RU2427822C1 - Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления - Google Patents

Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления Download PDF

Info

Publication number
RU2427822C1
RU2427822C1 RU2009144885/28A RU2009144885A RU2427822C1 RU 2427822 C1 RU2427822 C1 RU 2427822C1 RU 2009144885/28 A RU2009144885/28 A RU 2009144885/28A RU 2009144885 A RU2009144885 A RU 2009144885A RU 2427822 C1 RU2427822 C1 RU 2427822C1
Authority
RU
Russia
Prior art keywords
fluorescence
matrix
elements
organic compounds
volatile organic
Prior art date
Application number
RU2009144885/28A
Other languages
English (en)
Other versions
RU2009144885A (ru
Inventor
Михаил Владимирович Алфимов (RU)
Михаил Владимирович Алфимов
Иван Владимирович Бовсуновский (RU)
Иван Владимирович Бовсуновский
Андрей Эрнестович Дерябин (RU)
Андрей Эрнестович Дерябин
Дмитрий Сергеевич Ионов (RU)
Дмитрий Сергеевич Ионов
Владимир Петрович Маркелов (RU)
Владимир Петрович Маркелов
Никита Леасович Святославский (RU)
Никита Леасович Святославский
Татьяна Александровна Святославская (RU)
Татьяна Александровна Святославская
Original Assignee
Учреждение Российской академии наук Центр фотохимии РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Центр фотохимии РАН filed Critical Учреждение Российской академии наук Центр фотохимии РАН
Priority to RU2009144885/28A priority Critical patent/RU2427822C1/ru
Publication of RU2009144885A publication Critical patent/RU2009144885A/ru
Application granted granted Critical
Publication of RU2427822C1 publication Critical patent/RU2427822C1/ru

