротивление разрыву свыше 1200 МПа при обеспечении критерия вязкости разрушения K1C не менее 35 МПа√м.
2. Значение критерия вязкости разрушения K1C свыше 70 МПа√м при обеспечении значения временного сопротивления разрыву не менее 1100 МПа.
Поставленная задача решается тем, что в способе изготовления деформированных изделий из псевдо-β-титановых сплавов, включающем получение слитка и его термомеханическую обработку путем многократных нагревов, деформаций и охлаждений, получают слиток, содержащий мас.%: 4,0÷6,0 алюминия, 4,5÷6,0 ванадия, 4,5÷6,0 молибдена, 2,0÷3,6 хрома, 0,2÷0,5 железа, не более 2,0 циркония, не более 0,2 кислорода, не более 0,05 азота; при этом термомеханическая обработка включает нагрев до температуры на 150÷380°С выше Тпп и деформацию со степенью деформации 40÷70%, нагрев до температуры на 60÷220°С выше Тпп и деформацию со степенью деформации 30÷60%, нагрев до температуры на 20÷60°С ниже Тпп и деформацию со степенью деформации 30÷60%, далее осуществляют рекристаллизационную обработку путем нагрева заготовки до температуры на 70÷140°С выше Тпп и последующую деформацию со степенью деформации 20÷60% с охлаждением до комнатной температуры, затем после нагрева до температуры на 20÷60°С ниже Тпп заготовку деформируют со степенью деформации 30÷70% и осуществляют дополнительную рекристаллизационную обработку путем нагрева заготовки до температуры на 30÷110°С выше Тпп и последующую деформацию со степенью деформации 15÷50% с охлаждением до комнатной температуры, далее после нагрева до температуры на 20÷60°С ниже Тпп проводят деформацию со степенью деформации 50÷90% и дальнейшее окончательное деформирование. Окончательное деформирование проводят после нагрева на 10÷50°С ниже Тпп со степенью деформации 20÷40% для обеспечения значения временного сопротивления разрыву свыше 1200 МПа и значения вязкости разрушения K1C не менее 35 МПа√м, а для обеспечения значения вязкости разрушения K1C свыше 70 МПа√м и значения временного сопротивления разрыву не менее 1100 МПа окончательное деформирование проводят после нагрева на 40÷100°С выше Тпп со степенью деформации 10÷40%. После окончательного деформирования для сложноконтурных штампованных изделий проводят дополнительное деформирование со степенью деформации не более 15% после нагрева на 20÷60°С ниже Тпп.
Для получения точных штампованных изделий с временным сопротивлением разрыву не менее 1100 МПа и вязкости разрушения K1C не менее 70 МПа√м предложено широко использовать штамповку данного сплава в β-области, в которой сопротивление деформации снижается по отношению к деформации в (α+β)-области, что позволяет потенциально получить точные штамповки с высоким значением коэффициента использования металла (КИМ) за счет использования конфигурации предыдущей деформации, приближенной к размерам окончательного изделия с обеспечением деформации 10÷40%.
