RU2435041C2 - Метод и устройство для эффективной и низкотоксичной эксплуатации электростанций, а также для аккумулирования и преобразования энергии - Google Patents

Метод и устройство для эффективной и низкотоксичной эксплуатации электростанций, а также для аккумулирования и преобразования энергии Download PDF

Info

Publication number
RU2435041C2
RU2435041C2 RU2009106714A RU2009106714A RU2435041C2 RU 2435041 C2 RU2435041 C2 RU 2435041C2 RU 2009106714 A RU2009106714 A RU 2009106714A RU 2009106714 A RU2009106714 A RU 2009106714A RU 2435041 C2 RU2435041 C2 RU 2435041C2
Authority
RU
Russia
Prior art keywords
carbon dioxide
heat
pressure
storage
natural gas
Prior art date
Application number
RU2009106714A
Other languages
English (en)
Other versions
RU2009106714A (ru
Inventor
Зигфрид ВЕСТМАЙЕР (DE)
Зигфрид ВЕСТМАЙЕР
Original Assignee
Техникум Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Техникум Корпорейшн filed Critical Техникум Корпорейшн
Publication of RU2009106714A publication Critical patent/RU2009106714A/ru
Application granted granted Critical
Publication of RU2435041C2 publication Critical patent/RU2435041C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Cultivation Of Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Изобретение касается метода и технического устройства для улучшенного использования теплового потенциала электростанции и ее внешних условий, а также относящихся к ней установок для снижения выбросов диоксида углерода и NOx в атмосферу, а также временного аккумулирования и повторного использования электрического тока. Электрический ток используется из временных избыточных мощностей, чтобы аккумулировать в отдельных подземных накопителях как природный газ, так и сжатый воздух и диоксид углерода под высоким давлением, причем накопитель природного газа служит в качестве накопителя горючего для электростанции, накопитель сжатого воздуха служит в качестве буферного накопителя для бесперебойно работающей установки по разделению воздуха, предпочтительно для производства жидкого кислорода, а накопитель диоксида углерода подготавливает сверхкритический диоксид углерода в качестве среды теплоносителя, которая использует энтальпию горючего газа в качестве источника тепла, разгружается через детандер, соединенный с генератором, охлаждается, сжижается при использовании источника тепла и в жидком виде снова сжимается до рабочего давления и подготавливается во временном аккумуляторе высокого давления. Изобретение позволяет повысить КПД электростанций, снизить выбросы диоксида углерода и NOx за счет использования чистого кислорода для горения. 2 н. и 16 з.п. ф-лы, 1 ил., 1 табл.

