RU2432497C2 - Компрессор, содержащий газовый подшипник - Google Patents

Компрессор, содержащий газовый подшипник Download PDF

Info

Publication number
RU2432497C2
RU2432497C2 RU2009119391/06A RU2009119391A RU2432497C2 RU 2432497 C2 RU2432497 C2 RU 2432497C2 RU 2009119391/06 A RU2009119391/06 A RU 2009119391/06A RU 2009119391 A RU2009119391 A RU 2009119391A RU 2432497 C2 RU2432497 C2 RU 2432497C2
Authority
RU
Russia
Prior art keywords
piston
cylinder
compression chamber
compressor according
gas
Prior art date
Application number
RU2009119391/06A
Other languages
English (en)
Other versions
RU2009119391A (ru
Inventor
Ян-Григор ШУБЕРТ (DE)
Ян-Григор ШУБЕРТ
Original Assignee
Бсх Бош Унд Сименс Хаусгерете Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бсх Бош Унд Сименс Хаусгерете Гмбх filed Critical Бсх Бош Унд Сименс Хаусгерете Гмбх
Publication of RU2009119391A publication Critical patent/RU2009119391A/ru
Application granted granted Critical
Publication of RU2432497C2 publication Critical patent/RU2432497C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • F04B39/0292Lubrication of pistons or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0813Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating

Abstract

Изобретение относится к области компрессоростроения. В компрессоре с цилиндром (21) и поршнем (25), выполненным с возможностью осциллирующего движения в цилиндре (21) и имеющим зазор поперек направления движения, торец (31) поршня (25) ограничивает в цилиндре (21) камеру (26) сжатия, поршень (25) имеет диаметр, уменьшающийся в направлении торца (31). Способствует опиранию поршня с хорошей радиальной устойчивостью при небольшом расходе сжатого газа. 8 з.п. ф-лы, 5 ил.