В предлагаемом способе изготовления изделий первое деформирование осуществляется после нагрева слитка до температуры на 150÷380°С выше Тпп и степенью деформации 40÷70%, что разрушает литую структуру, усредняет химический состав сплава, уплотняет заготовку, ликвидируя такие литейные дефекты, как пустоты, раковины и др. Температура нагрева ниже указанного предела приводит к снижению пластических характеристик, затруднению деформации и появлению поверхностного растрескивания, температура нагрева выше указанного предела вызывает значительное увеличение газонасыщенного слоя, что приводит к поверхностным надрывам при деформации, ухудшению качества поверхности металла и соответственно к увеличенному удалению металла с поверхности заготовок. Следующая деформация заготовки со степенью 30÷60% после нагрева на 60÷220°С выше Тпп позволяет несколько измельчить размер зерна по отношению к литому зерну и повысить пластичность металла для того, чтобы последующая деформация в (α+β)-области не приводила к образованию дефектов. Дальнейшая деформация со степенью 30÷60% после нагрева заготовки на 20÷60°С ниже Тпп разрушает большеугловые границы зерен, увеличивает плотности дислокации, т.е. осуществляется деформационный наклеп. Металл имеет повышенную внутреннюю энергию, и последующий нагрев до температуры на 70÷140°С выше Тпп с деформацией 20÷60% сопровождается рекристаллизацией с измельчением зерна. В связи со значительными сечениями промежуточных заготовок на данном этапе технологического процесса не удается обеспечить требуемый размер зерна, поэтому производят повторный деформационный наклеп, для чего металл деформируют со степенью 30÷70% после нагрева на 20÷60°С ниже Тпп. После чего проводят дополнительную рекристаллизационную обработку. Проведение дополнительной рекристаллизационной обработки посредством нагрева заготовки до температуры на 30÷110°С выше температуры полиморфного превращения и деформации со степенью 15÷50% с последующим охлаждением до комнатной температуры позволяет получить в обрабатываемой заготовке равноосное макрозерно размером не более 3000 мкм. Далее осуществляют дальнейшую деформационную обработку со степенью 50÷90% после нагрева на 20÷60°С ниже температуры полиморфного превращения для получения равномерной мелкозернистой глобулярной микроструктуры.
В предлагаемом изобретении окончательное деформирование осуществляют в зависимости от необходимого сочетания уровня вязкости разрушения и временного сопротивления разрыву. Для получения значения временного сопротивления разрыву свыше 1200 МПа с обеспечением значения вязкости разрушения K1C не менее 35 МПа√м окончательное деформирование осуществляют со степенью деформации 20-40% после нагрева на 10÷50°С ниже температуры полиморфного превращения, что позволяет получить по всему сечению изделий равноосную мелкую глобулярно-пластинчатую структуру, обеспечивающую высокий уровень прочности при удовлетворительных значениях вязкости разрушения K1C. Температурный интервал нагрева при окончательном деформировании позволяет увеличить степень измельчения и коагулирования первичной α-фазы. Для получения значения вязкости разрушения K1C свыше 70 МПа√м с обеспечением временного сопротивления разрыву не менее 1100 МПа окончательное деформирование осуществляют со степенью деформации 10÷40% после нагрева на 40÷100°С выше температуры полиморфного превращения. Окончательное деформирование такого рода позволяет получить равномерную пластинчатую микроструктуру по всему сечению обрабатываемого изделия, которая обеспечивает более высокие значения критерия K1C при удовлетворительных значениях прочностных свойств.
В случаях появления после окончательного деформирования таких нежелательных аспектов, как недоштамповка, недостаточное заполнение гравюры штампа и др. для сложноконтурных штампованных изделий целесообразно проводить дополнительную операцию деформирования в (α+β)-области при нагреве металла до температур (Тпп-20°С) + (Тпп-60°С) со степенью деформации не более 15%, что позволяет получить требуемую форму изделий с сохранением заданных показателей качества металла.
Промышленную применимость предлагаемого изобретения подтверждают следующие примеры его конкретного выполнения.
Для опробования способа были выплавлены слитки диаметром 740 мм следующего усредненного химического состава (см. табл.1)
Таблица 1 | ||||||||
Номер слитка | Содержание элементов, мас.%0 | |||||||
Al | V | Мо | Cr | Fe | Zr | O | N | |
1 | 4,88 | 5,18 | 5,18 | 2,85 | 0,36 | 0,52 | 0,158 | 0,01 |
2 | 4,82 | 5,21 | 5,11 | 2,83 | 0,42 | 0,003 | 0,139 | 0,01 |
3 | 5,08 | 5,26 | 5,25 | 2,84 | 0,39 | 0,012 | 0,151 | 0,007 |
Из слитков были изготовлены сложноконтурные штампованные изделия по различным термомеханическим режимам.