Description

Изобретение касается метода и технического устройства для улучшенного использования теплового потенциала электростанции и ее внешних условий, а также относящихся к ней установок для снижения выбросов диоксида углерода и NOx в атмосферу, а также временного аккумулирования и повторного использования электрического тока.
Техническое состояние
В отношении данного изобретения речь идет о комплексной системе, на которую необходимо найти спрос в соответствии с имеющимися требованиями в существующем энергетическом секторе. Концепция установки должна в частности удовлетворять следующим требованиям:
- использование избыточных производственных мощностей для создания аккумулирующих устройств, а также их использование для регенерации электроэнергии с высоким КПД,
- создание экологически чистой электростанции,
- использование разряженной энергии и связанных с ней различных тепловых потенциалов для выработки электроэнергии,
- оптимальное использование низкотемпературного тепла для получения электроэнергии,
- использование установок, связанных с тепловым энергетическим потенциалом для повышения электрического КПД всей установки и
- использование теплового энергетического потенциала окружающей среды установки.
Несмотря на многочисленные исследования не было найдено никаких ссылок на аналогичную компактную и объединенную в сеть структуру установок. По этой причине были проведены исследования, относящиеся к приведенным выше областям задач.
Для временного аккумулирования электроэнергии в качестве самых эффективных зарекомендовали себя насосно-аккумулирующие электростанции. Преимуществом данной установки является высокий КПД, а также сравнительно простая конструкция. Недостатками данной технологии является ее некомпактность, ограниченное количество подходящих мест расположения и высокий расход воды из-за испарения. Оно в частности негативно сказывается при накоплении электрического тока из ветросиловых установок, так как насосно-аккумулирующие электростанции могут быть установлены только в горах, а центры ветровой энергии находятся в основном на равнинах и рядом с морем. Таким образом, нет необходимости в разгрузке электросетей за счет временного аккумулирования.
В США устанавливаются подземные пневмоаккумуляторы, являющиеся второй возможностью временного аккумулирования электроэнергии. Они наполняются избыточной энергией и позволяют использовать при дополнительном потреблении электроэнергии энергию давления через детандеры с генератором. Преимуществами опять же являются простая конструкция и использование воздуха в качестве рабочей среды. Недостатками являются высокие компрессионные потери, сильное выделение тепла в окружающую среду и низкий КПД установки.
Дальнейшие попытки временного аккумулирования электроэнергии, например, при помощи батарей и остальных находящихся на стадии разработки методов не могут быть реализованы при выполнении поставленной задачи. Дискуссии вокруг парникового эффекта и изменений климата требуют от специалистов, эксплуатирующих электростанции, как можно менее токсичной эксплуатации установок. Так как энергоснабжение осуществляется во всем мире с использованием топлива, являющегося природным ископаемым, существует ряд проектов, в центре которых стоит отделение и конечное накопление диоксида углерода. Отделение диоксида углерода от дымовых газов может быть проведено с использованием известных методов конденсации, абсорбции и адсорбции. Для захоронения исследуются в настоящее время различные варианты и их влияние на окружающую среду, а также возможная угроза в будущем. Так, рассматриваются возможности хранения диоксида углерода в открытом море, в подземных образованиях горных пород и на бывших месторождениях природного газа и нефтяных месторождениях. Были высказаны противоположные точки зрения по предложенным методам, их можно назвать в ближайшем будущем решением проблемы только очень приблизительно. Экономические аспекты этих методов, как правил, не приводятся, так как место расположения электростанции и приспособленные для хранения места иногда удалены друг от друга на тысячи километров, а транспортировка предполагает сжижение или затвердевание диоксида углерода.
Известен ряд способов снижения выбросов NOx, соответствующим является и технический уровень. Эксплуатация без выработки NOx возможна только при сгорании с использованием чистого кислорода с сопутствующими газами. По данной теме в настоящее время происходит реализация проекта под руководством Vattenfall in Schwarze Pumpe, Германия. При этом происходит отделение диоксида углерода при помощи кислородно-топливной технологии. Инициаторы полагают, что этот метод является очень энергоемким и имеет очень низкий КПД. В настоящее время происходит поиск подходящих мест для хранения.
Использование энергии разгрузки для выработки энергии является известным методом, но используется, например, при разделении воздуха, при декомпрессии природного газа и при использовании пневмоаккумуляторов для получения электроэнергии. Возникающий при разгрузке газа сильный эффект охлаждения при этом в большинстве случаев нежелателен и, если это возможно, снижается за счет ранее проведенного подогрева находящейся под давлением среды. И наоборот в установках по разделению воздуха для сжижения и разделения воздуха используется эффект охлаждения.
Для использования низкоэнергетического тепла, являющегося результатом процессов горения, до сих пор существовали два метода. При использовании метода OCR (органический цикл Ренкина) через теплообменник из среды процесса забирается тепло и используется для производства пара, пар разгружается через паровую турбину и приводит в действие генератор, при этом разгруженный пар используется для предварительного подогрева и затем конденсируется. Теплота конденсации выделяется в атмосферу. Производительность определяется при этом в зависимости от используемого рабочего тела, от температуры конденсации (температуры окружающей среды) и доступной температуры испарения от 300 К до 625 К. Доступный КПД установки, работающей по методу ORC, составляет при температуре 373 К примерно 6,5% и при температуре 473 К примерно 13-14%.
При использовании метода Калина через теплообменник из технологической среды забирается тепло при помощи насыщенного раствора аммиака и воды, при этом аммиак удаляется. Аммиачный пар разгружается через турбину и через нее приводит в действие генератор. Затем аммиак в охлажденном состоянии снова растворяется. При этом согласно литературным источникам достигается немного более высокий КПД прим. 18%. В этой связи благоприятной является более простая с технологической точки зрения конструкция установки, а также значительно более широкий эффективный диапазон температур рабочего тела. Недостатком этого метода являются материально-технические проблемы, которые являются результатом агрессивности смеси аммиака и воды и которые при использовании этого практически еще неопробованного метода приведут к снижению срока службы. Следующим недостатком являются возможные выбросы высокотоксичного и вредного для окружающей среды аммиака при возможных утечках. Оба метода подходят, если речь идет об использовании низкотемпературного теплового потенциала окружающей среды. Но в любом случае соответствующая привязка является проблематичной и согласно проведенным исследованиям не используется.
Задача изобретения