Description

Область техники
Настоящее изобретение относится к компрессору с цилиндром, в котором посредством газового подшипника поршень держится с возможностью движения без соприкосновения со стенкой цилиндра.
Уровень техники
Такой компрессор известен, например, из US 6575716 А1. В этом известном компрессоре во внутренней стенке цилиндра выполнен по окружности желобок, который через отверстие, пересекающее стенку цилиндра, снабжается сжатым газом. Сжатый газ распределяется в проходящем по окружности желобке по всему охвату поршня и распространяется от желобка в осевом направлении через узкий зазор между поршнем и стенкой цилиндра, вследствие чего сжатый газ поддерживает поршень по всему его охвату без контакта со стенкой цилиндра. Когда на поршень воздействует радиальная сила и выводит его из положения равновесия, то сжатый газ на одной стороне охвата поршня не только сжимается, но и частично также вытесняется, причем вытеснение, кроме прочего, может состоять в выталкивании газа обратно в желобок. В то время как сжатый газ вызывает на поршне возвращающую силу в направлении положения равновесия, вытесненный газ не может сделать этого. По причине возможности вытеснения газа, устойчивость подшипника к радиальному отклонению не слишком большая.
Чтобы улучшить устойчивость подшипника, предложено подавать сжатый газ через радиальные отверстия очень маленького поперечного сечения в зазор между стенкой цилиндра и поршнем. По причине малого поперечного сечения отверстий, при отклонении поршня обратное течение газа возможно только в небольшом количестве. Поэтому при одинаковом расходе газа может быть достигнута более высокая радиальная устойчивость подшипника.
Чтобы ограничить обратное течение сжатого газа, питающие отверстия должны иметь очень маленький диаметр, по порядку величины равный величине зазора между стенкой цилиндра и поршнем. На практике это означает, что диаметр питающих отверстий должен составлять не более нескольких десятков микрон. Выполнение таких маленьких отверстий требует применения затратных технологий обработки, таких как, например, лазерная абляция, электроэрозионная обработка или тому подобное. При применении таких технологий питающие отверстия могут быть выполнены только каждое по отдельности, что делает производство длительным и дорогостоящим. Кроме того, толщина материала, в которой могут быть выполнены такие маленькие отверстия, ограничена несколькими сотнями микронов. Обрабатываемое изделие с такими тонкими стенками легко подвержено деформации, и таким образом трудно гарантировать точность и стабильность формы стенки цилиндра, необходимые для эффективной работы газового подшипника.
Раскрытие изобретения
Цель настоящего изобретения состоит в том, чтобы создать компрессор с поршнем, опирающимся в газовом подшипнике, причем компрессор реализуется с небольшими затратами и способствует опиранию поршня с хорошей радиальной устойчивостью при небольшом расходе сжатого газа.
Задача решается посредством компрессора с цилиндром и с поршнем, выполненным с возможностью осциллирующего движения и имеющим зазор поперек направлению движения, причем торец поршня ограничивает в цилиндре камеру сжатия, причем компрессор отличается тем, что поршень имеет диаметр, уменьшающийся в направлении торца. Посредством формы поршня, сужающейся в направлении торца, часть газа, сжатого в камере сжатия посредством движения поршня, вводится в зазор между поршнем и стенкой цилиндра, и течение газа, утекающего из камеры сжатия между поршнем и стенкой цилиндра, создает эффект газового подшипника.
Чтобы гарантировать точное не допускающее кренов направление поршня, он предпочтительно наряду с участком, расположенным рядом с камерой сжатия и имеющим диаметр, уменьшающийся в направлении торца, имеет направляющий участок с постоянным диаметром.
Чтобы сжатый газ направлять с малой турбулентностью из камеры сжатия в зазор, увеличение диаметра целесообразно происходит плавно. В особенности предпочтительным будет, если скорость изменения диаметра в направлении оси максимальна непосредственно на торце и уменьшается с увеличением расстояния от торца.
Внутренняя стенка цилиндра в самом простом случае может совсем не содержать питающих отверстий для подвода сжатого газа в зазор между внутренней стенкой и поршнем.
В этом случае газовый поток через зазор при каждом осциллирующем движении поршня прекращается по меньшей мере один раз и таким образом в этот момент времени может произойти контакт между поршнем и стенкой цилиндра. Однако для того, чтобы ограничивать износ вследствие механического истирания между поршнем и стенкой цилиндра не только в этом случае, но и обычно, поршень и/или внутренняя стенка цилиндра может быть снабжена твердым покрытием. Покрытие может быть выполнено из карбида, например из карбида вольфрама, алмазоподобного покрытия или тому подобного.
Чтобы газовый подшипник был эффективным также на участке максимального расширения камеры сжатия, питающие отверстия для подвода сжатого газа могут быть расположены во внутренней стенке цилиндра так, что они подают газ на обращенный к камере сжатия участок поршня в точке возврата поршня, в которой расширение камеры сжатия максимально. Такая конструкция способствует по меньшей мере существенному уменьшению количества питающих отверстий по сравнению с обычным компрессором, в котором подшипниковый эффект поддерживается исключительно сжатым газом, подводимым через питающие отверстия снаружи.
Чтобы минимизировать радиальные силы, которые действуют на поршень и которые могут прижимать его к внутренней стенке цилиндра, компрессор целесообразно содержит приводной агрегат, который выполняет только линейное движение. Такой приводной агрегат может в особенности содержать соединенный с поршнем магнитный якорь, выполненный с возможностью приведения в движение параллельно направлению движения поршня в переменном магнитном поле.
Краткое описание чертежей