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Изобретение относится к приборостроению и может быть использовано для определения в окружающем воздухе в режиме реального времени содержания летучих органических соединений (ЛОС), таких как бензол, толуол, ксилол, нафталин, антрацен, пирен и других. Способ анализа содержания летучих органических соединений в газовой среде с использованием матрицы флуоресцирующих хемосенсорных элементов, чувствительных к компонентам летучих органических соединений, заключается в том, что сперва приводят анализируемую среду в контакт с элементами матрицы. Затем осуществляют возбуждение флуоресценции каждого элемента с помощью соответствующего источника света. Далее измеряют интенсивность флуоресценции каждого элемента матрицы, зависящей от концентрации определенного компонента. При этом возбуждение флуоресценции и измерение интенсивности флуоресценции хемосенсорных элементов осуществляют поочередно. Причем возбуждение флуоресценции осуществляют с помощью светодиодов путем включения каждого на промежуток времени от 1 до 100 миллисекунд.
Техническим результатом изобретения является повышение точности определения концентрации ЛОС за счет устранения влияния перекрестных помех от флуоресценции соседних или близко расположенных хемосенсорных элементов на систему регистрации. 2 н. и 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к приборостроению и может быть использовано для определения в окружающем воздухе в режиме реального времени содержания летучих органических соединений (ЛОС), таких как бензол, толуол, ксилол, нафталин, антрацен, пирен и других. Оно также может быть использовано для целей неинвазивной медицинской диагностики, основанной на анализе выдыхаемого человеком воздуха, в котором повышенное содержание таких веществ, как ацетон, метанол, этанол, фенол, производных бензола и т.д., может свидетельствовать о развитии определенных заболеваний и, следовательно, может служить важным диагностическим признаком.
Анализ содержания ЛОС в воздухе представляет собой довольно трудную задачу, которая решается обычно с помощью дорогих и громоздких приборов, таких как хроматографы, масс-спектрометры и др.
Известны и портативные устройства для определения летучих органических соединений, например портативный газоанализатор суммы летучих органических соединений VX-500 или газоанализатор МХ6 iBrid.
Недостатком таких устройств и реализуемого ими способа является невозможность раздельного определения концентраций компонентов в смеси летучих органических соединений. Это обусловлено использованием в этих приборах неселективного фотоионизационного детектора. При этом определяется суммарная концентрация всех компонентов ЛОС без разделения по компонентам.
Известно устройство для анализа различных компонентов газообразных и жидких веществ, содержащее матрицу флуоресцирующих сенсорных элементов и источники света - электролюминесцентные элементы по числу сенсорных элементов. Способ анализа осуществляется путем приведения анализируемой среды в контакт с элементами матрицы, возбуждения флуоресценции каждого элемента с помощью соответствующего источника света и измерения интенсивности флуоресценции каждого элемента матрицы, зависящей от концентрации определенного компонента. Для уменьшения перекрестного влияния на измерение флуоресценции соседних элементов матрицы устройство может содержать светофильтры (патент US 6331438 B1, 2001).
Недостатком известных способа и устройства является одновременное возбуждение всех сенсорных элементов излучением электролюминесцентных элементов, что приводит к значительному перекрестному влиянию на фотоприемник соседних флуоресцирующих элементов и резко снижает точность определения концентраций компонентов смеси. Использование светофильтров для уменьшения влияния перекрестных помех имеет ряд существенных недостатков.
Во-первых, спектры флуоресценции различных хемосенсорных элементов, реагирующих на различные вещества (например, на бензол и ацетон), могут перекрываться или даже совпадать. В этом случае оптические фильтры не будут устранять влияние перекрестных помех.
Во-вторых, спектр излучения возбуждения одних сенсорных элементов может перекрываться со спектром флуоресценции других сенсорных элементов, что создает значительные перекрестные помехи между элементами, которые также не могут быть устранены светофильтрами.
В-третьих, замена хемосенсорной матрицы для анализа другого набора летучих органических соединений приводит к необходимости замены набора светофильтров в устройстве.
Задачей изобретения является создание надежного способа и портативного устройства для раздельного определения концентраций компонентов в смеси ЛОС.
Техническим результатом изобретения является устранение влияния перекрестных помех от флуоресценции соседних или близко расположенных хемосенсорных элементов на систему регистрации для повышения точности определения концентрации ЛОС.
Это достигается тем, что в способе анализа содержания летучих органических соединений в газовой среде с использованием матрицы флуоресцирующих хемосенсорных элементов, чувствительных к компонентам летучих органических соединений, путем приведения анализируемой среды в контакт с элементами матрицы, возбуждения флуоресценции каждого элемента с помощью соответствующего источника света и измерения интенсивности флуоресценции каждого элемента матрицы, зависящей от концентрации определенного компонента, согласно изобретению возбуждение флуоресценции и измерение интенсивности флуоресценции хемосенсорных элементов осуществляют поочередно, причем возбуждение флуоресценции осуществляют с помощью светодиодов путем включения каждого на промежуток времени от 1 до 100 миллисекунд.
Технический результат также достигается матричным анализатором летучих органических соединений, содержащим матрицу флуоресцирующих хемосенсорных элементов, чувствительных к компонентам летучих органических соединений, оптически связанные с ними источники света для возбуждения флюоресценции хемосенсорных элементов и систему управления и регистрации результатов анализа, в котором согласно изобретению источники света представляют собой светодиоды, а система управления и регистрации результатов анализа выполнена с возможностью поочередного включения светодиодов на промежуток времени от 1 до 100 миллисекунд и измерения интенсивности флуоресценции каждого элемента.
Конструкция матрицы хемосенсорных элементов предпочтительно выполнена в виде сменного элемента, что позволяет быстро изменять набор определяемых анализатором летучих органических соединений.