Задачей изобретения является разработка метода и установки для использования метода, КПД которой выше полученных при использовании уже известных методов и рабочие диапазоны которой включают более широкий спектр температур при наличии более простой конструкции и сравнительно небольших материально-технических затратах. Данная задача решается за счет метода и технической установки, при использовании которых достигается улучшенное использование теплового потенциала при эксплуатации электростанции с одновременным предотвращением любых выбросов NOx и значительным снижением выделяющегося в атмосферу диоксида углерода, хорошая регулируемость при оптимальном использовании имеющихся и изменяющихся температур окружающей среды, минимизация отработанного тепла и оптимальный режим работы в сочетании с повышением электрического КПД, а также создание возможностей аккумулирования электрического тока из временных избыточных мощностей и его эффективного использования после преобразования для повышения КПД при эксплуатации электростанции в обычном и пиковом режимах.
В качестве электростанции может быть использована постоянно работающая электростанция на основе GuD с эксплуатацией на газе, который подразумевает использование временной избыточной энергии для установки в солевых полостях промежуточных аккумуляторов природного газа, сжатого воздуха и рабочей среды - диоксида углерода, находящихся под давлением 10-20 МПа, и для постоянного забора из аккумулятора сжатого воздуха через установку по разделению воздуха при давлении 0,6-0,8 МПа сжатого воздуха для бесперебойного производства и кратковременного хранения жидкого кислорода, чтобы постоянно отбирать его вместе с природным газом и использовать аккумулятор диоксида углерода как в качестве теплоносителя, так и в качестве буферного накопителя рабочей среды, причем аккумулятор жидкого кислорода является буфером и осуществляет таким образом изменения режима работы электростанции без возмущающих воздействий на работу установки по разделению воздуха.
Для временного аккумулирования используется избыточная электроэнергия для периодического заполнения энергоаккумуляторов высокого давления, предназначенных для природного газа, сжатого воздуха и диоксида углерода, причем воздушный энергоаккумулятор высокого давления служит в качестве буфера непрерывно работающей установки по разделению воздуха для производства жидкого кислорода, который после повторного выпаривания вместе с природным газом и частично отводимым отработавшим газом подается в газовую турбину. Теплота испарения кислорода служит при этом для сжижения используемого в качестве теплоносителя и рабочего тела диоксида углерода. Аккумулятор природного газа служит для создания запасов и снабжения горючим, а аккумулятор диоксида углерода является резервуаром для цикла теплоносителя для использования тепловой энергии установки. Использование чистого кислорода и природного газа, а также использование диоксида углерода в качестве теплоносителя позволяют осуществить эффективное с термодинамической и технической точек зрения объединение отдельных установок в одну, в отношении суммарного электрического КПД, предотвращения выбросов NOx, а также снижения выбросов окиси углерода и диоксида углерода. В качестве дополнительного источника тепла может быть использовано тепло земли из более глубоких слоев земли. В качестве промежуточного накопителя могут использоваться солевые полости большой глубины. Солевые полости могут использоваться в этом процессе как в качестве накопителя большой емкости для сжатого диоксида углерода в сверхкритическом состоянии, так и в качестве теплообменника, причем они дополнительно снижают потенциал возможного выделения диоксида углерода в атмосферу.
В паровой части электростанции тепловая энергия потока отработавшего газа поглощается за счет находящегося под высоким сверхкритическим давлением диоксида углерода, являющегося теплоносителем. Затем нагретый сверхкритический поток диоксида углерода разгружается через турбодетандер, соединенный с генератором, охлаждается, потом снова охлаждается за счет использования источника холода и сжижается, в сжиженном виде сжимается до рабочего давления и снова подается в аккумулятор диоксида углерода. В качестве источника холода выступают возникающие в процессе расширения природного газа, воздуха и диоксида углерода эффекты охлаждения, а также теплота испарения и холодильный потенциал накопленного жидкого кислорода. Охлаждаемый в теплообменнике поток отработавшего газа частично сжимается до оптимального для газовой турбины уровня давления, перемешивается с чистым кислородом или впрыскивается с чистым кислородом и природным газом в камеру сгорания газовой турбины. И наоборот, на структурном этапе подземного аккумулятора диоксида углерода сжимается целый поток отработавшего газа и только после этого он разделяется. Неотводимая часть дымового газа сжимается, охлаждается за счет отходящего воздуха установки по разделению воздуха и при этом сжижается и перекачивается вакуумным насосом в подземный аккумулятор. В случае заполненного подземного аккумулятора этот способ используется для восполнения потерь или получения чистого диоксида углерода в жидкой или твердой форме. Восстановление аккумулятора диоксида углерода происходит бесперебойно из осушенных отработавших газов электростанции, причем эти газы сначала сжимаются при подаче энергии сжатия до давления, при котором использование имеющегося холодильного потенциала является достаточным для сжижения, и затем при помощи сжатия жидкого диоксида углерода подаются в подземный аккумулятор.
Пример использования
Остальные преимущества изобретения вытекают из описания примера использования изобретения с различными температурами использования тепла, а также с использованием теплового потенциала земли при температуре 310 К или без него и относящегося сюда же чертежа, с соответствующими модификациями.
При использовании теплового потенциала земли сжижение происходит вблизи поверхности земли на глубине 8-30 м, в то время как подземное аккумулирование из-за высокого давления диоксида углерода как минимум 10 МПа по причинам безопасности происходит на глубине минимум 400 м, причем статическое давление сжиженного диоксида углерода снижает необходимые расходы на сжатие.
На чертеже схематически представлена основная конструкция устройства для использования метода с использованием теплового потенциала земли.
В последующих примерах будет рассматриваться тепловой потенциал электростанции, имеющий решающее значение для использования метода. Соответствующий цикл, характеризующийся исходными значениями от 21 до 24, отмечен жирной линией. Все остальные преимущества специалисту будут понятны и без объяснений.
В таблице в наглядной форме для двух температурных потенциалов 423 К и 473 К представлены основные параметры, а именно передаваемое количество теплоты, температуры и мощность. В частности в результате сравнения соответствующих вариантов А и В, соответственно в результате использования схемы с использование тепла земли и без него, было получено особое преимущество от сочетания различных потенциалов.
Сначала приходящаяся на определенный период времени неиспользуемая электроэнергия используется для компрессии и для периодического заполнения аккумуляторов высокого давления, предназначенных для природного газа 1, сжатого воздуха 2 и диоксида углерода 3. Воздушный аккумулятор высокого давления 2 служит при этом в качестве буфера непрерывно работающей установки по разделению воздуха 4 для производства жидкого кислорода, который хранится в отдельных криогенных баках 5 и после обратного выпаривания в испарителе 6 участвует с процессе горения в газовой турбине 7, таким образом, чтобы теплота испарения кислорода способствовала сжижению в теплообменнике 8 с низкими температурами используемого в качестве теплоносителя и рабочего тела диоксида углерода. Аккумулятор природного газа 1 служит для создания запасов и снабжения горючим, а аккумулятор диоксида углерода 3, с одной стороны, выступает в качестве промежуточного накопителя жидкого или сверхкритического диоксида углерода, являющегося теплоносителем и рабочим телом, а с другой стороны, имеет активные задачи в схеме теплообмена электростанции для улучшения суммарного КПД, позволяя более эффективно использовать отработанное тепло электростанции для выработки электроэнергии. Использование чистого кислорода и природного газа, а также использование диоксида углерода в качестве теплоносителя позволяют осуществить эффективное с термодинамической и технической точек зрения объединение отдельных установок в одну, в отношении суммарного электрического КПД, предотвращения выбросов NOx, а также снижения выбросов окиси углерода и диоксида углерода.