Другие признаки и преимущества изобретения вытекают из нижеследующего описания вариантов реализации со ссылкой на прилагаемые чертежи. На них показано следующее.
Фиг.1: схематичный разрез поршня и цилиндра компрессора согласно первому варианту реализации изобретения.
Фиг.2: схематичный разрез приводного агрегата компрессора.
Фиг.3: аналогичный фиг.1 разрез согласно второму варианту реализации изобретения.
Фиг.4: соответствующий разрез согласно третьему варианту реализации изобретения.
Фиг.5: вид спереди гильзы, применяемой в третьем варианте реализации.
Осуществление изобретения
Показанный на фиг.1 компрессор содержит цилиндр 21, который составлен по существу из трубчатого участка 22, торцевой пластины 23, перекрывающей конец трубчатого участка 22, и крышки 24, закрепленной на той стороне торцевой пластины 23, которая обращена от трубчатого участка 22. Трубчатый участок 22, торцевая пластина 23 и входящий в трубчатый участок 22 поршень 25 ограничивают камеру 26 сжатия. Камера 26 сжатия связана с двумя выполненными в крышке 24 камерами 29, 30 через схематично показанные на фиг.1 клапаны 27, 28, изготовленными предпочтительно цельно в торцевой пластине 23, изготовленной из пружинной стали. Клапаны 27, 28 являются обратными клапанами, которые пропускают газовый поток только от верхней, расположенной со стороны всасывания камеры 29 в камеру сжатия 26 при движении поршня 25 от центра либо пропускают газовый поток от камеры 26 сжатия в нижнюю, расположенную с напорной стороны камеру 30 при движении поршня 25 к центру.
Поршень имеет обращенный к торцевой пластине 23 плоский торец 31, диаметр которого значительно меньше, чем диаметр камеры 26 сжатия. Торец 31, непрерывно изгибаясь на краях, переходит в боковую поверхность 32, обращенную ко внутренней стороне трубчатого участка 22. Боковая поверхность 32 в направлении движения поршня 25 может быть разделена на три участка. Ими являются цилиндрический средний участок 33, диаметр которого максимум на несколько десятков микрон меньше, чем диаметр камеры 26 сжатия, и таким образом движение поршня в трубчатом участке 22 происходит с малым зазором и по существу стабильно, а также граничащие со средним участком 33 внутренний и внешний участки 34 и 35 соответственно, диаметр которых непрерывно уменьшается с увеличением расстояния от среднего участка 33.
Ширина зазора 36 между боковой поверхностью 32 и внутренней поверхностью трубчатого участка 22 с увеличением расстояния от среднего участка 33 растет быстрее, чем линейным образом. Расширяющийся таким образом воронкообразно в направлении камеры 26 сжатия зазор 36 способствует проникновению сжатого газа из камеры 26 сжатия, и таким образом на высоте среднего участка 33 газовый поток через зазор 36, который в этом месте узкий, существенно больше, чем в случае поршня, имеющего в точности цилиндрическиую форму. Посредством такого газового потока подшипниковый эффект реализуется как и в случае обычного газового подшипника с подачей газа в зазор через питающие отверстия.
Эффект газового подшипника кратковременно прерывается только в том случае, когда между камерой 26 сжатия и задней стороной поршня 25 нет перепада давления. В случае компрессора, в котором обычным образом весь цилиндр 21 капсулирован в герметичном корпусе, а задняя сторона поршня 25 соединена с камерой 29, расположенной со стороны всасывания, это может иметь место в обращенной от торцевой пластины 23 точке возврата движения поршня.
В случае, если на пути газа от задней стороны поршня через камеру 29, расположенную со стороны всасывания, и через ее клапан 27 в камеру 26 сжатия лежат препятствия прохождению потока, приводящие к тому, что во время движения поршня 25 от центра давление в камере 26 сжатия упадет ниже давления на задней стороне поршня (таким препятствием прохождению потока может в особенности быть сам клапан 27), газовый поток в зазоре 36 в каждом цикле движения поршня дважды (незадолго перед достижением точки возврата, обращенной от торцевой пластины, и после) прерывается. При этом возникает временное изменение направления потока газа в зазоре 36 между поршнем 25 и трубчатым участком 22. Чтобы и этот направленный в камеру 26 сжатия газовый поток усилить так, чтобы он создал подшипниковый эффект, диаметр поршня непрерывно уменьшается на внешнем участке 35 от среднего участка 33 в направлении заднего торца 37.
Чтобы минимизировать износ вследствие механического истирания, возникающий от соприкосновения поршня 25 и трубчатого участка 22 во время прерывания газового потока в зазоре 36, боковая поверхность 32 поршня 25 по меньшей мере на своем среднем участке 33 и/или внутренняя поверхность трубчатого участка 22 снабжена твердым износоустойчивым покрытием, например карбидом вольфрама, алмазоподобным покрытием или тому подобным.
Фиг.2 схематично показывает приводной агрегат, выполненный с возможностью применения для приведения поршня 25 в осциллирующее движение с помощью поршневого штока 38. Приводной агрегат содержит две Е-образные опоры 1 с тремя плечами 3, 4, 5, попарно лежащими напротив друг друга. Обращенные друг к другу концы плеч 3, 4, 5 образуют полюсные наконечники 7, ограничивающие воздушный зазор 2. Вокруг средних плеч 4 расположено по возбуждающей обмотке 8. Две возбуждающие обмотки 8 выполнены с возможностью подачи на них тока с помощью управляющей схемы, причем направление тока в обеих возбуждающих обмотках 8 установлено так, что противоположные друг другу полюсные наконечники 7 средних плеч 4 образуют разноименные магнитные полюса. Полюсные наконечники внешних плеч 3 и 5 образуют с соседним средним плечом 4 разноименные магнитные полюса.