Для исключения погрешности измерения интенсивности флуоресценции от саморазогрева светодиодов система управления и регистрации результатов анализа обеспечивает время их включения на промежуток времени от 1 до 100 миллисекунд.
На фиг.1 приведена функциональная схема матричного анализатора летучих органических соединений. На фиг.2 изображена конструкция матрицы хемосенсорных элементов. На фиг.3 изображен вид сечения по линии А-А матрицы хемосенсорных элементов.
Матричный анализатор летучих органических соединений, функциональная схема которого приведена на фиг.1, содержит хемосенсорную матрицу 1, состоящую из корпуса 2 и прозрачной крышки 3. В корпусе выполнен газовый канал 4, в котором расположены хемосенсорные элементы 5. Хемосенсорные элементы 5 образуют матрицу из (n×n) элементов (в данном случае 4×4 элемента). Размер каждого хемосенсорного элемента 5 составляет около (2×2) мм2. Для подачи к хемосенсорным элементам 5 исследуемой газовой смеси служит микронасос 6 с устройством 7 управления микронасосом. Патрубок 8 соединяет выход микронасоса 6 со входом газового канала 4, а патрубок 9 соединяет выход газового канала 4 с наружным воздухом. С каждым хемосенсорным элементом 5 через прозрачную крышку 3 оптически связан оптико-электронный блок 10. Всего таких блоков в данном случае 16. Каждый оптико-электронный блок состоит из светодиода 11 возбуждения, импульсного модулятора 12, отрезающего светофильтра 13, кремниевого фотодиода 14, предварительного усилителя 15. Значение тока для всех импульсных модуляторов 12 задает цифроаналоговый преобразователь (ЦАП) 16.
Выходные сигналы каждого предварительного усилителя 15 подаются на входы усилителя-коммутатора 17, а выход усилителя-коммутатора подключен к входу аналого-цифрового преобразователя (АЦП) 18. Выход АЦП 18 соединен с микропроцессором 19. С микропроцессором 19 соединен жидкокристаллический дисплей 20 для отображения результатов измерений концентраций ЛОС, клавиатура 21 для взаимодействия с оператором и модуль 22 связи с персональным компьютером. Кроме того, с микропроцессором 19 связаны устройство 7 управления микронасосом, каждый импульсный модулятор 12, вход управления усилителем - коммутатором 17 и вход запуска АЦП 18.
Способ анализа летучих органических соединений осуществляется следующим образом.
Микропроцессор 19, получив с клавиатуры 21 команду на измерение концентрации компонентов ЛОС, включает микронасос 6 через устройство 7 управления микронасосом. Анализируемая газовая смесь прокачивается через газовый канал 4, в котором расположены хемосенсорные элементы 5. Скорость прокачки поддерживается постоянной для обеспечения неизменных условий взаимодействия газовой смеси с хемосенсорными элементами 5. Хемосенсорные флуоресцирующие элементы 5 представляют собой синтез полимерных или силикатных наночастиц диаметром 50-400 нм, покрытых оболочкой с рецепторными центрами, чувствительными к ЛОС. Каждый хемосенсорный элемент селективно чувствителен к определенному компоненту ЛОС.
В процессе взаимодействия ЛОС с хемосенсорными элементами 5 микропроцессор начинает последовательно включать модуляторы 12, которые задают ток через светодиоды 11. Излучение светодиода 11 возбуждает флуоресценцию соответствующего хемосенсорного элемента 5. Длина волны излучения светодиода 11 возбуждения выбирается такой, чтобы флуоресцентный отклик хемосенсорного элемента 5 был максимален.
Величина тока через каждый модулятор 12, а следовательно, и через светодиод 11 устанавливается с помощью ЦАП 16. Значение этого тока задается в ЦАП 16 по последовательному интерфейсу из микропроцессора 19.
Величина этого тока устанавливается по максимуму флуоресцентного отклика для каждого хемосенсорного элемента 5 в пределах допустимых значений для каждого светодиода 11.
Излучение флуоресценции от возбужденного хемосенсорного элемента 5 через отрезающий светофильтр 13 поступает на датчик излучения - фотодиод 14. Спектральная характеристика отрезающего светофильтра 13 выбирается таким образом, чтобы излучение светодиода 11 (излучение возбуждения) не пропускалось, а излучение флуоресценции пропускалось светофильтром 13 на фотодиод 14. Выходные сигналы каждого фотодиода 14 усиливаются предварительными усилителями 15, выходы которых подключаются к входам усилителя-коммутатора 17. Усилитель-коммутатор 17 представляет собой аналоговый коммутатор на 16 каналов и усилитель с программируемым коэффициентом усиления. Управление усилителем-коммутатором 17 осуществляется по последовательному интерфейсу от микропроцессора 19. Микропроцессор 19 выдает команды для поочередного подключения входов аналогового усилителя-коммутатора 17 к выходам усилителей 15, а также по последовательному интерфейсу устанавливает необходимый для выбранного канала коэффициент усиления. Значения коэффициентов усиления для всех каналов определяются при процедуре калибровки и хранятся в памяти микропроцессора 19. Усиленный сигнал выбранного канала с выхода усилителя-коммутатора 17 поступает на вход АЦП 18. Микропроцессор 19 осуществляет запуск АЦП 18 и прием кода данных из АЦП 18. Таким образом, проводится опрос всех каналов и измеренные значения запоминаются в памяти микропроцессора 19.
Поскольку осуществляется поочередное включение светодиодов 11 и регистрация излучения соответствующих хемосенсорных элементов 5, то исключается влияние излучения соседних светодиодов 11 и хемосенсорных элементов 5 на результат измерения, следовательно, обеспечивается точность измерения.
Для исключения погрешности измерения интенсивности флуоресценции от саморазогрева светодиодов 11 время их включения ограничивают промежутком времени от 1 до 100 миллисекунд. Это время определяется временем аналого-цифрового преобразования.
В связи с тем, что реакция хемосенсорных элементов 5 на ЛОС может занимать определенное время (инерционность хемосенсорных элементов), микропроцессор 19 выполняет достаточное количество таких циклов измерений для определения установившихся значений интенсивностей флуоресценции хемосенсорных элементов 5. По установившимся значениям интенсивностей флуоресценции проводится расчет концентраций компонентов ЛОС в соответствии с данными калибровки, получаемыми при изготовлении хемосенсорной матрицы. Эти калибровочные данные заносятся в память микропроцессора 19 перед началом измерений.
Для загрузки калибровочных данных, обновления программного обеспечения матричного анализатора, а также для чтения данных о концентрациях ЛОС в персональном компьютере служит модуль связи 22 с персональным компьютером.