Слиток №1 нагревали до температуры на 330°С выше Тпп и производили всестороннюю ковку с деформацией 65%. После чего полученную заготовку нагревали до температуры на 200°С выше Тпп и осуществляли деформирование со степенью 58% и далее, после нагрева до температуры на 30°С ниже Тпп, производили ковку со степенью деформации 55%. Затем осуществляли рекристаллизационную обработку посредством нагрева до температуры на 120°С выше Тпп и последующей деформацией 25%. Затем производили повторный деформационный наклеп после нагрева на 30°С ниже Тпп и деформации со степенью 40% и проводили дополнительную рекристаллизационную обработку после нагрева металла до температуры на 100°С выше Тпп и деформирования со степенью 15%. Далее после нагревов до температуры на 30°С ниже Тпп осуществляли операции ковки заготовки на биллет, фасонную ковку заготовки и затем после нагрева заготовки до температуры на 50° ниже Тпп производили штамповку в заготовительном штампе, что в итоге составило деформацию со степенью 75÷85% в различных сечениях заготовки. Для обеспечения соответствия установленным требованиям временного сопротивления разрыву - 1200 МПа и значения вязкости разрушения свыше 35 МПа√м металл нагревали до температуры на 30°С ниже Тпп и осуществляли штамповку в окончательном штампе со степенью деформации 20÷30% в различных сечениях детали. После термической обработки по известному режиму (обработка на твердый раствор и старение) производили исследования полученной детали (см. табл.2). В табл.2 для справки приведены значения механических свойств аналогичного изделия, изготовленного по известному способу из сплава Ti-10V-2Fe-3Al.
Слиток №2 нагревали до температуры на 300°С выше Тпп и производили всестороннюю ковку со степенью деформации 62%. После чего полученную заготовку нагревали до температуры на 220°С выше Тпп и осуществляли деформирование со степенью 36% и далее, после нагрева до температуры на 30°С ниже Тпп, производили ковку со степенью деформации 30%. Затем осуществляли рекристаллизационную обработку посредством нагрева до температуры на 120°С выше Тпп и последующей деформацией 20%. Затем производили повторный деформационный наклеп после нагрева на 30°С ниже Тпп и деформации со степенью 56% и проводили дополнительную рекристаллизационную обработку после нагрева металла до температуры на 80°С выше Тпп и деформирования со степенью 25%. Далее, после нагревов до температуры на 30°С ниже Тпп осуществляли операции ковки заготовки на биллет, фасонную ковку заготовки, штамповку в заготовительном штампе, что в итоге составило деформацию со степенью 58÷70% в различных сечениях штампованной заготовки. Для получения временного сопротивления разрыву - не менее 1100 МПа и значения вязкости разрушения свыше 70 МПа√м далее металл нагревали до температуры на 80°С выше Тпп и осуществляли окончательное деформирование (окончательную штамповку) со степенью деформации 15÷35% в различных сечениях детали. После термической обработки по известному режиму (обработка на твердый раствор и старение) производили исследования полученной детали (см. табл.3).
Слиток №3 нагревали до температуры на 250°С выше Тпп и производили всестороннюю ковку со степенью деформации 45%. После чего полученную заготовку нагревали до температуры на 190°С выше Тпп и осуществляли деформирование со степенью 53% и далее, после нагрева до температуры на 30°С ниже Тпп, производили ковку со степенью деформации 56%. Затем осуществляли рекристаллизационную обработку посредством нагрева до температуры на 120°С выше Тпп и последующей деформацией 25%. После чего производили повторный деформационный наклеп после нагрева на 30°С ниже Тпп и деформации со степенью 55% и проводили дополнительную рекристаллизационную обработку после нагрева металла до температуры на 80°С выше Тпп и деформирования со степенью 15%. Далее, после нагревов до температуры на 30°С ниже Тпп осуществляли операции ковки заготовки на биллет, фасонную ковку заготовки, штамповку в заготовительном штампе, затем после нагрева заготовки до температуры на 30°С ниже Тпп осуществляли штамповку в предварительном штампе, что в итоге составило деформацию со степенью 70÷80% в различных сечениях штампованной заготовки. Для получения значения временного сопротивления разрыву - не менее 1100 МПа и значения вязкости разрушения свыше 70 МПа√м далее металл нагревали до температуры на 80°С выше Тпп и осуществляли окончательное деформирование (окончательную штамповку) со степенью деформации 10÷25% в различных сечениях детали. Для исключения недостаточного заполнения гравюры штампа производили дополнительное деформирование со степенью 5-10% после нагрева до температуры на 30°С ниже Тпп. После термической обработки по известному режиму (обработка на твердый раствор и старение) производили исследования полученной детали (см. табл.3).