В паровой части электростанции, состоящей из котла-утилизатора 9, из турбины с противодавлением 10 с частичным обратным сжатием охлажденного потока отработавшего газа и генератора 11 тепловая энергия потока отработавшего газа после КС или на выходе из газовой турбины 7 поглощается за счет находящегося под высоким сверхкритическим давлением диоксида углерода, являющегося теплоносителем. Затем нагретый сверхкритический поток диоксида углерода разгружается через турбодетандер 10, соединенный с генератором 11, охлаждается, и наконец снова охлаждается и сжижается в теплообменниках 12 за счет использования источника холода, в сжиженном виде сжимается до рабочего давления при помощи вакуумного насоса 13 и снова подается в аккумулятор диоксида углерода 3. Рабочая декомпрессия осуществляется до зоны конденсации, при этом происходит частичное сжижение и смесь, состоящая из газа и жидкости, сжижается дальше при использовании источника холода и в жидком виде снова сжимается до рабочего давления и подвергается промежуточному хранению. В качестве источника холода могут использоваться в зависимости от режима работы наряду с восстановлением природного газа за счет снижения давления в декомпрессионных установках 14a и 14b, за счет редукции сжатого воздуха в установках 15a и 15b, и испарения и нагрева кислорода, холодильные потенциалы отходящего воздуха из установки по разделению воздуха 4, а также, если это необходимо, соответствующие холодильные потенциалы окружающей среды, может частично использоваться тепловой потенциал земли на глубине 5-30 м, может частично использоваться для отвода теплоты конденсации холодильный потенциал озерной, речной и/или морской воды, могут частично использоваться низкие температуры, возникающие при декомпрессии природного газа или сжатого воздуха, может частично использоваться теплота испарения участвующего в процессе жидкого кислорода и его тепловой потенциал. Охлаждаемый в теплообменнике 9 поток отработавшего газа частично сжимается до оптимального для газовой турбины уровня давления, перемешивается с чистым кислородом или впрыскивается с чистым кислородом в камеру сгорания газовой турбины. Часть потока отработавшего газа после выхода из теплообменника диоксида углерода после обратного сжатия и охлаждения или же при добавлении диоксида углерода и подземного аккумулятора подается вместе с сжатым кислородом в камеру сгорания, причем давление горючего газа и давление смеси отработавший газ-диоксид углерода-кислород настраивается в соответствии с потребностями турбины.
На структурном этапе подземного аккумулятора диоксида углерода 3, наоборот, сжимается целый поток отработавшего газа и только после этого он разделяется. Неотводимая часть дымового газа сжимается, охлаждается за счет отходящего воздуха установки по разделению воздуха и при этом сжижается и перекачивается вакуумным насосом в подземный аккумулятор. В случае заполненного подземного аккумулятора этот способ используется для восполнения потерь или получения чистого диоксида углерода в жидкой или твердой форме.
Метод в сочетании с пиковой электростанцией, работающей на природном газе в периодическом режиме, подразумевает использование временной избыточной энергии для установки в солевых полостях промежуточных аккумуляторов природного газа, сжатого воздуха и рабочей среды - диоксида углерода, находящихся под давлением 10-20 МПа и для постоянного забора из аккумулятора сжатого воздуха через установку по разделению воздуха при давлении 0,6-0,8 МПа сжатого воздуха, чтобы при необходимости периодически отбирать кислород и природный газ.
Использование диоксида углерода в качестве теплоносителя и рабочего тела под давлением особенно выгодно для использования тепловой энергии и ее преобразования в электроэнергию. При этом диоксид углерода сжижается при низких температурах, затем сжимается в жидком состоянии до сверхкритического давления, при этом в этой области происходит поглощение тепла, затем разгружается через турбодетандер, причем турбодетандер приводит в движение генератор и охлаждается, причем конечная температура регулируется в соответствии с желаемым давлением сжижения. Затем происходит сжижение за счет источника холода при температуре, являющейся результатом соответствующего давления, причем выводится теплота конденсации и происходит повышение давления через вакуумный насос до сверхкритического рабочего давления.
Выбор сверхкритической области поглощения тепла происходит благодаря имеющимся там особо благоприятным для обмена термодинамическим условиям сверхкритической жидкой области для интересной с точки зрения использования низкоэнергетического тепла области температур. Сюда же относятся высокие значения теплоемкости, а также низкие значения вязкости, в сочетании с сопоставимой с водяным паром теплопроводностью. По направлению вниз термодинамически обусловленная область состояния ограничена тройной точкой диоксида углерода при температуре прим. 217 К, что соответствует давлению прим. 0,55 МПа. По направлению вверх не существует термодинамических границ ни с давлением, ни с полезной температурой. Из практических и материально-технических соображений есть ограничения иного рода.
Преимущество использования диоксида углерода состоит и в том, что нет необходимости в использовании дополнительных теплообменников, так как среда теплоносителя находится в замкнутом цикле, при этом она является рабочей средой в том же цикле.
Преимуществом является также то, что диоксид углерода имеет сравнительно небольшую опасность для окружающей среды и относительно высокую доступность. Выбранные методы предусматривают таким образом возможность использования большого количества диоксида углерода в качестве рабочей среды при одновременной эксплуатации тепла земли или окружающей среды для повышения соответствующего методу КПД. Отсюда вытекает ряд значительных преимуществ по сравнению с методами ORC и Калина. Остальные преимущества появляются благодаря более высоким КПД и сочетанию с другими тепловыми и холодильными потенциалами, которые позволяют осуществлять дальнейшее повышение достигаемых при работе электростанции КПД. Это в частности удается благодаря использованию приповерхностных тепловых потенциалов земли, а также за счет использования холодильного потенциала в процессе разгрузки, в частности при разгрузке природного газа и снижении температуры с содержанием сжатого воздуха для подготовки необходимой для сжижения диоксида углерода энергии холода.
Пример использования подтверждает это своими высокими электрическими КПД.
Метод может способствовать благодаря временному аккумулятору диоксида углерода также его аккумулированию и удалению из окружающей среды и позволяет одновременно с этим осуществлять безотказную периодическую работу электростанции также с сильно меняющимися режимами работы без значительных периодов времени на запуск и адаптацию. Как следует из примера, благодаря использованию теплового потенциала земли с температурой всего лишь 301 К суммарный КПД электростанции удается повысить прим. на 2%.
Рабочее тело потока Агрегат Темп-ра, К Давление, МПа Мощность, кВт Эл-во Брутто Эл-во Нетто КПД нетто Пример
Тепл. Электр.
20 423 15 Ia
10+11 1015,5
21 260 2,0
8+12 -289,5
22 253 2,0
13 -124
23, 24 260 15
9 3788
1015,5 890 23,5%
20 423 15 Ib
10+11 1015,5
21 260 2
8+12 -289,5
22 253 2
13 -124
23 260 15
24 301
9 2922
1015,5 890 30,5%
20 473 15 IIa
10+11 1721
21 232 0,6
8+12 -4486
22 220 0,6
13 -123
23, 24 224 15
19 5598
1721 1599 31,0%
20 473 15 IIb
10+11 1721
21 232 0,6
8+12 -3556
22 220 0,6
13 -123
23 224 15
24 301
9 2442
1721 1599 44,4%