В воздушном зазоре 2 якорь 10 подвижно подвешен с возможностью реверсирующего движения на двух пружинах 11 между верхней и нижней точками возврата (или правой и левой точками возврата). Положение якоря 10 в верхней точке возврата представлено сплошной линией, а положение в нижней точке возврата представлено пунктирной линией. Пружины 11 являются пластинчатыми пружинами, выштампованными из куска листового металла, с множеством зигзагообразно проходящих плеч 12. Плечи 12 пружины 11 проходят зеркально друг другу от центральной точки приложения силы на якоре 10 к точкам 13 подвеса на непоказанном жестком каркасе, на котором закреплены также опоры 1 и компрессор. Посредством такой конструкции пружины 11 могут легко деформироваться в продольном направлении якоря 10 и трудно деформироваться в любом ортогональном ему направлении, и таким образом пружины 11 реверсирующим образом направляют якорь 10 в его продольном направлении. По существу, стержневидный якорь 10 содержит в своей средней области четырехполюсный постоянный магнит 14. В то время как в ненапряженном состоянии пружин 11, в котором плечи 12 каждой пружины 11 лежат по существу в одной плоскости, магнит 14 расположен по центру в воздушном зазоре 2 и граничная линия 15 между его левыми и правыми полюсами по фиг.1 проходит посередине через средние плечи 4, при подаче тока на обмотки 8 якорь 10 в зависимости от направления тока отклоняется влево или вправо.
Фиг.3 показывает вариант реализации компрессора, предложенного настоящим изобретением, который также выполнен с возможностью соединения с показанным на фиг.2 приводным агрегатом. Компрессор имеет торцевую пластину 23 с клапанами 27, 28 и крышку 24 с камерами 29, 30, как описано применительно к фиг.1. Также поршень 25 имеет конструкцию с цилиндрическим средним участком 33 и с внешними участками 34, 35, сужающимися в направлении торцов 31 и 37 соответственно. В трубчатый участок 22 входит гильза 39, которая вместе с поршнем 25 и торцевой пластиной 23 ограничивает камеру 26 сжатия. Между гильзой 39 и трубчатым участком 22 находится кольцевая полость 40, которая на своем обращенном от торцевой пластины 23 конце уплотнена уплотнительным кольцом 41 или тому подобным и связана с камерой 30, расположенной на напорной стороне, через отверстие 42, наклонно проходящее через трубчатый участок 22 и торцевую пластину 23.
Питающие отверстия 43 с диаметром несколько десятков микрон пересекают гильзу 39. Осевое положение питающих отверстий 43 выбрано так, что в обращенной от торцевой пластины 23 точке возврата поршня, что представлено на фиг.3 пунктирным контуром поршня 25, питающие отверстия 43 лежат на высоте среднего участка 33 поршня. При этом на обращенной к торцевой пластине 23 точке возврата поршня не обязательно должно иметь место осевое пересечение положений питающих отверстий 43 и поршня 25. Если поршень 25 находится вблизи этой обращенной к торцевой пластине 23 точки возврата, то избыточное давление в камере 26 сжатия достаточно для того, чтобы через зазор 36 поддерживать газовый поток, достаточный для желаемого подшипникового эффекта. Если поршень 25 находится вблизи обращенной от торцевой пластины 23 точки возврата, в которой никакое избыточное давление в камере 26 сжатия не приводит в движение газовый поток через зазор 36, то эффект газового подшипника поддерживается посредством питающих отверстий 43. Таким образом, ни в какой фазе осциллирующего движения поршня 25 не возникает контакта с гильзой 39.
Клапаном 28 в камере 30 поддерживается непрерывное избыточное давление также и в том случае, когда поршень 25 двигается в направлении от торцевой пластины 23. Это непрерывное избыточное давление способствует непрерывной подаче сжатого газа к подающим отверстиям 43. Возможно также оптимизировать пропускные свойства отверстия 42 и полости 40 так, чтобы скачок давления, который всегда возникает в камере 30, когда клапан 28 открывается и сжатый газ притекает из камеры 26 сжатия в камеру 30, передавался через отверстие 42 и полость 40 и достигал бы питающих отверстий 43 тогда, когда поршень 25 находится перед этими питающими отверстиями. Таким образом количество сжатого газа, необходимое для опирания поршня 25, может и дальше уменьшаться.
Так как используется только относительно небольшое число питающих отверстий 43, то и здесь может быть реализовано снижение производственных затрат по сравнению с обычными компрессорами, оснащенными газовыми подшипниками и имеющими питающие отверстия, распределенными по оси.
Твердое покрытие описанного выше вида может быть предусмотрено также в этом варианте реализации на поршне 25 и/или на трубчатом участке 22, чтобы предотвратить износ вследствие механического истирания при пуске компрессора, когда давление в камере 30 еще не достаточно для того, чтобы создать на питающих отверстиях 43 подшипниковый эффект.
Фиг.4 показывает аналогичный фиг.1 и 3 разрез предложенного настоящим изобретением компрессора по третьему варианту реализации. Также и здесь крышка 24, торцевая пластина 23 и поршень идентичны показанным на фиг.1. Внутреннее пространство трубчатого участка 22 расширено только на своем конце, обращенном от торцевой пластины 23, и в это расширение введена гильза 44, которая упирается в заплечник 48 расширения и внутренняя поверхность которой заподлицо примыкает ко внутренней поверхности нерасширенной части трубчатого участка 22. Трубчатый участок 22 и гильза 44 ограничивают кольцевой канал 45, который через отверстие 42 связан с камерой 30, расположенной на напорной стороне.
Фиг.5 показывает вид спереди гильзы 44. Видно, что в торце 46 гильзы, которая в смонтированном состоянии прилегает к заплечнику трубчатого участка 22, ограничивающему расширение, по окружности равномерно распределены вытисненные желобки 47. В отличие от просверленных отверстий, желобки 47 могут быть выполнены шириной и глубиной в несколько десятков микрон и практически любой длины и при этом с небольшими затратами. Вместе с заплечиком 48 трубчатого участка 22 они ограничивают питающие отверстия 43, через которые сжатый газ может течь из кольцевого канала 45 во внутреннее пространство трубчатого участка 22 и опирать поршень 25 в области точки возврата, обращенной от торцевой пластины 23.