В табл.3 для справки приведены результаты исследований аналогичного изделия, изготовленного по известному способу из сплава Ti-6A1-4V.
Таким образом, предлагаемое изобретение позволяет регламентировать в изделиях, особенно крупногабаритных, из высокопрочных псевдо-β-титановых сплавов, содержащих (4,0÷6,0)% Al - (4,5÷6,0)% Мо - (4,5÷6,0)% V - (2,0÷3,6)% Cr -(0,2÷0,5)% Fe - (≤2,0)% Zr, получение однородной структуры и комплекса механических свойств в соответствии с заданным уровнем.
Таблица 2 | ||||
Способ | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение, % | K1C, МПа√м |
Предлагаемый, изделие из слитка | 1268 | 1311 | 10,2 | 43,1 |
№1 | 1267 | 1310 | 11,0 | 45,7 |
Известный, | ||||
аналогичное | 1117 | 1186 | 10,6 | 50,7 |
изделие из сплава | 1143 | 1192 | 9,8 | 52,5 |
Ti-10V-2Fe-3Al |
Таблица 3 | ||||
Способ | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение, % | K1C, МПа√м |
Предлагаемый, | 1116 | 1203 | 9,4 | 83,7 |
изделие из слитка №2 | 1102 | 1187 | 7,2 | 85,7 |
Предлагаемый, | 1080 | 1183 | 9,2 | 103 |
изделие из слитка №3 | 1066 | 1166 | 7,6 | 101 |
Известный, | ||||
аналогичное | 900 | 974 | 9,5 | 93,8 |
изделие из сплава | 901 | 979 | 9,7 | 95,4 |
Ti-6Al-4V |
Claims (4)
1. Способ изготовления деформированных изделий из псевдо-β-титановых сплавов, включающий получение слитка и его термомеханическую обработку путем многократных нагревов, деформаций и охлаждений, отличающийся тем, что получают слиток из сплава, содержащего, мас.%: 4,0÷6,0 алюминия, 4,5÷6,0 ванадия, 4,5÷6,0 молибдена, 2,0÷3,6 хрома, 0,2÷0,5 железа, не более 2,0 циркония, не более 0,2 кислорода, не более 0,05 азота, при этом термомеханическая обработка включает нагрев до температуры на 150÷380°С выше Тпп и деформацию со степенью деформации 40÷70%, нагрев до температуры на 60÷220°С выше Тпп и деформацию со степенью деформации 30÷60%, нагрев до температуры на 20÷60°С ниже Тпп и деформацию со степенью деформации 30÷60%, далее осуществляют рекристаллизационную обработку путем нагрева заготовки до температуры на 70÷140°С выше Тпп и последующую деформацию со степенью деформации 20÷60% с охлаждением до комнатной температуры, затем после нагрева до температуры на 20÷60°С ниже Тпп заготовку деформируют со степенью деформации 30÷70% и осуществляют дополнительную рекристаллизационную обработку путем нагрева заготовки до температуры на 30÷110°С выше Тпп и последующую деформацию со степенью деформации 15÷50% с охлаждением до комнатной температуры, далее после нагрева до температуры на 20÷60°С ниже Тпп проводят деформацию со степенью деформации 50÷90% и дальнейшее окончательное деформирование.