Claims (18)

1. Метод улучшенного использования теплового потенциала при эксплуатации электростанции при одновременном предотвращении любых выбросов NOx, значительном снижении выделяющегося в атмосферу диоксида углерода, хорошей регулируемости при оптимальном использовании имеющихся и изменяющихся температур окружающей среды, минимизации неиспользованного тепла и оптимизации режима работы в сочетании с повышением электрического КПД, а также для эффективного промежуточного аккумулирования электроэнергии и ее более простого использования для повышения КПД в непрерывном режиме работы электростанции при альтернативном одновременном использовании в качестве пиковой электростанции, отличающийся тем, что электрический ток используется из временных избыточных мощностей, чтобы аккумулировать в отдельных подземных накопителях как природный газ, так и сжатый воздух и диоксид углерода под высоким давлением, причем накопитель природного газа служит в качестве накопителя горючего для электростанции, накопитель сжатого воздуха служит в качестве буферного накопителя для бесперебойно работающей установки по разделению воздуха, предпочтительно для производства жидкого кислорода, а накопитель диоксида углерода подготавливает сверхкритический диоксид углерода в качестве среды теплоносителя, которая использует энтальпию горючего газа в качестве источника тепла, разгружается через детандер, соединенный с генератором, охлаждается, сжижается при использовании источника тепла и в жидком виде снова сжимается до рабочего давления и подготавливается во временном аккумуляторе высокого давления.
2. Метод по п.1, отличающийся тем, что рабочая декомпрессия осуществляется до зоны конденсации, при этом происходит частичное сжижение, и смесь, состоящая из газа и жидкости, сжижается дальше при использовании источника холода и в жидком виде снова сжимается до рабочего давления и подвергается промежуточному хранению.
3. Метод по п.1, отличающийся тем, что в качестве промежуточного накопителя используются солевые полости большой глубины.
4. Метод по п.1, отличающийся тем, что в качестве источника холода для отвода теплоты конденсации по крайней мере частично используется тепловой потенциал земли на глубине 5-30 м.
5. Метод по п.1, отличающийся тем, что в качестве источника холода для отвода теплоты конденсации по крайней мере частично используется низкая температура отработанного воздуха установки по разделению воздуха.
6. Метод по п.1, отличающийся тем, что в качестве источника холода для отвода теплоты конденсации по крайней мере частично используется температура окружающей среды или температура других находящихся в непосредственном контакте с температурой окружающей среды сред.
7. Метод по п.1, отличающийся тем, что в качестве источника холода для отвода теплоты конденсации по крайней мере частично используется холодильный потенциал озерной, речной и/или морской воды.
8. Метод по п.1, отличающийся тем, что в качестве источника холода для отвода теплоты конденсации по крайней мере частично используются низкие температуры, возникающие при декомпрессии природного газа.
9. Метод по п.1, отличающийся тем, что в качестве источника холода для отвода теплоты конденсации по крайней мере частично используются низкие температуры, возникающие при декомпрессии сжатого воздуха.
10. Метод по п.1, отличающийся тем, что в качестве источника холода для отвода теплоты конденсации по крайней мере частично используются теплота испарения участвующего в процессе жидкого кислорода и его тепловой потенциал.
11. Метод по п.1, отличающийся тем, что в качестве дополнительного источника тепла используется тепло земли из более глубоких слоев земли.
12. Метод по п.1, отличающийся тем, что солевые полости используются в этом процессе как в качестве накопителя большой емкости для сжатого диоксида углерода в сверхкритическом состоянии, так и в качестве теплообменника, причем они дополнительно снижают потенциал возможного выделения диоксида углерода в атмосферу.
13. Метод по п.1, отличающийся тем, что восстановление аккумулятора диоксида углерода происходит бесперебойно из осушенных отработавших газов электростанции, причем эти газы сначала сжимаются при подаче энергии сжатия до давления, при котором использование имеющегося холодильного потенциала является достаточным для сжижения, и затем при помощи сжатия жидкого диоксида углерода подается в подземный аккумулятор.
14. Метод по п.1, отличающийся тем, что при использовании теплового потенциала земли сжижение происходит вблизи поверхности земли на глубине 8-30 м, в то время как подземное аккумулирование из-за высокого давления диоксида углерода как минимум 10 МПа по причинам безопасности происходит на глубине минимум 400 м, причем статическое давление сжиженного диоксида углерода снижает необходимые расходы на сжатие.
15. Метод по п.1, отличающийся тем, что метод в сочетании с пиковой электростанцией, работающей на природном газе в периодическом режиме, подразумевает использование временной избыточной энергии для установки в солевых полостях промежуточных аккумуляторов природного газа, сжатого воздуха и рабочей среды - диоксида углерода, находящихся под давлением 10-20 МПа и для постоянного забора из аккумулятора сжатого воздуха через установку по разделению воздуха при давлении 0,6-0,8 МПа сжатого воздуха для бесперебойного производства жидкого кислорода, чтобы при необходимости периодически отбирать кислород и природный газ и использовать аккумулятор диоксида углерода как в качестве теплоносителя, так и в качестве буферного накопителя рабочей среды.
16. Метод по п.1, отличающийся тем, что в качестве электростанции используется постоянно работающая электростанция на основе GuD с эксплуатацией на газе, который подразумевает использование временной избыточной энергии для установки в солевых полостях промежуточных аккумуляторов природного газа, сжатого воздуха и рабочей среды -диоксида углерода, находящихся под давлением 10-20 МПа и для постоянного забора из аккумулятора сжатого воздуха через установку по разделению воздуха при давлении 0,6-0,8 МПа сжатого воздуха для бесперебойного производства и кратковременного хранения жидкого кислорода, чтобы постоянно отбирать его вместе с природным газом и использовать аккумулятор диоксида углерода как в качестве теплоносителя, так и в качестве буферного накопителя рабочей среды, причем аккумулятор жидкого кислорода является буфером и осуществляет таким образом изменения режима работы электростанции без возмущающих воздействий на работу установки по разделению воздуха.
17. Метод по п.1, отличающийся тем, что часть потока отработавшего газа после выхода из теплообменника диоксида углерода после обратного сжатия и охлаждения или же при добавлении диоксида углерода и подземного аккумулятора подается вместе с сжатым кислородом в камеру сгорания, причем давление горючего газа и давление смеси отработавший газ - диоксид углерода - кислород настраивается в соответствии с потребностями турбины.
18. Устройство для использования метода по п.1, состоящее из
- по меньшей мере одного подземного аккумулятора природного газа, одного сжатого воздуха и одного диоксида углерода (1, 2, и 3),
- установки по разделению воздуха (4) для получения кислорода,
- газовой турбины (7),
- компрессора с присоединением на выбор к газовой турбине или к турбине с противодавлением,
- турбины с противодавлением,
- детандеров для редукции давления с получением энергии,
- нескольких сцепленных с турбинами и детандерами генераторов (11),
- по меньшей мере одного насоса для сжатия жидкого диоксида углерода,
- баков жидкого кислорода и жидкого диоксида углерода,
- испарителя жидкого кислорода и
- теплообменника, регулирующих устройств и клапанов.
RU2009106714A 2006-07-31 2007-07-28 Метод и устройство для эффективной и низкотоксичной эксплуатации электростанций, а также для аккумулирования и преобразования энергии RU2435041C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006035273.4 2006-07-31
DE102006035273A DE102006035273B4 (de) 2006-07-31 2006-07-31 Verfahren zum effektiven und emissionsarmen Betrieb von Kraftwerken, sowie zur Energiespeicherung und Energiewandlung