Claims (9)

1. Компрессор, содержащий цилиндр (22, 23) и поршень (25), выполненный с возможностью осциллирующего движения в цилиндре (22, 23) и имеющий зазор поперек направлению движения, причем торец (31) поршня (25) ограничивает в цилиндре (22, 23) камеру (26) сжатия, отличающийся тем, что поршень (25) имеет диаметр, уменьшающийся в направлении торца (31), причем поршень (25) имеет расположенный рядом с камерой (26) сжатия участок (34) с диаметром, уменьшающимся в направлении торца (31), а также имеет направляющий участок (33) с постоянным диаметром.
2. Компрессор по п.1, отличающийся тем, что поршень (25) дополнительно содержит обращенный от камеры (26) сжатия участок (35) с диаметром, уменьшающимся в направлении заднего торца (37) поршня (25).
3. Компрессор по п.1, отличающийся тем, что уменьшение диаметра происходит плавно.
4. Компрессор по п.3, отличающийся тем, что скорость изменения диаметра растет от середины (33) поршня к торцу (31; 37).
5. Компрессор по одному из предыдущих пунктов, отличающийся тем, что цилиндр (22, 23) имеет внутреннюю стенку, которая не содержит питающие отверстия для подвода сжатого газа в зазор (36) между внутренней стенкой и поршнем (25).
6. Компрессор по одному из пп.1-4, отличающийся тем, что питающие отверстия (43) для подвода сжатого газа расположены во внутренней стенке (39) цилиндра (22, 23), чтобы подавать газ на обращенный к камере (26) сжатия участок (33, 34) поршня (25) в точке возврата поршня, в которой расширение камеры (26) сжатия максимально.
7. Компрессор по одному из пп.1-4, отличающийся тем, что поршень (25) и/или внутренняя стенка цилиндра (22, 23) снабжены твердым покрытием.
8. Компрессор по п.7, отличающийся тем, что покрытие содержит карбид.
9. Компрессор по одному из пп.1-4, отличающийся тем, что поршень (25) соединен с магнитным якорем (10), выполненным с возможностью приведения в движение в переменном магнитном поле параллельно направлению движения поршня (25).
RU2009119391/06A 2006-11-07 2007-10-31 Компрессор, содержащий газовый подшипник RU2432497C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006052430A DE102006052430A1 (de) 2006-11-07 2006-11-07 Verdichter mit gasdruckgelagertem Kolben
DE102006052430.6 2006-11-07