2. Способ по п.1, отличающийся тем, что окончательное деформирование проводят после нагрева на 10÷50°С ниже Тпп со степенью деформации 20÷40% для обеспечения значения временного сопротивления разрыву свыше 1200 МПа и значения вязкости разрушения K1C не менее 35 МПа√м.
3. Способ по п.1, отличающийся тем, что окончательное деформирование проводят после нагрева на 40÷100°С ниже Тпп со степенью деформации 10÷40% для обеспечения значения вязкости разрушения K1C свыше 70 МПа√м и значения временного сопротивления разрыву не менее 1100 МПа.
4. Способ по п.1, отличающийся тем, что после окончательного деформирования для сложноконтурных штампованных изделий проводят дополнительное деформирование со степенью деформации не более 15% после нагрева на 20÷60°С ниже Тпп.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010139738/02A RU2441097C1 (ru) | 2010-09-27 | 2010-09-27 | Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов |
US13/876,017 US9297059B2 (en) | 2010-09-27 | 2011-09-23 | Method for the manufacture of wrought articles of near-beta titanium alloys |
JP2013530110A JP5873874B2 (ja) | 2010-09-27 | 2011-09-23 | 近β型チタン合金の鍛造製品の製造方法 |
EP11829668.0A EP2623628B1 (en) | 2010-09-27 | 2011-09-23 | Method for manufacturing deformed articles from pseudo- beta-titanium alloys |
CA2812347A CA2812347A1 (en) | 2010-09-27 | 2011-09-23 | Method for the manufacture of wrought articles of near-beta titanium alloys |
BR112013006741A BR112013006741A2 (pt) | 2010-09-27 | 2011-09-23 | método de fabricação de artigos forjados de ligas de titânio quase-beta |
PCT/RU2011/000730 WO2012044204A1 (ru) | 2010-09-27 | 2011-09-23 | СПОСОБ ИЗГОТОВЛЕНИЯ ДЕФОРМИРОВАННЫХ ИЗДЕЛИЙ ИЗ ПСЕВДО-β-ТИТАНОВЫХ СПЛАВОВ |
CN201180046734.8A CN103237915B (zh) | 2010-09-27 | 2011-09-23 | 近β钛合金的锻造制品的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010139738/02A RU2441097C1 (ru) | 2010-09-27 | 2010-09-27 | Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2441097C1 true RU2441097C1 (ru) | 2012-01-27 |
Family
ID=45786485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010139738/02A RU2441097C1 (ru) | 2010-09-27 | 2010-09-27 | Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов |
Country Status (8)
Country | Link |
---|---|
US (1) | US9297059B2 (ru) |
EP (1) | EP2623628B1 (ru) |
JP (1) | JP5873874B2 (ru) |
CN (1) | CN103237915B (ru) |
BR (1) | BR112013006741A2 (ru) |
CA (1) | CA2812347A1 (ru) |
RU (1) | RU2441097C1 (ru) |
WO (1) | WO2012044204A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2561567C1 (ru) * | 2014-06-10 | 2015-08-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава |
RU2635650C1 (ru) * | 2016-10-27 | 2017-11-14 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами |
RU2808755C1 (ru) * | 2022-10-24 | 2023-12-04 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | СПОСОБ ИЗГОТОВЛЕНИЯ ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНЫХ ПСЕВДО-β-ТИТАНОВЫХ СПЛАВОВ |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103045978B (zh) * | 2012-11-19 | 2014-11-26 | 中南大学 | Tc18钛合金板材的制备方法 |