Claims (3)

1. Способ анализа содержания летучих органических соединений в газовой среде с использованием матрицы флуоресцирующих хемосенсорных элементов, чувствительных к компонентам летучих органических соединений, путем приведения анализируемой среды в контакт с элементами матрицы, возбуждения флуоресценции каждого элемента с помощью соответствующего источника света и измерения интенсивности флуоресценции каждого элемента матрицы, зависящей от концентрации определенного компонента, отличающийся тем, что возбуждение флуоресценции и измерение интенсивности флуоресценции хемосенсорных элементов осуществляют поочередно, причем возбуждение флуоресценции осуществляют с помощью светодиодов путем включения каждого на промежуток времени от 1 до 100 мс.
2. Матричный анализатор летучих органических соединений, содержащий матрицу флуоресцирующих хемосенсорных элементов, чувствительных к компонентам летучих органических соединений, оптически связанные с ними источники света для возбуждения флюоресценции хемосенсорных элементов и систему управления и регистрации результатов анализа, отличающийся тем, что источники света представляют собой светодиоды, а система управления и регистрации результатов анализа выполнена с возможностью поочередного включения светодиодов на промежуток времени от 1 до 100 мс и измерения интенсивности флуоресценции каждого элемента.
3. Матричный анализатор по п.2, отличающийся тем, что матрица хемосенсорных элементов выполнена в виде сменного элемента.
RU2009144885/28A 2009-12-03 2009-12-03 Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления RU2427822C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009144885/28A RU2427822C1 (ru) 2009-12-03 2009-12-03 Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009144885/28A RU2427822C1 (ru) 2009-12-03 2009-12-03 Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления

Publications (2)

Publication Number Publication Date
RU2009144885A RU2009144885A (ru) 2011-06-10
RU2427822C1 true RU2427822C1 (ru) 2011-08-27

Family

ID=44736379

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009144885/28A RU2427822C1 (ru) 2009-12-03 2009-12-03 Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления

Country Status (1)