Publications (2)

Publication Number Publication Date
RU2009119391A RU2009119391A (ru) 2010-12-20
RU2432497C2 true RU2432497C2 (ru) 2011-10-27

Family

ID=38779739

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009119391/06A RU2432497C2 (ru) 2006-11-07 2007-10-31 Компрессор, содержащий газовый подшипник

Country Status (6)

Country Link
US (1) US20100021323A1 (ru)
EP (1) EP2092195A1 (ru)
CN (1) CN101535644A (ru)
DE (1) DE102006052430A1 (ru)
RU (1) RU2432497C2 (ru)
WO (1) WO2008055826A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299553B1 (ko) 2011-09-06 2013-08-23 엘지전자 주식회사 가스베어링을 구비한 왕복동식 압축기
KR101860340B1 (ko) * 2011-09-06 2018-05-23 엘지전자 주식회사 왕복동식 압축기
DE102011085239A1 (de) * 2011-10-26 2013-05-02 Schaeffler Technologies AG & Co. KG Stößel
US9228738B2 (en) 2012-06-25 2016-01-05 Orbital Atk, Inc. Downhole combustor
ES2607379T3 (es) * 2012-08-24 2017-03-31 Lg Electronics Inc. Compresor alternativo
BR102013003056A2 (pt) * 2013-02-07 2014-09-16 Whirlpool Sa Restritor de fluxo e compressor de gás
CN203906214U (zh) 2013-06-28 2014-10-29 Lg电子株式会社 线性压缩机
CN203906210U (zh) 2013-06-28 2014-10-29 Lg电子株式会社 线性压缩机
CN203867810U (zh) 2013-06-28 2014-10-08 Lg电子株式会社 线性压缩机
CN203770066U (zh) * 2013-06-28 2014-08-13 Lg电子株式会社 线性压缩机
CN104251192B (zh) 2013-06-28 2016-10-05 Lg电子株式会社 线性压缩机
CN204126840U (zh) 2013-06-28 2015-01-28 Lg电子株式会社 线性压缩机
DE102014200981A1 (de) * 2014-01-21 2015-07-23 BSH Hausgeräte GmbH Verdichter für einen Kältekreislauf eines Haushaltskältegeräts, Haushaltskältegerät mit einem Verdichter und Verfahren zum Betreiben eines Verdichters eines Haushaltskältegeräts
KR102605743B1 (ko) * 2017-01-10 2023-11-24 엘지전자 주식회사 리니어 압축기
KR102495256B1 (ko) * 2018-05-16 2023-02-02 엘지전자 주식회사 리니어 압축기
DE102019104856A1 (de) * 2019-02-26 2020-08-27 Wabco Gmbh Kolbenkompressor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB852618A (en) 1958-03-14 1960-10-26 Sulzer Ag Compressors having labyrinth-sealed unlubricated pistons
US3181779A (en) * 1962-09-06 1965-05-04 Walker Mfg Co Compressor
CH507449A (de) 1969-04-24 1971-05-15 Sulzer Ag Kolbenkompressor mit im wesentlichen berührungsfrei im Zylinder arbeitendem Kolben
SE366703B (ru) * 1969-07-04 1974-05-06 Howaldtswerke Deutsche Werft
JPS58138281A (ja) * 1982-02-09 1983-08-17 Mitsubishi Heavy Ind Ltd 外圧を受けるポンプ
US4644851A (en) 1984-02-03 1987-02-24 Helix Technology Corporation Linear motor compressor with clearance seals and gas bearings
DE4035524A1 (de) * 1990-11-08 1992-05-14 Bayerische Motoren Werke Ag Leichtmetallzylinder einer hubkolben-brennkraftmaschine
DE4137224C1 (en) * 1991-11-13 1993-05-27 L'orange Gmbh, 7000 Stuttgart, De Pump plunger for fuel injection pump of IC engine - comprises coating head and/or shaft with chromium and/or tungsten carbide(s) or oxide(s) ceramics
US5366350A (en) * 1993-04-13 1994-11-22 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Gas guiding mechanism in a piston type compressor
US5816783A (en) * 1993-05-19 1998-10-06 Hitachi, Ltd. Electrically driven hermetic compressor
DE19610595C1 (de) * 1996-03-18 1996-10-10 Brueninghaus Hydromatik Gmbh Kolben für eine hydrostatische Axialkolbenmaschine
JP2000161213A (ja) * 1998-12-01 2000-06-13 Matsushita Refrig Co Ltd 振動式圧縮機
JP2001165049A (ja) * 1999-12-08 2001-06-19 Toyota Autom Loom Works Ltd 往復式圧縮機
JP3789691B2 (ja) * 1999-09-14 2006-06-28 三洋電機株式会社 高圧圧縮機の圧縮装置
JP2001227461A (ja) * 2000-02-14 2001-08-24 Matsushita Electric Ind Co Ltd リニア圧縮機
DE102004061940A1 (de) * 2004-12-22 2006-07-06 Aerolas Gmbh, Aerostatische Lager- Lasertechnik Kolben-Zylinder-Einheit
US20080000348A1 (en) * 2004-12-23 2008-01-03 Bsh Bosch Und Siemens Hausgerate Gmbh Linear Compressor