Publications (2)

Publication Number Publication Date
RU2009106714A RU2009106714A (ru) 2010-09-10
RU2435041C2 true RU2435041C2 (ru) 2011-11-27

Family

ID=38799311

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009106714A RU2435041C2 (ru) 2006-07-31 2007-07-28 Метод и устройство для эффективной и низкотоксичной эксплуатации электростанций, а также для аккумулирования и преобразования энергии

Country Status (11)

Country Link
US (1) US20100101231A1 (ru)
EP (1) EP2084372B1 (ru)
KR (1) KR20090035734A (ru)
CN (1) CN101668928A (ru)
AT (1) ATE465326T1 (ru)
AU (1) AU2007280829B2 (ru)
CA (1) CA2662454A1 (ru)
DE (2) DE102006035273B4 (ru)
RU (1) RU2435041C2 (ru)
WO (1) WO2008014769A1 (ru)
ZA (1) ZA200901246B (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529615C1 (ru) * 2013-06-20 2014-09-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ аккумулирования энергии
RU2561755C2 (ru) * 2013-11-07 2015-09-10 Открытое акционерное общество "Газпром" Способ работы и устройство газотурбинной установки
RU2654266C1 (ru) * 2014-06-16 2018-05-17 Сименс Акциенгезелльшафт Система и способ для снабжения энергосистемы энергией от источника возобновляемой энергии периодического действия
RU2654551C1 (ru) * 2014-06-16 2018-05-21 Сименс Акциенгезелльшафт Система и способ для снабжения энергосети энергией из непостоянного возобновляемого источника энергии
RU2663677C2 (ru) * 2013-04-19 2018-08-08 Александр Шнайдер Пневмоаккумуляторная электростанция с индукционным насосом
IT202000026452A1 (it) * 2020-11-05 2022-05-05 Energy Dome S P A Impianto e processo per l’accumulo di energia