CN103668027A (zh) * | 2013-12-15 | 2014-03-26 | 无锡透平叶片有限公司 | 一种TC25钛合金的准β锻造工艺 |
CN103846377B (zh) * | 2014-03-14 | 2015-12-30 | 西北工业大学 | 近β钛合金Ti-7333的开坯锻造方法 |
FR3024160B1 (fr) * | 2014-07-23 | 2016-08-19 | Messier Bugatti Dowty | Procede d'elaboration d`une piece en alliage metallique |
EP3445888B1 (en) * | 2016-04-22 | 2023-12-20 | Howmet Aerospace Inc. | Improved methods for finishing extruded titanium products |
CN107350406B (zh) * | 2017-07-19 | 2018-11-27 | 湖南金天钛业科技有限公司 | Tc19钛合金大规格棒材的自由锻造方法 |
CN107760925B (zh) * | 2017-11-10 | 2018-12-18 | 西北有色金属研究院 | 一种高强改性Ti-6Al-4V钛合金大规格棒材的制备方法 |
CN111014527B (zh) * | 2019-12-30 | 2021-05-14 | 西北工业大学 | 一种tc18钛合金小规格棒材的制备方法 |
CN114790524B (zh) * | 2022-04-09 | 2023-11-10 | 中国科学院金属研究所 | 一种高断裂韧性Ti2AlNb基合金锻件的制备工艺 |
CN115747689B (zh) * | 2022-11-29 | 2023-09-29 | 湖南湘投金天钛业科技股份有限公司 | Ti-1350超高强钛合金大规格棒材高塑性锻造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105954A (ja) * | 1986-10-22 | 1988-05-11 | Kobe Steel Ltd | Nearβ型チタン合金の熱間加工方法 |
CN2178014Y (zh) | 1993-09-27 | 1994-09-21 | 南京市爱通数字自动化研究所 | 交流电机综合监护器 |
JP3297010B2 (ja) * | 1998-05-26 | 2002-07-02 | 株式会社神戸製鋼所 | nearβ型チタン合金コイルの製法 |
RU2178014C1 (ru) * | 2000-05-06 | 2002-01-10 | ОАО Верхнесалдинское металлургическое производственное объединение | СПОСОБ ПРОКАТКИ ПРУТКОВ ИЗ ПСЕВДО-β-ТИТАНОВЫХ СПЛАВОВ |
RU2169782C1 (ru) * | 2000-07-19 | 2001-06-27 | ОАО Верхнесалдинское металлургическое производственное объединение | Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава |
US20070102073A1 (en) * | 2004-06-10 | 2007-05-10 | Howmet Corporation | Near-beta titanium alloy heat treated casting |
JP2008502808A (ja) * | 2004-06-10 | 2008-01-31 | ホーメット コーポレーション | 熱処理を行った近β型チタン合金鋳造品 |
RU2318074C1 (ru) * | 2006-08-31 | 2008-02-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Способ термомеханической обработки изделий из титановых сплавов |
CN101451206B (zh) | 2007-11-30 | 2010-12-29 | 中国科学院金属研究所 | 一种超高强度钛合金 |
CN101323939B (zh) * | 2008-07-31 | 2010-06-09 | 吴崇周 | 一种提高钛合金断裂韧性和抗疲劳强度的热加工工艺 |
FR2940319B1 (fr) * | 2008-12-24 | 2011-11-25 | Aubert & Duval Sa | Procede de traitement thermique d'un alliage de titane, et piece ainsi obtenue |
CN101804441B (zh) * | 2008-12-25 | 2011-11-02 | 贵州安大航空锻造有限责任公司 | Tc17两相钛合金盘形锻件的近等温锻造方法 |
-
2010
- 2010-09-27 RU RU2010139738/02A patent/RU2441097C1/ru active
-
2011
- 2011-09-23 US US13/876,017 patent/US9297059B2/en active Active
- 2011-09-23 EP EP11829668.0A patent/EP2623628B1/en active Active
- 2011-09-23 JP JP2013530110A patent/JP5873874B2/ja active Active
- 2011-09-23 CA CA2812347A patent/CA2812347A1/en not_active Abandoned
- 2011-09-23 WO PCT/RU2011/000730 patent/WO2012044204A1/ru active Application Filing
- 2011-09-23 CN CN201180046734.8A patent/CN103237915B/zh active Active