Country Link
RU (1) RU2427822C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2547893C1 (ru) * 2013-12-02 2015-04-10 Федеральное государственное бюджетное учреждение науки Центр фотохимии Российской академии наук (ЦФ РАН) Способ детектирования ацетона в газовой фазе
RU2626066C1 (ru) * 2016-03-11 2017-07-21 ФАНО России Федеральное государственное бюджетное учреждение науки Институт автоматики и электрометрии Сибирского отделения Российской академии наук (ИАиЭ СО РАН) Способ анализа концентрации аналита и оптический хемосенсор
RU2637388C2 (ru) * 2012-12-07 2017-12-04 Спзх Бортовое устройство и способ анализа текучей среды в тепловом двигателе

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469295C1 (ru) * 2011-08-01 2012-12-10 Учреждение Российской академии наук Центр фотохимии РАН Способ определения бензола, толуола и ксилола в воздухе
RU2499249C1 (ru) * 2012-11-19 2013-11-20 Федеральное государственное бюджетное учреждение науки Центр фотохимии Российской академии наук (ЦФ РАН) Способ определения пиридина в воздухе
BR112018070717A2 (pt) * 2016-04-15 2019-02-12 Yale University sistema para analisar uma mistura gasosa, e, método para analisar pelo menos um composto químico em uma mistura gasosa.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637388C2 (ru) * 2012-12-07 2017-12-04 Спзх Бортовое устройство и способ анализа текучей среды в тепловом двигателе
RU2547893C1 (ru) * 2013-12-02 2015-04-10 Федеральное государственное бюджетное учреждение науки Центр фотохимии Российской академии наук (ЦФ РАН) Способ детектирования ацетона в газовой фазе
RU2626066C1 (ru) * 2016-03-11 2017-07-21 ФАНО России Федеральное государственное бюджетное учреждение науки Институт автоматики и электрометрии Сибирского отделения Российской академии наук (ИАиЭ СО РАН) Способ анализа концентрации аналита и оптический хемосенсор

Also Published As

Publication number Publication date
RU2009144885A (ru) 2011-06-10

Similar Documents

Publication Publication Date Title
RU2427822C1 (ru) Способ анализа содержания летучих органических соединений в газовой среде и матричный анализатор для его осуществления
US11092580B2 (en) Diagnostic apparatus
US7319522B2 (en) Systems and methods for in situ spectroscopic measurements
JP4640797B2 (ja) 生体分子相互作用測定装置及び測定方法
US20150289782A1 (en) Portable breath volatile organic compounds analyser and corresponding unit
US7470917B1 (en) Submersible apparatus for measuring active fluorescence
US20080174768A1 (en) Self referencing LED detection system for spectroscopy applications
US9316585B2 (en) Method and apparatus for determining a relaxation time dependent parameter related to a system
US7564046B1 (en) Method and apparatus for measuring active fluorescence
JP6595204B2 (ja) 光学分析装置
US20220287588A1 (en) Universal portable breath content alayzer
US20180164263A1 (en) Optochemical sensor
Kolle et al. Fast optochemical sensor for continuous monitoring of oxygen in breath-gas analysis
JP5249777B2 (ja) サンプルの蛍光発光を測定するための方法および装置ならびにその使用
US20150099309A1 (en) Multi-channel light measurement methods, systems, and apparatus having reduced signal-to-noise ratio
US9618499B2 (en) Diffusion chamber for ascertaining different parameters of an aqueous substance
WO2005119216A1 (en) Systems and methods for in situ spectroscopic measurements
US11344223B2 (en) Method and an apparatus for measuring acetone concentrations in breath
WO2006115079A1 (ja) 熱レンズ分光分析システム及び熱レンズ信号補正方法
CN220271169U (zh) 一种荧光分析仪
RU2715934C1 (ru) Анализатор для селективного определения летучих ароматических углеводородов
US20020190221A1 (en) Electronic test standard for fluorescence detectors
RU192708U1 (ru) Анализатор для селективного определения летучих ароматических углеводородов
KR100781649B1 (ko) 포토센서를 이용한 진단시료 분석시스템
KR200405252Y1 (ko) 채취된 혈액의 성분을 측정하는 혈액측정장치

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121204