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940265B2 (en) * 2009-02-17 2015-01-27 Mcalister Technologies, Llc Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes
DE102006035272B4 (de) * 2006-07-31 2008-04-10 Technikum Corporation, EVH GmbH Verfahren und Vorrichtung zur Nutzung von Niedertemperaturwärme zur Stromerzeugung
US8511073B2 (en) * 2010-04-14 2013-08-20 Stewart Kaiser High efficiency cogeneration system and related method of use
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US20110266810A1 (en) 2009-11-03 2011-11-03 Mcbride Troy O Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
EP2280841A2 (en) 2008-04-09 2011-02-09 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8063511B2 (en) * 2008-05-27 2011-11-22 Expansion Energy, Llc System and method for liquid air production, power storage and power release
WO2009152141A2 (en) 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
CN101302945B (zh) * 2008-07-10 2011-04-27 张中和 通过流体温差产生能量的设备
CN102307647A (zh) 2008-12-04 2012-01-04 纳幕尔杜邦公司 二氧化碳移除和可用于其中的离子液体化合物
US9097152B2 (en) 2009-02-17 2015-08-04 Mcalister Technologies, Llc Energy system for dwelling support
US9231267B2 (en) * 2009-02-17 2016-01-05 Mcalister Technologies, Llc Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
US8808529B2 (en) 2009-02-17 2014-08-19 Mcalister Technologies, Llc Systems and methods for sustainable economic development through integrated full spectrum production of renewable material resources using solar thermal
US8814983B2 (en) 2009-02-17 2014-08-26 Mcalister Technologies, Llc Delivery systems with in-line selective extraction devices and associated methods of operation
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
DE102009026970A1 (de) * 2009-06-16 2010-12-23 Tge Marine Gas Engineering Gmbh Verfahren zur Reduzierung des Ausstoßes von Kohlendioxid nebst Vorrichtung
US9067953B2 (en) * 2010-03-12 2015-06-30 E I Du Pont De Nemours And Company Systems for carbon dioxide and sulfur dioxide removal
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US9017455B2 (en) 2010-06-03 2015-04-28 E I Du Pont De Nemours And Company Sulfur compounds for carbon dioxide and sulfur dioxide removal
JP5886281B2 (ja) * 2010-07-02 2016-03-16 ユニオン・エンジニアリング・エー/エスUnion Engineering A/S 発酵工程からの二酸化炭素の高圧回収
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US20120159922A1 (en) * 2010-12-23 2012-06-28 Michael Gurin Top cycle power generation with high radiant and emissivity exhaust
EP2715075A2 (en) 2011-05-17 2014-04-09 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US20120301834A1 (en) * 2011-05-24 2012-11-29 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources High pressure oxy-fired combustion system
PL218451B1 (pl) * 2011-09-27 2014-12-31 Tomasz Tadeusz Piskorz Sposób regulacji i zasilania elektrowni i układ do regulacji i zasilania elektrowni
US20130091835A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
CN104246150B (zh) * 2011-10-22 2017-04-12 可持续能源解决方案有限公司 整合储能和低温碳捕获的系统和方法
US9540999B2 (en) 2012-01-17 2017-01-10 Peregrine Turbine Technologies, Llc System and method for generating power using a supercritical fluid
US8965594B2 (en) 2012-01-19 2015-02-24 General Compression, Inc. System and method for conserving energy resources through storage and delivery of renewable energy
US20130263585A1 (en) * 2012-04-06 2013-10-10 Chamisa Energy Company, Llc Multiple cavern compressed air energy storage system and method
DE102012210803A1 (de) * 2012-06-26 2014-01-02 Energy Intelligence Lab Gmbh Vorrichtung zum Erzeugen elektrischer Energie mittels eines ORC-Kreislaufs
JP2014020509A (ja) * 2012-07-20 2014-02-03 Toshiba Corp シール装置、軸流タービン、および発電プラント
US10584633B2 (en) * 2012-08-30 2020-03-10 Enhanced Energy Group LLC Semi-closed cycle turbine power system to produce saleable CO2 product
DE102012219896A1 (de) * 2012-10-31 2014-04-30 Siemens Aktiengesellschaft Kraftwerk und Verfahren zu dessen Betrieb
JP6038671B2 (ja) 2013-02-01 2016-12-07 三菱日立パワーシステムズ株式会社 火力発電システム
DE102014101263B3 (de) * 2014-02-03 2015-07-02 Stephan Leyer Vorrichtung und Verfahren zum Speichern von Energie mit Hilfe von überkritischem Kohlendioxid
KR102297668B1 (ko) 2014-02-26 2021-09-06 페레그린 터빈 테크놀로지스, 엘엘씨 부분 복열 유동 경로를 갖는 동력 발생 시스템 및 방법
CN106574518B (zh) 2014-08-22 2019-05-10 派瑞格恩涡轮技术有限公司 用于发电系统的热交换器
CN106555674A (zh) * 2015-09-29 2017-04-05 中国核动力研究设计院 一种可实现100%碳回收的高效闭式燃气发电系统
EP3371421B1 (en) 2015-11-05 2023-02-15 Pintail Power LLC Dispatchable storage combined cycle power plants
DE102017003238B4 (de) * 2017-04-04 2018-12-27 Zhenhua Xi Verfahren und Anlagensystem zur Energieumwandlung mittels Kohlendioxid
CN107035447B (zh) * 2017-04-14 2018-12-07 南京航空航天大学 压缩超临界二氧化碳蓄能蓄热系统及其工作方法
JP6705771B2 (ja) * 2017-04-21 2020-06-03 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
US10789657B2 (en) * 2017-09-18 2020-09-29 Innio Jenbacher Gmbh & Co Og System and method for compressor scheduling
US11125165B2 (en) * 2017-11-21 2021-09-21 General Electric Company Thermal management system
CN109185083A (zh) * 2018-10-11 2019-01-11 西安热工研究院有限公司 一种超临界二氧化碳地热发电系统及发电方法
CN109854320B (zh) * 2019-01-03 2021-12-03 上海海事大学 一种二氧化碳储能与有机朗肯循环联合发电系统
IT201900002385A1 (it) * 2019-02-19 2020-08-19 Energy Dome S P A Impianto e processo per l’accumulo di energia
CN109812304B (zh) * 2019-03-06 2023-08-29 上海发电设备成套设计研究院有限责任公司 集成二氧化碳循环与液化空气储能的调峰发电系统及方法
CN110159370B (zh) * 2019-05-15 2023-12-26 上海发电设备成套设计研究院有限责任公司 一种带捕碳装置的燃煤发电系统及方法
CN110671205A (zh) * 2019-10-10 2020-01-10 中南大学 一种基于lng的燃气轮机-超临界co2-orc循环串联发电系统
CN111062124B (zh) * 2019-12-05 2021-10-08 西安交通大学 一种超临界二氧化碳压缩机试验的相似模化方法
DE102020000131B4 (de) * 2020-01-10 2021-12-30 Zhenhua Xi Verfahren zur CO2-Verflüssigung und -Speicherung in einem CO2-Kraftwerk
US11773776B2 (en) 2020-05-01 2023-10-03 General Electric Company Fuel oxygen reduction unit for prescribed operating conditions
CN112249293A (zh) * 2020-10-09 2021-01-22 东南大学 超临界二氧化碳循环与海水淡化耦合的船舰核动力系统
EP4059888A1 (en) * 2021-03-17 2022-09-21 Siemens Energy Global GmbH & Co. KG Plant for producing a product, in particular ammonia
US11591965B2 (en) 2021-03-29 2023-02-28 General Electric Company Thermal management system for transferring heat between fluids
CN114109547B (zh) * 2021-10-15 2023-07-21 西安热工研究院有限公司 一种基于超临界二氧化碳储能的燃煤电厂调峰系统及运行方法
CN114111413B (zh) * 2021-11-25 2023-10-27 青岛科技大学 一种采用二氧化碳混合工质的压缩储能系统及其工作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353214A (en) * 1978-11-24 1982-10-12 Gardner James H Energy storage system for electric utility plant
US4765143A (en) * 1987-02-04 1988-08-23 Cbi Research Corporation Power plant using CO2 as a working fluid
US4982568A (en) * 1989-01-11 1991-01-08 Kalina Alexander Ifaevich Method and apparatus for converting heat from geothermal fluid to electric power
DE3924908A1 (de) * 1989-07-27 1991-01-31 Siemens Ag Verfahren und anlage zur minderung des kohlendioxidgehalts der abgase bei fossiler verbrennung
US4995234A (en) * 1989-10-02 1991-02-26 Chicago Bridge & Iron Technical Services Company Power generation from LNG
DE4407619C1 (de) * 1994-03-08 1995-06-08 Entec Recycling Und Industriea Verfahren zur schadstoffarmen Umwandlung fossiler Brennstoffe in technische Arbeit
US6170264B1 (en) * 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
DE19632019C1 (de) * 1996-08-08 1997-11-20 Thomas Sturm Verfahren zum Betreiben einer Vorrichtung mit einer Wärmekraftmaschine
AU2618901A (en) * 1999-11-03 2001-05-14 Lectrix Llc Compressed air energy storage system with an air separation unit
US20030131582A1 (en) * 2001-12-03 2003-07-17 Anderson Roger E. Coal and syngas fueled power generation systems featuring zero atmospheric emissions
US6775987B2 (en) * 2002-09-12 2004-08-17 The Boeing Company Low-emission, staged-combustion power generation
US7128005B2 (en) * 2003-11-07 2006-10-31 Carter Jr Greg Non-polluting high temperature combustion system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663677C2 (ru) * 2013-04-19 2018-08-08 Александр Шнайдер Пневмоаккумуляторная электростанция с индукционным насосом
US10122242B2 (en) 2013-04-19 2018-11-06 Alexander Schneider Compressed air energy storage unit with induction pump and method for the production of such a compressed air energy storage unit
RU2529615C1 (ru) * 2013-06-20 2014-09-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ аккумулирования энергии
RU2561755C2 (ru) * 2013-11-07 2015-09-10 Открытое акционерное общество "Газпром" Способ работы и устройство газотурбинной установки
US10060301B2 (en) 2013-11-07 2018-08-28 Publichnoe Aktsionernoe Obschestvo “Gazprom” Gas turbine unit operating mode and design
RU2654266C1 (ru) * 2014-06-16 2018-05-17 Сименс Акциенгезелльшафт Система и способ для снабжения энергосистемы энергией от источника возобновляемой энергии периодического действия
RU2654551C1 (ru) * 2014-06-16 2018-05-21 Сименс Акциенгезелльшафт Система и способ для снабжения энергосети энергией из непостоянного возобновляемого источника энергии
US10323544B2 (en) 2014-06-16 2019-06-18 Siemens Aktiengesellschaft System and method for supplying an energy grid with energy from an intermittent renewable energy source
IT202000026452A1 (it) * 2020-11-05 2022-05-05 Energy Dome S P A Impianto e processo per l’accumulo di energia
WO2022101727A1 (en) * 2020-11-05 2022-05-19 Energy Dome S.P.A. Plant and process for energy storage and method for controlling a heat carrier in a process for energy storage
US11952921B2 (en) 2020-11-05 2024-04-09 Energy Dome S.P.A. Plant and process for energy storage and method for controlling a heat carrier in a process for energy storage

