RU2561567C1 - Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава - Google Patents

Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава Download PDF

Info

Publication number
RU2561567C1
RU2561567C1 RU2014123937/02A RU2014123937A RU2561567C1 RU 2561567 C1 RU2561567 C1 RU 2561567C1 RU 2014123937/02 A RU2014123937/02 A RU 2014123937/02A RU 2014123937 A RU2014123937 A RU 2014123937A RU 2561567 C1 RU2561567 C1 RU 2561567C1
Authority
RU
Russia
Prior art keywords
temperature
aging
hours
cooling
range
Prior art date
Application number
RU2014123937/02A
Other languages
English (en)
Inventor
Сергей Леонидович Демаков
Дмитрий Вадимович Гадеев
Анатолий Геннадьевич Илларионов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2014123937/02A priority Critical patent/RU2561567C1/ru
Application granted granted Critical
Publication of RU2561567C1 publication Critical patent/RU2561567C1/ru

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия, 4,5…5,9 молибдена, 2,0…3,6 хрома, 0…5 циркония, 0…6 олова, 0…0,5 кремния, титан и неизбежные примеси - остальное, включает охлаждение со скоростью V1<3°С/мин из однофазной β-области до температуры T1<370°С и последующее старение при температуре Т2=370…600°С в течение 1…12 часов. После старения дополнительно осуществляют нагрев и обработку сплава в интервале температур Т32…Тβ в течение 1…12 часов, охлаждение со скоростью V2>V1 до температуры Т4, которая не выше температуры Т2, и последующее повторное старение в интервале температур Т2 в течение 1…12 часов. Обеспечивается повышение прочности и ударной вязкости. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Description