Also Published As

Publication number Publication date
US20100021323A1 (en) 2010-01-28
DE102006052430A1 (de) 2008-05-08
RU2009119391A (ru) 2010-12-20
WO2008055826A1 (de) 2008-05-15
CN101535644A (zh) 2009-09-16
EP2092195A1 (de) 2009-08-26

Similar Documents

Publication Publication Date Title
RU2432497C2 (ru) Компрессор, содержащий газовый подшипник
US7614856B2 (en) Linear motor, and linear compressor using the same
KR100906597B1 (ko) 유압밸브를 작동하기 위한 비례자석 등의 전자석
KR101860340B1 (ko) 왕복동식 압축기
US8177523B2 (en) Linear compressor
KR20070086475A (ko) 피스톤-실린더 유닛
KR100992249B1 (ko) 회전식 압축기 및 회전식 압축기를 구비하는 냉동 사이클장치
US20100098356A1 (en) Gas thrust bearing and associated production method
US20080000348A1 (en) Linear Compressor
JP6483125B2 (ja) シールアセンブリおよびその操作方法
US20050163635A1 (en) Resonant arrangement for a linear compressor
CN103201541A (zh) 密封装置
KR20090040141A (ko) 왕복동식 압축기
US10876524B2 (en) Linear compressor
EP1368567B1 (en) Piston lubrication system for a reciprocating compressor with a linear motor
KR102087140B1 (ko) 왕복동식 압축기
KR20060130748A (ko) 시변 여유 시일을 갖춘 자유 피스톤
KR101332556B1 (ko) 왕복동식 압축기
NL8802786A (nl) Zuigermachine.
CN115076067A (zh) 一种活塞及直线压缩机
JP2010203363A (ja) 振動型圧縮機およびスターリング冷凍機
CN214533420U (zh) 一种活塞及直线压缩机
JP2002122071A (ja) リニアコンプレッサー
KR101860339B1 (ko) 왕복동식 압축기
CN214533419U (zh) 一种活塞及线性压缩机

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181101