Also Published As

Publication number Publication date
EP2084372A1 (de) 2009-08-05
DE102006035273B4 (de) 2010-03-04
KR20090035734A (ko) 2009-04-10
RU2009106714A (ru) 2010-09-10
AU2007280829A1 (en) 2008-02-07
ATE465326T1 (de) 2010-05-15
ZA200901246B (en) 2009-12-30
CA2662454A1 (en) 2008-02-07
EP2084372B1 (de) 2010-04-21
AU2007280829B2 (en) 2013-04-11
DE502007003545D1 (de) 2010-06-02
WO2008014769A1 (de) 2008-02-07
DE102006035273A1 (de) 2008-02-07
US20100101231A1 (en) 2010-04-29
CN101668928A (zh) 2010-03-10

Similar Documents

Publication Publication Date Title
RU2435041C2 (ru) Метод и устройство для эффективной и низкотоксичной эксплуатации электростанций, а также для аккумулирования и преобразования энергии
KR102196751B1 (ko) 액화가스 연료의 냉열을 이용한 액체공기 저장 시스템
US9217423B2 (en) Energy storage system using supercritical air
CN102758748B (zh) 高压液态空气储能/释能系统
JP2858750B2 (ja) 貯蔵したエネルギ利用の発電システム,方法およびその装置
KR101334068B1 (ko) 액체 공기 생산, 동력 저장 및 동력 방출 시스템 및 장치
US20090266075A1 (en) Process and device for using of low temperature heat for the production of electrical energy
CN102758690A (zh) 高效高压液态空气储能/释能系统
CN108533476A (zh) 一种热泵超临界空气储能系统
JP2014500424A (ja) 液体空気の製造、電力貯蔵及び電力放出のためのシステム及び方法
CN107060927A (zh) 余热回收利用系统及其方法和发电站
CN109386316A (zh) 一种lng冷能和bog燃烧能联合利用系统及方法
JPH09250360A (ja) エネルギー貯蔵型ガスタービン発電システム
KR20160060207A (ko) 액화 이산화탄소를 이용한 에너지 저장 시스템 및 방법
CN202811238U (zh) 高压液态空气储能/释能系统
CN202811079U (zh) 高效高压液态空气储能/释能系统
JPH04127850A (ja) 液体空気貯蔵発電システム
FR2489411A1 (fr) Procede de recuperation d'accumulation et de restitution d'energie et dispositif pour la mise en oeuvre dudit procede
CN113339696A (zh) 一种二氧化碳增压储存装置及方法
JP2023547991A (ja) エネルギー貯蔵のためのプラント及びプロセス
KR20100042969A (ko) 발전시스템
Mikołajczak et al. Improving the efficiency of Liquid Air Energy Storage by organic rankine cycle module application
JPH11303646A (ja) ガスタービン発電プラント
CN112112694A (zh) 压缩热自消纳的液态空气储能系统及方法
AU2020295027A1 (en) Thermoelectric device for storage or conversion of energy

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150729