Настоящее изобретение относится к областям металлургии сплавов на основе титана и машиностроения, а именно описывает способы термической обработки высоколегированных псевдо-β титановых сплавов. Данное изобретение может быть использовано для повышения комплекса механических свойств высоколегированных псевдо-β титановых сплавов.
Сплавы на основе титана являются одним из важнейших конструкционных материалов и с каждым годом расширяются области их использования. Ответственные сферы применения этих (аэрокосмическая техника, судостроение и т.д.) сплавов требуют улучшения механических и эксплуатационных свойств за счет оптимизации их фазового и структурного состояния методами термического и термомеханического воздействия.
В настоящее время известен способ термической обработки крупногабаритных изделий из титановых сплавов Ti-5Al-5Mo-5V-3Cr [1] и Ti-5Al-5Mo-5V-3Cr-Zr [2], который заключается в нагреве до температуры (Тβ-(30…70))°C, выдержке при этой температуре в течение 2…5 ч, последующем охлаждении на воздухе или в воде и старении при температуре 540…600°C в течение 8…16 ч. Недостатком данном способа является недостаточный уровень прочности и энергоемкости разрушения, по сравнению с другими техническими решениями.
Также известен способ термической обработки псевдо-β-титановых сплавов BASCA (англ. «Beta Annealing, Slow Cooling, Aging») [4, 5], включающий охлаждение со скоростью менее 3°C/мин из однофазной β-области до температуры ниже 370°C и последующее старение при температуре 370…600°C в течение 1…12 часов. Указанное техническое решение, как наиболее близкое к заявленному техническому решению, принято в качестве прототипа.
Технической задачей предлагаемого изобретения является повышение уровня прочности и энергоемкости разрушения высоколегированного псевдо-β сплава, содержащего 4,0…6,3 мас.% алюминия, 4,5…5,9 мас.% ванадия, 4,5…5,9 мас.% молибдена, 2,0…3,6 мас.% хрома, 0…5 мас.% циркония, 0…6 мас.% олова, 0…0,5 мас.% кремния, титан и неизбежные примеси - остальное.
Для решения указанной технической задачи предложен способ термической обработки крупногабаритных изделий и полуфабрикатов:
1. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего 4,0…6,3 мас.% алюминия, 4,5…5,9 мас.% ванадия, 4,5…5,9 мас.% молибдена, 2,0…3,6 мас.% хрома, 0…5 мас.% циркония, 0…6 мас.% олова, 0…0,5 мас.% кремния, титан и неизбежные примеси - остальное, включающий охлаждение со скоростью V1<3°C/мин из однофазной β-области до температуры T1<370°C и последующее старение при температуре Т2=370…600°C в течение 1…12 часов, отличающийся тем, что после старения дополнительно осуществляют нагрев и обработку сплава в интервале температур Т32…Тβ в течение 1…12 часов, охлаждение со скоростью V2>V1 до температуры Т4, которая не выше температуры Т2, и последующее повторное старение в интервале температур Т2 в течение 1…12 часов, где V1 - скорость первого охлаждения, V1 - скорость второго охлаждения, T1 - температура окончания замедленного охлаждения, Т2 - температурный интервал старения, Т3 - температурный интервал высокотемпературного отжига, Тβ - температура полного полиморфного превращения.
2. Способ по п. 1. отличающийся тем, что обработку в интервале температур Т32…Тβ проводят в две стадии, при температурах Т5 и Т6, причем температуру Т5 выбирают из диапазона 750…770°C, а температуру назначают из соотношения Т65+10…20°C, где Т5 - температура первой стадии высокотемпературного отжига, Т6 - температура второй стадии высокотемпературного отжига.
Пример.
Это техническое решение подтверждено исследованиями сплава VST5553, содержащего 4,98 мас.% Al, 5,41 мас.% Мо, 5,45 мас.% V, 2,94 мас.% Cr, титан и примеси - остальное. Температура полного полиморфного превращения Тβ исследуемой плавки сплава, определенная методом пробных закалок, составляла 848°C.
Обрабатываемый образец сплава нагревался в термической печи в однофазную β-область и выдерживался при температуре нагрева в течение 1 ч для полного перехода структуры в однофазное состояние. После изотермической выдержки в однофазной области образец охлаждался с печью до комнатной температуры, после чего нагревался до температуры Т2=600°C и выдерживался при данной температуре в течение 6 ч. После выдержки образец нагревался до температуры Т5β-90°C=770°C и выдерживался при этой температуре в течение 3 ч с последующим нагревом до температуры Т65+20°C=790°C и выдержкой в течение 3 ч. После выдержки при температуре Тб исследуемый образец охлаждался на воздухе до температуры Т2=600°C и осуществлялось его старение в течение 6 ч с последующим неконтролируемым охлаждением на воздухе.
После проведения термической обработки по описанному режиму проводилось механическое удаление газонасыщенного слоя толщиной 2,5…3,5 мм, подготовка образцов для механических испытаний на ударный изгиб (с U-образным надрезом) и испытаний на замедленное разрушение (образец с V-образным надрезом, скорость деформации в режиме 3-точечного изгиба 1…1,5 мм/мин).
Технический результат: заметное повышение энергоемкости разрушения (ударной вязкости) KCU и пластичности сплава γ, а также некоторое возрастание уровня прочности σ при испытаниях на замедленное разрушение в режиме 3-точечного изгиба (фиг. 1, табл. 1).
Figure 00000001
Источники информации:
1. Тетюхин В.В., Захаров Ю.И., Левин И.В. Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплав. Патент РФ №2169782, 2000.
2. Тетюхин В.В., Захаров Ю.И., Левин И.В. Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплав. Патент РФ №2169204, 2000.
3. Briggs R.D. Tough, high-strength titanium alloys; methods of heat treating titanium alloys. Патент США №7785429, 2010.
4. Briggs R.D. Tough, high-strength titanium alloys; methods of heat treating titanium alloys. Патент США №8262819, 2012.

Claims (2)

1. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего 4,0…6,3 мас.% алюминия, 4,5…5,9 мас.% ванадия, 4,5…5,9 мас.% молибдена, 2,0…3,6 мас.% хрома, 0…5 мас.% циркония, 0…6 мас.% олова, 0…0,5 мас.% кремния, титан и неизбежные примеси - остальное, включающий охлаждение со скоростью V1<3°С/мин из однофазной β-области до температуры T1<370°С и последующее старение при температуре Т2=370…600°С в течение 1…12 часов, отличающийся тем, что после старения дополнительно осуществляют нагрев и обработку сплава в интервале температур Т32…Тβ в течение 1…12 часов, охлаждение со скоростью V2>V1 до температуры Т4, которая не выше температуры Т2, и последующее повторное старение в интервале температур Т2 в течение 1…12 часов, где V1 - скорость первого охлаждения, V2 - скорость второго охлаждения, T1 - температура окончания замедленного охлаждения, Т2 - температурный интервал старения, Т3 - температурный интервал высокотемпературного отжига, Тβ - температура полного полиморфного превращения.
2. Способ по п. 1, отличающийся тем, что обработку в интервале температур Т32…Тβ проводят в две стадии, при температурах Т5 и Т6, причем температуру Т5 выбирают из диапазона 750…770°С, а температуру Т6 назначают из соотношения Т65+10…20°С, где Т5 - температура первой стадии высокотемпературного отжига, Т6 - температура второй стадии высокотемпературного отжига.
RU2014123937/02A 2014-06-10 2014-06-10 Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава RU2561567C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014123937/02A RU2561567C1 (ru) 2014-06-10 2014-06-10 Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014123937/02A RU2561567C1 (ru) 2014-06-10 2014-06-10 Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Publications (1)

Publication Number Publication Date
RU2561567C1 true RU2561567C1 (ru) 2015-08-27

Family

ID=54015706

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014123937/02A RU2561567C1 (ru) 2014-06-10 2014-06-10 Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Country Status (1)

Country Link
RU (1) RU2561567C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067734A (en) * 1973-03-02 1978-01-10 The Boeing Company Titanium alloys
RU2169204C1 (ru) * 2000-07-19 2001-06-20 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава
RU2169782C1 (ru) * 2000-07-19 2001-06-27 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава
RU2441097C1 (ru) * 2010-09-27 2012-01-27 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067734A (en) * 1973-03-02 1978-01-10 The Boeing Company Titanium alloys
RU2169204C1 (ru) * 2000-07-19 2001-06-20 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава
RU2169782C1 (ru) * 2000-07-19 2001-06-27 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава
RU2441097C1 (ru) * 2010-09-27 2012-01-27 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления деформированных изделий из псевдо-бета-титановых сплавов

Similar Documents

Publication Publication Date Title
Xu et al. The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni–Mo–Cr superalloy
DK2596143T3 (en) Treatment of alpha / beta titanium alloys
Shang et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy
RU2640695C2 (ru) Никель-кобальтовый сплав
RU2657892C2 (ru) Высокопрочный титановый сплав с альфа-бета-структурой
ES2926777T3 (es) Aleaciones de titanio a alta temperatura
Zhang et al. Microstructure evolution of IN718 alloy during the delta process
Belov et al. Energy efficient technology for Al–Cu–Mn–Zr sheet alloys
Mohamad et al. Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy
Song et al. Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure
RU2569441C1 (ru) Способ изготовления деталей из титановых сплавов
Wadood et al. Ageing behavior of Ti–6Cr–3Sn β titanium alloy
RU2561567C1 (ru) Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава
Abdulstaar et al. Fatigue behaviour of commercially pure aluminium processed by rotary swaging
Möller et al. The heat treatment of rheo-high pressure die cast Al-Cu-Mg-Ag alloy 2139
RU2681089C2 (ru) Заготовка из сплава на основе титана для упругих элементов с энергоемкой структурой
Ridhwan et al. Effect of heat treatment on microstructure and mechanical properties of 6061 aluminum alloy
Shivaramu et al. Effect of ageing on damping characteristics of Cu-Al-Be-Mn quaternary shape memory alloys
RU2344182C2 (ru) Способ термической обработки изделий из высокопрочных мартенситностареющих сталей
Anil Kumar et al. Solution Treatment and Aging (STA) Study of Ti Alloy Ti5Al3Mo1. 5V
Szkliniarz Microstructure and Properties of Beta 21S Alloy with 0.2 wt.% of Carbon
RU2564772C2 (ru) Способ термомеханической обработки полуфабрикатов из сплава никелида титана
Shahmir et al. Control of superelastic behavior of NiTi wires aided by thermomechanical treatment with reference to three-point bending
Zhu et al. Investigation on quench rate of 7075 aluminum alloy under hot stamping conditions
RU2706916C2 (ru) Заготовка для изготовления упругих элементов из сплава на основе титана

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160611