- 2011-09-23 BR BR112013006741A patent/BR112013006741A2/pt not_active Application Discontinuation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2561567C1 (ru) * | 2014-06-10 | 2015-08-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава |
RU2635650C1 (ru) * | 2016-10-27 | 2017-11-14 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами |
RU2808755C1 (ru) * | 2022-10-24 | 2023-12-04 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | СПОСОБ ИЗГОТОВЛЕНИЯ ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНЫХ ПСЕВДО-β-ТИТАНОВЫХ СПЛАВОВ |
Also Published As
Publication number | Publication date |
---|---|
EP2623628B1 (en) | 2018-05-23 |
WO2012044204A1 (ru) | 2012-04-05 |
CN103237915B (zh) | 2015-03-11 |
JP5873874B2 (ja) | 2016-03-01 |
US9297059B2 (en) | 2016-03-29 |
EP2623628A1 (en) | 2013-08-07 |
CA2812347A1 (en) | 2012-04-05 |
EP2623628A4 (en) | 2016-06-29 |
BR112013006741A2 (pt) | 2016-06-14 |
JP2014506286A (ja) | 2014-03-13 |
US20130233455A1 (en) | 2013-09-12 |
EP2623628A8 (en) | 2013-10-30 |
CN103237915A (zh) | 2013-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2441097C1 (ru) | Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов | |
CN111438317B (zh) | 一种具有高强高韧近β型钛合金锻件锻造成形的制备方法 | |
US10407745B2 (en) | Methods for producing titanium and titanium alloy articles | |
US10947613B2 (en) | Alloys for highly shaped aluminum products and methods of making the same | |
CN111057903A (zh) | 一种大规格钛合金锁紧环及其制备方法 | |
Wang et al. | A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy | |
CN105908110A (zh) | 一种降低高强铝合金复杂模锻件残余应力的方法 | |
KR20150065418A (ko) | 마그네슘 합금 판재 및 이의 제조 방법 | |
RU2301845C1 (ru) | Способ получения изделия из жаропрочного никелевого сплава | |
RU2465973C1 (ru) | Способ изготовления фольги из интерметаллидных ортосплавов на основе титана | |
KR20190000756A (ko) | 상온 성형성이 우수한 고강도 마그네슘 합금 판재 및 그 제조방법 | |
JP2022519238A (ja) | アルミニウム合金製の板または帯の製造方法ならびにそれにより製造された板、帯または成形品 | |
RU2371512C1 (ru) | Способ получения изделия из жаропрочного никелевого сплава | |
JP2024518681A (ja) | 高強度ファスナを製造するための材料およびそれを製造するための方法 | |
RU2534909C1 (ru) | СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЛЯ ПОВЫШЕНИЯ ТЕХНОЛОГИЧЕСКОЙ ПЛАСТИЧНОСТИ ОБЪЕМНЫХ ПОЛУФАБРИКАТОВ ИЗ Al-Cu-Mg-Ag СПЛАВОВ | |
RU2299264C1 (ru) | Способ изготовления изделий из деформируемых алюминиевых сплавов | |
RU2808755C1 (ru) | СПОСОБ ИЗГОТОВЛЕНИЯ ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНЫХ ПСЕВДО-β-ТИТАНОВЫХ СПЛАВОВ | |
RU2544730C1 (ru) | Способ термомеханической обработки низколегированной стали | |
RU2497971C1 (ru) | МОДИФИЦИРУЮЩИЙ ЛИГАТУРНЫЙ ПРУТОК Ai-Sc-Zr | |
RU2793901C9 (ru) | Способ получения материала для высокопрочных крепежных изделий | |
RU2793901C1 (ru) | Способ получения материала для высокопрочных крепежных изделий | |
RU2368700C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ α+β-ТИТАНОВОГО СПЛАВА | |
CN116174629A (zh) | 一种富镍镍钛合金管材的低成本制备方法及其在球阀上的应用 |